The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
(1) Field of the Invention
This invention generally relates to antennas and more specifically to an antenna that covers a wide frequency band and that can be deployed from an underwater location, such as from a submarine.
(2) Description of the Prior Art
As known, communications between the outside the world and underwater craft, such as a submerged submarine, can be achieved through a floating cable antenna system. With the advent of satellite communications, such antenna systems enable a submarine to remain submerged while communicating with other facilities throughout the world by means of satellite communications in the UHF and other frequency bands.
More specifically, such underwater craft deploy an antenna to the surface to establish communications while the craft remains submerged. After communications are completed, the antenna is reeled back into a storage area. Consequently, the presence of the antenna at the sea surface is minimized to reduce the possibility of detection. Specifically, the antenna as a physical radar contact is detectable only during its presence on the surface.
As an example, U.S. Letters Patent No. 2,067,337 granted in 1933 to Polatzek discloses a flexible tube or hose for deploying an antenna from a submarine. The hose is inflated with air under compression to overcome any loading on an aerial wire in the hose.
U.S. Letters Patent No. 3,788,255 granted in 1974 to Tennyson discloses an expendable submarine receiving antenna. A buoyant capsule has an opening therethrough for release from an ejection chamber in a submarine. The capsule contains a coil of lead-in wire with electrical insulation suitable for use in seawater and having a length that extends between the submerged submarine and the surface. A free end of the wire extends freely through the opening in the capsule for withdrawal and severance of a selected length of the wire for connection at the free end to radio communication equipment aboard the submarine.
U.S. Letters Pat. No. 3,972,047 granted in 1976 to Lombardi for a floating cable antenna system discloses an antenna system in which a submerged submarine tows a buoy by means of an electromechanical cable. A cable reel stores the inflatable buoyant cable and has a pressure accumulator containing a medium under given pressure attached to one end of the buoyant cable. Slip rings provide a communication with the electromechanical cable radio communications.
U.S. Letters Pat. No. 5,132,696 granted in 1992 to Cobb discloses a pneumatic extendable antenna for a water deployable buoy. A whip antenna extends from a shortened configuration to a lengthened configuration. The antenna body comprises a plurality of hollow frusto-conical segments that slidably nest inside each other when the antenna is in its shortened or compact configuration. Filling the container with a pressurizing gas expands the segments relative to each other. A weighted ballast and electronic control circuit attached to one end of the antenna and an air filled stability bag disposed about the antenna near its weighted end orients the antenna in a vertical direction.
U.S. Letters Pat. No. 5,933,117 granted in 1999 to Gehard discloses a flexible ferrite loaded loop antenna assembly. A buoyant loop antenna is deployed along a cable with a core region that comprises a plurality of annular ferrite beads. The ferrite beads are aligned with the concave end of one bead against the convex end of another bead so the cable can flex while the beads maintain contact with each other thereby providing flexibility and resistance to crushing. The core region has a looped wire wrapped helically around it forming the loop antenna. The looped wire elements start and end at the same end of the core region forming a loop. The loop allows reception in an athwart (side to side) direction. The wire loop antenna can be combined with a straight wire antenna to provide reception in a fore and aft direction thereby to provide an omni-directional cable antenna assembly.
Each of these references discloses an antenna that is relatively large and therefore readily detectable at the surface by modern radar systems. With the exception of the Gerhard patent with its complicated ferrite beads that provides some flexibility, the antennas are rigid and not adapted for wrapping on a reel. Many of them require external gas in order to inflate and rise to the surface. Further, each of them tends to be an end fed antenna with the exception of the Gerhard patent that discloses multiple antenna elements to obtain an omni-directional range. The Gerhard patent additionally is directed to VLF/LF transmission bands that incorporate entirely different signal requirements than the typical transmission frequencies in the 200-400 MHz band.
In addition to these antennas, other antennas have been proposed that provide radiation patterns that are more advantageous particularly with respect to satellite communications, but not readily adapted for deployment from underwater craft. For example, U.S. Letters Pat. No. 2,622,196 granted in 1952 to Alford discloses an ultra-high frequency antenna that generates horizontally polarized waves. The antenna comprises a number of small loops shunted across a balanced transmission line arranged so that a large number of loops may be cophasally energized thereby attaining a large concentration of radial power in a plane in which the radiation is distributed in a substantially circular pattern.
U.S. Letters Pat. No. 2,812,562 granted in 1957 to Carter discloses loop antennas for television signals with a loop antenna array of a plurality of loops coupled together by a section of transmission line that has a quarter wavelength, or any odd multiple thereof, at the frequency of operation and having field patterns superimposed in phase quadrature relationship. The loop is preferably a single turn arrangement having a circumference in the order of one or a few wavelengths at the operating frequency and made of a large diameter conductor.
U.S. Letters Pat. No. 3,626,418 granted in 1971 to Barryman discloses a VHF antenna comprising a plurality of closed loop radiating elements that are parallel fed by a tapered pair feed line. Each loop comprises a single turn of conductive material whose dimensions are uniform over the entire loop so each loop is electrically uniform and continuous. The loops are fed in parallel by uniformly tapered feed lines comprising two congruent strips of conductive material that diverge at a small angle. A first loop of said plurality of loops has a circumference equal to one half length at the lowest desired frequency. A second loop has a circumference equal one-half wavelength at the highest desired frequency. The remaining loops are of intermediate size between the first and second loops.
U.S. Letters Pat. No. 3,999,185 granted in 1976 to Polgar, Jr. et al. discloses plural antennas on a common support with feed line isolation. This structure includes a tunable high power MF/HF transmitting antenna having a vertical access and shorting assembly driven along a vertical axis to tune the high power antenna. A plurality of additional antennas are disposed in a vertically stacked relationship above the high power antenna. A tunable ferrite isolator is disposed below a drive shaft and includes a conduit that enables the conduit and the service conductors to pass through the high power antenna with a minimum modification to the performance of the high power antenna.
Of all these antennas, it has been found that the loop antenna, such as disclosed in U.S. Letters Pat. No. 2,622,196, has the potential for providing a desired radiation pattern to a number of applications. However, this structure is a rigid structure that also is not readily adapted for undersea applications. Specifically, it is difficult to store such a rigid structure and to provide any structure that would allow an antenna to rise to the surface.
Therefore it is an object of this invention to provide an improved antenna structure that can be deployed from underwater craft, such as submarines.
Another object of this invention is to provide an antenna structure that can be deployed by providing a low radar signature.
Still another object of this invention is to provide an antenna for underwater craft, such as submarines, that is readily stowed with its cable without special housings or storage containers.
Yet another object of this invention is to provide an antenna structure for use as a deployable antenna from a submarine that maintains an impedance match over a wide frequency band.
Yet still another object of this invention is to provide a deployable antenna for use with underwater craft, such as submarines that provides elliptically polarized signals.
Still yet another object of this invention is to provide an antenna structure that operates as a solid sheet metal slotted antenna.
In accordance with one aspect of this invention, an antenna that is deployable from an underwater housing comprises a support and a slotted antenna structure. The support extends along an antenna axis, and the antenna is flexible about radii transverse to the axis. The slotted antenna structure is formed on the flexible support with an axis coincident with the antenna axis and with a plurality of antenna loops extending along the antenna axis such that each antenna element is substantially transverse to the antenna axis.
In accordance with still another aspect of this invention, a deployable antenna for use in underwater craft includes a flexible support that has compact and expanded states. The flexible support carries an elongated antenna structure to be in operating condition in the expanded state. A gas contained within the flexible support provides appropriate expansion of the flexible support from its compact to its extended state as the antenna rises to the surface. A retainer device maintains the flexible support in its compact structure.
In accordance with another aspect of this invention, an antenna is provided that operates with the characteristics of a solid slot antenna. The antenna comprises a plurality of conductive loops spaced along and substantially transverse to an antenna axis. The loops are oriented in a substantially parallel relationship. Each loop has first and second spaced, facing end portions. A first conductor interconnects the first end portions, and a second conductor interconnects the second end portions. The first and second conductors are spaced and form a slot path.
The appended claims particularly point out and distinctly claim the subject matter of this invention. The various objects, advantages and novel features of this invention will be more fully apparent from a reading of the following detailed description in conjunction with the accompanying drawings in which like reference numerals refer to like parts, and in which:
In
It is desirable that the number and spacing of the open loops 22 produce an antenna structure that emulates a slotted-cylindrical antenna made from sheet metal. The metrics for determining the usefulness of such an antenna include an analysis of the radiation, propagation and impedance properties in the slot region.
A useful radiation property is free spaced directivity that measures how the radiated energy is spatially concentrated around the antenna. Directivity for such an antenna structure can be approximated by:
Where n and s are the number of loops and spacing between the loops respectively, k is a free space-wave number that is 2π/λ and m is a summation index; basically the loop number, so that D is found by summing from loop 1 (m=1) to loom m=n−1 (n being the total number of loops). It has been observed that the plot with one thin loop provides an antenna directivity, D, with a value of 3/2. As the number of loops are increased without bound while constrained over a finite axial length, 1, the directivity increases but asymptotically approaches the directivity of the slotted sheet metal radiator of corresponding length. Consequently Equation (1) can be recast as Equation (2) where Si (X) is the sine integral defined as:
This equation assumes that the ratio of the antenna perimeter, (p) to the wavelength (λ) is small. In a submarine application this perimeter-wavelength ratio is desirable since it yields a slender antenna that minimizes the potential for radar detection. Moreover, as will be described, this condition permits the antenna to have a toroidal pattern in which the pattern null is on the antenna axis.
A model with ten loops yields a directivity that is 8% above the final level value given by Equation (2). Doubling the number of loops yielded the directivity that was 4% above the final value. Thus, a given antenna length will have a combination of loop number, n, and spacing, s, such that the resulting directivity is approximately the limiting value described by Equation (2).
With respect to the propagation constant, the feed region of an antenna comprised of a parallel wire line has electrical properties that are similar to a solid cylindrical slotted antenna. More specifically a complex number γ(=α+jβ) typically has a small value in the attenuation constant, α, and an increase in the phase constant, β, in the band of interest. Below the band of interest, i.e., below 225 MHz in a typical submarine application, α, increases and β decreases. An intersection at the cutoff frequency below which wave propagation in the slot region is evanescent and the antenna behaves as a lossy transmission line. The values at cutoff, αc and βc, are related to a normalized cutoff wave number (kcae=p/λc) by
where p is the mean perimeter of the antenna cross section. It has been found that with a cutoff frequency of 220 MHz, an antenna can be constructed with a mean perimeter of 18.2 inches to yield αc=βc=1.10 m−1. Lower values of kcαe, may be obtained by increasing the perimeter, p, or decreasing the slot width. Analysis of both an antenna structure as shown in
With respect to impedance, it has been found that the feed point impedance at any arbitrary location along the parallel conductors 25 and 26 in
where γ=α+jβ, 11 and 12 are the distances from each end to the feed point, respectively, and Z0 is the characteristic impedance of the slot region. When the feed point is positioned at the center such that 11=12, Equation (4) reduces to
where 1 is now the half-length of the antenna. This analysis indicates that the feed point resistances have reactances of a twenty-loop antenna structure 20 and the solid antennas are essentially similar with the values of Z0 and γ roughly equal.
An antenna structure, such as the antenna structure 20 in
In a preferred embodiment of this invention the substrate 31 forms a sealed compartment that contains a small amount of gas, such that in its compact form the antenna structure 30 has some buoyancy even as it is transferred into the ocean at depth. As the buoyant antenna structure 30 rises to the surface, it expands. As will be apparent, the gas pressure in the expanded state exceeds the pressure that would lead to substrate failure.
Thus, an antenna structure, such as the antenna structure 20 in
The physical attributes of this antenna structure also facilitate its construction. For example, the antenna might be blow molded in a manner similar to that used for liquid containers. After molding, the exterior structure could be plated with a thin layer of metal to form the antenna. Thus, in a pattern such as the pattern shown in
As known, the major advantage of a submarine is its stealth. Floating a transmitting antenna on the surface can provide a radar signature. It has been found, however, that an antenna constructed in accordance with this invention exhibits a significantly decreased radar signature over a corresponding slotted solid antenna.
When a solid slotted antenna is at the surface, a degree of capacitive coupling between the antenna structure and surrounding seawater ground plane can vary effective gain. In such environments gain is a function of angular rotation. An antenna constructed in accordance of this invention minimizes the effect of function because only a small portion of the antenna surface couples to the seawater at any given instant of time.
The combination of the foregoing attributes provides advantages over conventional submarine antennas. When an antenna according to this invention is deployed on the surface, reflections due to wave effects or sea clutter may be much larger in any radar image of the area. This has the potential of providing an antenna that is undetectable by radar. It is also expected that the cooling effect of the seawater wash over the antenna will tend to make any infrared signature indistinguishable.
The basic antenna structure shown in
At other positions along the axis, the antenna 50 compresses loops 57 with an essentially reverse s-shape in the perspective of FIG. 7. Each such loop 57 terminates at a first free end 60 and a spaced second free end that is not visible in the perspective of FIG. 7. Each free end 60 is a portion of a lower loop element 61, and each loop 57 also includes an upper element 62. The loops 57 are split at the center to connect to portions 55A and 56A of the parallel conductors.
More specifically, the parallel conductors 55 and 56 meander by shifting radially from the outer position shown at their connection to loops like the loops 52 to the substantially axial position of portions 55A and 56A. Portions like the portion 55A drive each element 61; portions like the portion 55A drive each element 62. This radial meandering of the conductors 55 and 56 produces a structure that constitutes an array of dipoles. The vector addition of the fields radiated from the composite structure produces a beam with maximum lobes tilted 45° from broadside.
The antennas shown in
Still referring to
In summary, there has been disclosed a basic antenna structure of spaced loops that define a slot. The basic configuration is shown with a number of modifications, including square and circular loops, straight and meandering paths, loops that comprise multiple loop portions. Loop shapes and slot paths other than these specifically disclosed can be substituted. These antennas provide performance corresponding to a solid cylindrical slotted antenna. In addition, the configuration enables each antenna structure to be constructed on a flexible substrate such that the portions of the loop opposite from the slots can be bent toward each other thereby to provide a structure that is flexible. Moreover, as the antenna can be take the form of a structure such as shown in any of the
This invention has been disclosed in terms of certain embodiments. It will be apparent that many modifications can be made to the disclosed apparatus without departing from the invention. Therefore, it is the intent of the appended claims to cover all such variations and modifications as come within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2067337 | Polatzek | Jan 1937 | A |
2818562 | Carter | Dec 1957 | A |
3210767 | Isbell | Oct 1965 | A |
3626418 | Berryman, Jr. | Dec 1971 | A |
3788255 | Tennyson | Jan 1974 | A |
3972047 | Lombardi | Jul 1976 | A |
3999185 | Polgar, Jr. | Dec 1976 | A |
5132696 | Cobb | Jul 1992 | A |
5790082 | Podger | Aug 1998 | A |
5933117 | Gerhard | Aug 1999 | A |