The present disclosure relates to an antenna for a wearable device.
A wearable electronic device is widely being supplied following user devices such as a smartphone and a tablet. Such wearable electronic devices include antenna for wireless communication therein.
In general, a wearable electronic device which is currently being supplied includes an antenna for supporting a global navigation satellite system (GNSS). For example, the wearable electronic device may include a global positioning system (GPS) antenna. In addition, a Bluetooth antenna for communication with a mother device such as a smartphone and a cellular network antenna for supporting 3rd generation (3G) or long term evolution (LTE) communication may be further included in the wearable electronic device.
For example, in the case of a conventional smart watch, the GPS antenna may be implemented through a metal structure of a monopole shape, which is mounted within a strap connected with the smart watch, or may be implemented by inserting a patch antenna into the smart watch. In addition, the GPS antenna may be implemented through indirect feeding (e.g., coupling feeding), with a metal structure positioned on a front surface of the smart watch.
The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure.
Since an internal space of a wrist-mounted electronic device such as a smart watch is narrow, it is difficult to mount a plurality of antennas. In particular, even though an antenna is mounted, it may be difficult to secure sufficient performance. The above-described issue occurs in various wearable devices, the mounting space of which is insufficient, such as an ankle-mounted electronic device, a chest-mounted electronic device, a neck-mounted electronic device, and a head (face)-mounted electronic device.
Among existing ways to implement an antenna, in the case of a monopole antenna mounted within a strap, radiation performance may be greatly reduced by a human body, with the strap mounted on a wrist. In the case of the patch antenna, the efficiency and directivity of the antenna is excellent; however, since the antenna occupies much space, it is difficult to apply the antenna to a recent smart watch on which various functions or sensors are mounted. In the case of the antenna using the coupling feeding, since a structure for coupling should be implemented within a limited space, it is difficult to miniaturize the antenna and improve the efficiency.
Aspects of the present disclosure address at least the above-mentioned problems and/or disadvantages and provide at least the advantages described below. Accordingly, an aspect of the present disclosure is to provide an antenna of an electronic device for addressing the above-described problem and problems brought up in this disclosure.
In accordance with an aspect of the present disclosure, a wearable device which is mountable on a wrist of a user may include a housing including a metal structure, a display positioned within the housing, wherein the display includes a metal layer positioned within the metal structure and spaced apart from the metal structure by a gap, a printed circuit board (PCB) positioned within the housing and including a ground region, and a control circuit positioned on the PCB and configured to feed a first point of the metal structure. The metal layer may be electrically connected with the ground region of the PCB at a second point spaced from the first point by a given angle.
According to various embodiments of the present disclosure, an antenna having high efficiency and directivity may be implemented using a metal structure of a display and a metal housing in a wearable electronic device.
Also, the user experience may be improved by changing a radiation pattern of an antenna depending on various operating conditions.
Besides, a variety of effects directly or indirectly understood through this disclosure may be provided.
Other aspects, advantages, and salient features of the disclosure will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses various embodiments of the present disclosure.
The above and other aspects, features, and advantages of certain embodiments of the present disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Hereinafter, various example embodiments of the present disclosure may be described with reference to accompanying drawings. Accordingly, those of ordinary skill in the art will recognize that modifications, equivalents, and/or alternatives of the various example embodiments described herein can be variously made without departing from the scope and spirit of the present disclosure. With regard to description of drawings, similar components may be marked by similar reference numerals.
In the present disclosure, the expressions “have”, “may have”, “include” and “comprise”, or “may include” and “may comprise” used herein indicate existence of corresponding features (e.g., components such as numeric values, functions, operations, or parts) but do not exclude presence of additional features.
In the present disclosure, the expressions “A or B”, “at least one of A or/and B”, or “one or more of A or/and B”, and the like may include any and all combinations of one or more of the associated listed items. For example, the term “A or B”, “at least one of A and B”, or “at least one of A or B” may refer to all of the case (1) where at least one A is included, the case (2) where at least one B is included, or the case (3) where both of at least one A and at least one B are included.
The terms, such as “first”, “second”, and the like used in the present disclosure may be used to refer to various components regardless of the order and/or the priority and to distinguish the relevant components from other components, but do not limit the components. For example, “a first user device” and “a second user device” indicate different user devices regardless of the order or priority. For example, without departing the scope of the present disclosure, a first component may be referred to as a second component, and similarly, a second component may be referred to as a first component.
It will be understood that when an component (e.g., a first component) is referred to as being “(operatively or communicatively) coupled with/to” or “connected to” another component (e.g., a second component), it may be directly coupled with/to or connected to the other component or an intervening component (e.g., a third component) may be present. On the other hand, when an component (e.g., a first component) is referred to as being “directly coupled with/to” or “directly connected to” another component (e.g., a second component), it should be understood that there are no intervening component (e.g., a third component).
According to the situation, the expression “configured to” used in the present disclosure may be used as, for example, the expression “suitable for”, “having the capacity to”, “designed to”, “adapted to”, “made to”, or “capable of”. The term “configured to” must refer only to “specifically designed to” in hardware. Instead, the expression “a device configured to” may refer to a situation in which the device is “capable of” operating together with another device or other parts. For example, a “processor configured to (or set to) perform A, B, and C” may refer, for example, and without limitation, to a dedicated processor (e.g., an embedded processor) for performing a corresponding operation, a generic-purpose processor (e.g., a central processing unit (CPU) or an application processor) which performs corresponding operations by executing one or more software programs which are stored in a memory device, or the like.
Terms used in the present disclosure are used to describe specified embodiments and are not intended to limit the scope of the present disclosure. The terms of a singular form may include plural forms unless otherwise specified. All the terms used herein, which include technical or scientific terms, may have the same meaning that is generally understood by a person skilled in the art. It will be further understood that terms, which are defined in a dictionary and commonly used, should also be interpreted as is customary in the relevant related art and not in an idealized or overly formal unless expressly so defined in various embodiments of the present disclosure. In some cases, even if terms are terms which are defined in the present disclosure, they may not be interpreted to exclude embodiments of the present disclosure.
Hereinafter, electronic devices according to various embodiments will be described with reference to the accompanying drawings. In the present disclosure, the term “user” may refer to a person who uses an electronic device or may refer to a device (e.g., an artificial intelligence electronic device) that uses the electronic device.
Referring to
The housing 120 may protect various components (e.g., the display 130, the battery 150, the PCB 160, and the like) positioned within the wearable device 100. A component corresponding to the housing 120 may be illustrated in
According to an embodiment, at least a portion of the housing 120 may be implemented with a conductive material such as metal. For example, a partial region, which forms a front surface of the wearable device 100, of the housing 120 may be implemented with a metal structure of a ring shape. The metal structure may be electrically connected with a control circuit (e.g., a processor including various processing circuitry such as, for example, and without limitation, an application processor (AP), a communication processor (CP), or the like) positioned on the PCB 160, and the control circuit may feed the metal structure to allow the metal structure to operate as an antenna radiator. In an embodiment, the bezel wheel 110 may be implemented with metal and may correspond to the above-described metal structure. In another embodiment, a partial region, which forms a front surface and/or a side surface of the wearable device 100, of the housing 120 may be implemented with the metal structure. In the present disclosure, for convenience of description, it is assumed that the partial region of the housing 120 forming the front surface of the wearable device 100 has the metal structure of a ring shape.
In an embodiment, the bezel wheel 110 may prevent and/or reduce a black matrix (BM) region of the display 130 from being exposed to the outside, and a user may generate a user input by rotating the bezel wheel 110.
In an embodiment, the display 130 may have a disk shape of a specific thickness overall and may output an image, a text, or the like. For another example, at least a portion of the display 130 may be exposed to the outside through a first surface of the housing 120, which faces in a first direction. In an embodiment, the display 130 may include a touch panel. For example, the display 130 may have a multi-layer structure including a display panel, a touch panel, a polarizing plate, a shield layer, and the like.
In an embodiment, the shield layer of the display 130 may be implemented with a metal material. For example, to minimize and/or reduce a noise which occurs in the display 130 and has an influence on various components positioned on the PCB 160, a copper (Cu) sheet may be positioned on a rear surface of the display 130. The shield layer of the metal material may be utilized to improve performance of an antenna. In the present disclosure, the shield layer of the metal material may be simply referred to as a “metal layer”.
In an embodiment, the display 130 may be electrically connected with the PCB 160 through a signal line for transmitting/receiving data. Also, the display 130 may be connected with a ground of the PCB 160 through the signal line or through a separate electrical path.
In an embodiment, the bracket 140 may be used to mount and support internal components such as the display 130, the battery 150, and the PCB 160. The bracket 140 may be implemented with a non-conductive material (e.g., plastic).
In an embodiment, the battery 150 may be mounted on the bracket 140 and may be electrically connected with the PCB 160. The battery 150 may be charged by an external power and may output the charged power to supply a power for an operation of the wearable device 100.
In an embodiment, the PCB 160 may include a module, a chip, and the like necessary for driving the wearable device 100. For example, the PCB 160 may include a processor, a memory, a communication circuit, and the like.
In an embodiment, the PCB 160 may include a plurality of layers, and one of the plurality of layers may function as a ground of an antenna.
In an embodiment, the rear cover 170 may be coupled with the housing 120 to fix and protect internal components. The rear cover 170 may be formed of a nonmetal material or a non-conductive material.
Referring to
The PCB 160 may be connected with a second point B′ of the display 130 through a cable for the purpose of providing an image signal to the display 130. The metal layer included in the display 130 may be grounded by the cable. For example, a ground line included in the cable may electrically connect a ground region (or a ground layer) provided in the PCB 160 and the metal layer of the display 130. However, in an embodiment, the cable may be understood as the concept including a flexible PCB (FPCB), or may be replaced with the FPCB.
The metal structure 101 may be connected with the ground region of the PCB 160 at a third point “B”. In an embodiment, the metal structure 101 may be selectively connected with the ground region of the PCB 160 at a plurality of points. For example, the metal structure 101 may include a plurality of switches which electrically connect the ground region of the PCB 160 with the metal structure 101. In an embodiment, the control circuit may close or open the plurality of switches to allow the metal structure 101 to be connected with the ground region of the PCB 160 at one or more points. In other embodiment, the control circuit may open the plurality of switches to allow the metal structure 101 not to be connected with the ground region of the PCB 160.
The second point B′ may be spaced from the first point “A” by a given angle. For example, the second point B′ may form an angle of 90 degrees with the first point “A” with respect to the center of the display 130. In this regard, a description will be given with reference to
Referring to
As charges are induced in the metal structure 101, opposite charges may also be induced at the metal layer of the display 130. That is, (−) charges may be induced at a region adjacent to the “A” point, and (+) charges may be induced at a region adjacent to the “B” point.
As center points between the “A” point and the “D” point, the “B” and “C” points correspond to a point where a potential is theoretically a zero. Accordingly, a region adjacent to the “B” point, for example, a surrounding region of the B′ point of the display 130 may have a potential value which approximates to substantially a zero.
Accordingly, the influence on a current induced at the display 130 (e.g., the metal layer) may be minimized and/or reduced in the case where the B′ point is electrically connected with the ground region of the PCB 160 (e.g., through a cable). In other words, as the metal structure 101 is fed, a current may be induced indirectly (e.g., through coupling feeding) even at the metal layer of the display 130 adjacent to the metal structure 101. A cable may be connected to a surrounding region of the B′ point for the purpose of minimizing and/or reducing hindrance to the flow of the current induced at the metal layer. For example, a cable may be connected with the ground region of the PCB 160 at a position corresponding to the B′ point forming a given angle “0” (e.g., 90 degrees) with the “A” point with respect to the center of the display 130.
It may be understood from
Referring to
As in the description given with reference to
In the case of
Referring to
The display 130 may be electrically connected with the ground region of the PCB 160 at one point (e.g., a second point). In this case, the display 130 may not be connected with the ground region at any other point, for example, except for the second point. Here, the second point may correspond to a point forming an appropriate angle with the first point as described with reference to
In the case where one side of the display 130 is grounded, as illustrated in
In the case where the display 130 is electrically connected with the ground region of the PCB 160 at two or more points, for example, in the case where the display 130 is electrically connected with the ground region of the PCB 160 even at a point which is illustrated in
In
Referring to
In addition to the layers illustrated in
Referring to
A cable may include signal lines for operating a display (or a pixel) and a touch function, in addition to a ground line. That is, in the embodiment of
In the example of
The examples illustrated in
In an embodiment, the display 130 may include a metal layer, and the metal layer may be positioned within the metal structure 101 and may be spaced from the metal structure 101 by a given gap “d”. The display 130 and the metal structure 101 of a wearable device are illustrated in
For example, a graph of
In
In
In
According to an embodiment, since one point of the display 130 operates as a parasitic patch antenna connected with the ground region, receive performance may increase. For example, in the case of receiving a signal, such as a GPS signal, from a satellite for the purpose of seizing position information of the wearable device 100, the receive performance of an antenna may increase.
Referring to
In
The control circuit of the wearable device 100 may control the open/short of switches connected with the metal structure 101 depending on a situation. For example, since a direction of an antenna continuously changes in a situation where the user wears the wearable device 100 and walks, the control circuit may close the switches to allow the antenna to operate in a loop mode. For another example, in the case where the user looks at the display 130 of the wearable device 100, the control circuit may open the switches to allow the antenna to operate in a patch mode.
The mode change may be performed based on a sensor mounted on the wearable device 100 or an application being executed in the wearable device 100. For example, the wearable device 100 may include a motion sensor which senses the movement of the wearable device 100. The motion sensor may, for example, and without limitation, correspond to at least one or more of, for example, an acceleration sensor, an inertial sensor, a gyro sensor, or the like. In the case where the movement sensed by the motion sensor is determined as corresponding to walk or running, for example, as the loop mode is appropriate (e.g., as a direction of an antenna continuously changes), the control circuit may close the switches to allow the antenna to operate in the loop mode. However, in the case where a direction of a display sensed by the motion sensor is determined as facing a specific direction or being maintained in the specific direction, the control circuit may sense that the user looks at a screen of the wearable device 100 and may operate the antenna in the patch mode. In another exemplification, in the case where a screen of the display 130 in the wearable device 100 is in an ON state, the control circuit may sense that the user looks at the screen of the wearable device 100 and may operate the antenna in the patch mode.
In an embodiment, the control circuit may control a short switch which connects the metal structure 101 and the ground region in various cases. For example, the control circuit may sense the movement of the user's wrist using the motion sensor and may control the short switch such that an antenna has a directional radiation pattern whenever it is determined that the user raises his/her hand.
Also, the control circuit may perform switching to an antenna pattern which is appropriate for an application being executed. For example, in the case where an application such as a golf application, a swimming application, or a running application is being executed, the wearable device 100 needs to obtain an exact position of the user through the GPS. In this case, to receive a satellite signal well, the wearable device 100 may open all the switches such that the antenna has a directional antenna pattern.
In addition, the control circuit may sense whether to wear the wearable device 100 using an optical sensor (e.g., a camera, an illuminance sensor, an infrared sensor, or the like) and may control the switches so as to have different radiation patterns depending on whether to wear the wearable device 100. Also, the control circuit may sense heat, which is generated from a wrist while wearing the wearable device 100, through a temperature sensor and may control the switches for the purpose of decreasing a specific absorption rate (SAR). For example, the control circuit may control the switches so as to operate in the patch mode where a radiation pattern is focused in the direction of the LCD, instead of the loop mode where a radiation pattern is mainly formed in the direction of the wrist. Various exemplifications will be described with reference to
Referring to
In addition to the patch antenna described with reference to
A radiation pattern of an antenna corresponding to the case where the metal structure 101 is connected with the ground region through the coupling may be observed from
Referring to
In the case where the GPS tracking is in the ON state, in operation 1103, the wearable device 100 may sense a wearing state and/or movement of the wearable device 100. For example, the wearable device 100 may sense the wearing state and/or movement using an acceleration sensor, a gyro sensor, an inertial sensor, a heart rate sensor, or the like.
In operation 1105, the wearable device 100 may determine an antenna mode appropriate for a current state. The wearable device 100 may use information about the wearing state and/or movement collected in operation 1103 for the purpose of determining the antenna mode. Also, additionally or alternatively, the wearable device 100 may further utilize an operating state of a hardware component of the device, an operating state of software being executed, or the like. For example, the wearable device 100 may utilize whether the display 130 is in an ON state, as information for determining the antenna mode. Also, the wearable device 100 may utilize an application or a function being currently executed, as information for determining the antenna mode.
For example, as described with reference to
For another example, in the case where the movement sensed by the motion sensor corresponds to walk or running, it may be determined that a direction of the antenna continuously changes; thus, the control circuit may determine that the loop mode is appropriate. In this case, the wearable device 100 may close at least a part of the ground switches (e.g., SW1, SW2, and SW3) in operation 1109, and may operate the antenna in the loop mode.
In addition, the control circuit may receive a signal in a specified frequency band by appropriately controlling the close/open of switches (e.g., SW1, SW2, and SW3). For example, in a first switch combination (e.g., with SW1 closed and with SW2 and SW3 opened), the wearable device 100 may be optimized to receive a Wi-Fi signal. For another example, in a second switch combination (e.g., with SW1 and SW3 opened and with SW2 closed), the wearable device 100 may be optimized to receive a signal in a WCDMA band (a 2.1 GHz band). In addition to the loop mode and the patch mode, the control circuit may secure optimal performance by appropriately controlling the open/close of the switches in operation 1111 depending on a current operating state.
According to an embodiment, information for controlling at least one or more switches (e.g., SW1, SW2, and SW3) depending on an operating state of the wearable device 100 may be stored in a memory of the wearable device 100.
Referring to
Referring to
According to an embodiment, a part 1361a of layers in the PCB 1360a may be removed as illustrated in
According to an embodiment, since the C-clip 1310a is connected with the metal structure 1350a through the side-clip 1320a, the metal structure 1350a may be coupled with the ground region of the PCB 1360a. In an embodiment, since a first point of the metal structure 1350a may be fed, an antenna may be used through an electrical path from a feeder to the ground region.
According to an embodiment, the whole layer 1361b belonging to a partial region of the PCB 1360b may be removed as illustrated in
Referring to
A first zone 14a may represent a frequency band which ranges from approximately 1.5 GHz to approximately 1.6 GHz and in which GPS communication may be performed. In the first zone 14a, both the first graph 1410 and the second graph 1420 may have radiation efficiency of approximately −10 dB, thereby making it possible to transmit/receive a signal with high efficiency.
A second zone 14b may represent a frequency band which ranges from approximately 2.4 GHz to approximately 2.5 GHz and in which Bluetooth or Wi-Fi communication may be performed. In the second zone 14b, the first graph 1410 may have radiation efficiency of approximately −16 dB and the second graph 1420 may have radiation efficiency of approximately −11 dB, thereby making it possible to transmit/receive a signal with high efficiency.
A wearable device according to various embodiments of the present disclosure may transmit a signal with excellent efficiency in the Bluetooth communication and the Wi-Fi communication, as well as the GPS communication, in the case where the metal structure 101 and the ground region of the PCB 160 are connected using a coupling effect. Accordingly, it may be unnecessary to additionally implement a separate antenna for Bluetooth communication or a separate antenna for Wi-Fi communication. This may mean that the wearable device 100 is further miniaturized and costs are reduced.
Referring to
As illustrated in
In an embodiment, a resonant frequency corresponding to the case where the ground region is electromagnetically connected with the first point 15a-1 of the metal structure 101 may be higher than a resonant frequency corresponding to the case where the ground region is electromagnetically connected with the second point 15a-1 of the metal structure 101. In another embodiment, a resonant frequency corresponding to the case where the ground region is electromagnetically connected with the third point 15a-3 of the metal structure 101 may be lower than the resonant frequency corresponding to the case where the ground region is electromagnetically connected with the second point 15a-2 of the metal structure 101.
As illustrated in
Radiation efficiency of an antenna, the resonant frequency of which is shifted, may be observed from
Below, hardware and software configurations applicable to the wearable device 100 according to various embodiments of the present disclosure will be described with reference to
Referring to
Also, the wearable device may include a binding structure that is connected to the housing and is removably mountable on a portion of a body of a user. However, in an embodiment, the binding structure may be separated from the wearable device.
The wearable device may include a display (e.g., the display 130) which includes a first ground plane substantially parallel to the upper surface, within the space. The display may be exposed through the upper surface of the housing. Also, the wearable device may include a printed circuit board (e.g., the PCB 160) that includes a second ground plane interposed between the display and the lower surface, within the space, a wireless communication circuit that is positioned on the printed circuit board and is electrically connected to a first point (e.g., the point “A” of
According to an embodiment, when viewed from above the upper surface, a first imaginary line extending from the center of the upper surface to the first point may be substantially at right angles to a second imaginary line extending from the center of the upper surface to the second point. Also, when viewed from above the upper surface, the first imaginary line may be substantially at right angles to a third imaginary line extending from the center of the upper surface to the third point. Also, when viewed from above the upper surface, the second imaginary line may be substantially aligned with the third imaginary line and may face in the same direction as the third imaginary line.
Also, according to an embodiment, when viewed from above the upper surface, the first imaginary line may be substantially aligned with a third imaginary line extending from the center of the upper surface to the third point and may face in a direction which is opposite to a direction of the third imaginary line.
According to an embodiment, the wearable device may further include a third conductive path which is electrically connected between a fourth point positioned at the ring-shaped member and the second ground plane, a fourth conductive path which is electrically connected between a fifth point positioned at the ring-shaped member and the second ground plane, a first switching circuit which opens or closes the second conductive path, a second switching circuit which opens or closes the third conductive path, and a third switching circuit which opens or closes the fourth conductive path, and the processor may selectively control the first to third switching circuits. Also, when viewed from above the upper surface, the first imaginary line may be substantially aligned with a fourth imaginary line extending from the center of the upper surface to the fourth point, and the first imaginary line may be substantially aligned with a fifth imaginary line extending from the center of the upper surface to the fifth point and may face in a direction which is opposite to a direction of the fifth imaginary line.
According to an embodiment, the wearable device may further include a detection circuit (e.g., a gyro sensor, an inertial sensor, or the like) that detects an orientation of the housing, and the processor may selectively control the first to third switching circuits based at least partially on the detected orientation.
According to an embodiment, the wearable device may include at least one conductive connection member electrically connected with a third point of the metal structure, and at least a portion of the at least one conductive connection member may be positioned to be coupled with the ground region of the PCB.
In an embodiment, the wearable electronic device may further include a bracket that is interposed between the display and the PCB within the housing, and the at least one conductive connection member may include a first C-clip that is in contact with the third point of the metal structure and the bracket and a second C-clip that is in contact with the first C-clip and a surface of the PCB.
According to an embodiment, at least a partial region of the PCB may include a first layer that includes at least a portion of a non-conductive material and a second layer that includes a portion of the ground region, and the at least a portion of the at least one conductive connection member may be coupled with the portion of the ground region included in the second layer by making contact with at least a portion of a non-conductive material region of the first layer.
According to an embodiment, the PCB may include a first region formed of a dielectric, and a second region including a ground region. The at least a portion of the at least one conductive connection member may be in contact with the first region, and the at least a portion of the at least one conductive connection member and the ground region of the second region may be electrically connected through a capacitor.
According to an embodiment, the control circuit may be configured to receive a GSP signal through a first electrical path formed by the metal structure and the metal layer, and to receive a Bluetooth signal through a second electrical path formed by the metal structure and the at least one conductive connection member.
A wearable electronic device according to an embodiment may include a housing that includes an upper surface, a lower surface, and a side surface surrounding a space between the upper surface and the lower surface, wherein the side surface includes a ring-shaped member which is ring-shaped, when viewed from above the upper surface, and is formed of a conductive material, a binding structure that is connected to the housing and is removably mountable on a portion of a body of a user, a display that is exposed through the upper surface and includes a first ground plane substantially parallel to the upper surface, within the space, a printed circuit board that includes a second ground plane interposed between the display and the lower surface, within the space, a wireless communication circuit that is positioned on the printed circuit board and is electrically connected to a first point positioned at the ring-shaped member, a first conductive path that is electrically connected between a second point positioned at an edge of the first ground plane and the second ground plane, a second conductive path that is electrically connected between a third point positioned at the ring-shaped member and the second ground plane, and a processor that is positioned within the space and is electrically connected to the display and the communication circuit. When viewed from above the upper surface, a first imaginary line extending from the center of the upper surface to the first point may be substantially at right angles to a second imaginary line extending from the center of the upper surface to the second point, and the second conductive path may include at least one conductive connection member positioned to be coupled with the second ground plane.
According to an embodiment, the wireless communication circuit may be configured to receive a GPS signal and a Bluetooth signal.
According to an embodiment, the third conductive path may include a capacitor.
Referring to
For example, the bus 1610 may interconnect the above-described components 1620 to 1670 and may include a circuit for conveying communications (e.g., a control message and/or data) among the above-described components.
The processor 1620 may include one or more of a central processing unit (CPU), an application processor (AP), or a communication processor (CP). For example, the processor 1620 may perform an arithmetic operation or data processing associated with control and/or communication of at least other components of the electronic device 1601.
The memory 1630 may include a volatile and/or nonvolatile memory. For example, the memory 1630 may store commands or data associated with at least one other component(s) of the electronic device 1601. According to an embodiment, the memory 1630 may store software and/or a program 1640. The program 1640 may include, for example, a kernel 1641, a middleware 1643, an application programming interface (API) 1645, and/or an application program (or “an application”) 1647. At least a part of the kernel 1641, the middleware 1643, or the API 1645 may be referred to as an “operating system (OS)”.
For example, the kernel 1641 may control or manage system resources (e.g., the bus 1610, the processor 1620, the memory 1630, and the like) that are used to execute operations or functions of other programs (e.g., the middleware 1643, the API 1645, and the application program 1647). Furthermore, the kernel 1641 may provide an interface that allows the middleware 1643, the API 1645, or the application program 1647 to access discrete components of the electronic device 1601 so as to control or manage system resources.
The middleware 1643 may perform, for example, a mediation role such that the API 1645 or the application program 1647 communicates with the kernel 1641 to exchange data.
Furthermore, the middleware 1643 may process task requests received from the application program 1647 according to a priority. For example, the middleware 1643 may assign the priority, which makes it possible to use a system resource (e.g., the bus 1610, the processor 1620, the memory 1630, or the like) of the electronic device 1601, to at least one of the application program 1647. For example, the middleware 1643 may process the one or more task requests according to the priority assigned to the at least one, which makes it possible to perform scheduling or load balancing on the one or more task requests.
The API 1645 may be, for example, an interface through which the application program 1647 controls a function provided by the kernel 1641 or the middleware 1643, and may include, for example, at least one interface or function (e.g., an instruction) for a file control, a window control, image processing, a character control, or the like.
The input/output interface 1650 may play a role, for example, of an interface which transmits a command or data input from a user or another external device, to other component(s) of the electronic device 1601. Furthermore, the input/output interface 1650 may output a command or data, received from other component(s) of the electronic device 1601, to a user or another external device.
The display 1660 may include, for example, a liquid crystal display (LCD), a light-emitting diode (LED) display, an organic LED (OLED) display, a microelectromechanical systems (MEMS) display, or an electronic paper display. The display 1660 may display, for example, various contents (e.g., a text, an image, a video, an icon, a symbol, and the like) to a user. The display 1660 may include a touch screen and may receive, for example, a touch, gesture, proximity, or hovering input using an electronic pen or a part of a user's body.
For example, the communication interface 1670 may establish communication between the electronic device 1601 and an external device (e.g., the first electronic device 1602, the second electronic device 1604, or the server 1606). For example, the communication interface 1670 may be connected to the network 1662 over wireless communication or wired communication to communicate with the external device (e.g., the second electronic device 1604 or the server 1606).
The wireless communication may use at least one of, for example, long-term evolution (LTE), LTE Advanced (LTE-A), Code Division Multiple Access (CDMA), Wideband CDMA (WCDMA), Universal Mobile Telecommunications System (UMTS), Wireless Broadband (WiBro), Global System for Mobile Communications (GSM), or the like, as cellular communication protocol. Furthermore, the wireless communication may include, for example, the short range communication 1664. The short range communication 1664 may include at least one of wireless fidelity (Wi-Fi), Bluetooth, near field communication (NFC), magnetic stripe transmission (MST), a global navigation satellite system (GNSS), or the like.
The MST may generate a pulse in response to transmission data using an electromagnetic signal, and the pulse may generate a magnetic field signal. The electronic device 1601 may transfer the magnetic field signal to point of sale (POS), and the POS may detect the magnetic field signal using a MST reader. The POS may recover the data by converting the detected magnetic field signal to an electrical signal.
The GNSS may include at least one of, for example, a global positioning system (GPS), a global navigation satellite system (Glonass), a Beidou navigation satellite system (hereinafter referred to as “Beidou”), or an European global satellite-based navigation system (hereinafter referred to as “Galileo”) based on an available region, a bandwidth, or the like. Hereinafter, in the present disclosure, “GPS” and “GNSS” may be interchangeably used. The wired communication may include at least one of, for example, a universal serial bus (USB), a high definition multimedia interface (HDMI), a recommended standard-232 (RS-232), a plain old telephone service (POTS), or the like. The network 1662 may include at least one of telecommunications networks, for example, a computer network (e.g., LAN or WAN), an Internet, or a telephone network.
Each of the first and second electronic devices 1602 and 1604 may be a device of which the type is different from or the same as that of the electronic device 1601. According to an embodiment, the server 1606 may include a group of one or more servers. According to various embodiments, all or a portion of operations that the electronic device 1601 will perform may be executed by another or plural electronic devices (e.g., the first electronic device 1602, the second electronic device 1604 or the server 1606). According to an embodiment, in the case where the electronic device 1601 executes any function or service automatically or in response to a request, the electronic device 1601 may not perform the function or the service internally, but, alternatively additionally, it may request at least a portion of a function associated with the electronic device 1601 from another device (e.g., the electronic device 1602 or 1604 or the server 1606). The other electronic device may execute the requested function or additional function and may transmit the execution result to the electronic device 1601. The electronic device 1601 may provide the requested function or service using the received result or may additionally process the received result to provide the requested function or service. To this end, for example, cloud computing, distributed computing, or client-server computing may be used.
Referring to
The processor 1710 may include various processing circuitry and drive, for example, an operating system (OS) or an application to control a plurality of hardware or software components connected to the processor 1710 and may process and compute a variety of data. For example, the processor 1710 may be implemented with a System on Chip (SoC). According to an embodiment, the processor 1710 may further include a graphic processing unit (GPU) and/or an image signal processor. The processor 1710 may include at least a part (e.g., a cellular module 1721) of components illustrated in
The communication module 1720 may be configured the same as or similar to the communication interface 1670 of
The cellular module 1721 may provide, for example, voice communication, video communication, a character service, an Internet service, or the like over a communication network. According to an embodiment, the cellular module 1721 may perform discrimination and authentication of the electronic device 1701 within a communication network using the subscriber identification module (e.g., a SIM card) 1729. According to an embodiment, the cellular module 1721 may perform at least a portion of functions that the processor 1710 provides. According to an embodiment, the cellular module 1721 may include a communication processor (CP).
Each of the Wi-Fi module 1722, the BT module 1723, the GNSS module 1724, the NFC module 1725, or the MST module 1726 may include a processor for processing data exchanged through a corresponding module, for example. According to an embodiment, at least a part (e.g., two or more) of the cellular module 1721, the Wi-Fi module 1722, the BT module 1723, the GNSS module 1724, the NFC module 1725, or the MST module 1726 may be included within one Integrated Circuit (IC) or an IC package.
For example, the RF module 1727 may transmit and receive a communication signal (e.g., an RF signal). For example, the RF module 1727 may include a transceiver, a power amplifier module (PAM), a frequency filter, a low noise amplifier (LNA), an antenna, or the like. According to another embodiment, at least one of the cellular module 1721, the Wi-Fi module 1722, the BT module 1723, the GNSS module 1724, the NFC module 1725, or the MST module 1726 may transmit and receive an RF signal through a separate RF module.
The subscriber identification module 1729 may include, for example, a card and/or embedded SIM that includes a subscriber identification module and may include unique identify information (e.g., integrated circuit card identifier (ICCID)) or subscriber information (e.g., integrated mobile subscriber identity (IMSI)).
The memory 1730 (e.g., the memory 1630) may include an internal memory 1732 and/or an external memory 1734. For example, the internal memory 1732 may include at least one of a volatile memory (e.g., a dynamic random access memory (DRAM), a static RAM (SRAM), a synchronous DRAM (SDRAM), or the like), a nonvolatile memory (e.g., a one-time programmable read only memory (OTPROM), a programmable ROM (PROM), an erasable and programmable ROM (EPROM), an electrically erasable and programmable ROM (EEPROM), a mask ROM, a flash ROM, a flash memory (e.g., a NAND flash memory or a NOR flash memory), or the like), a hard drive, or a solid state drive (SSD).
The external memory 1734 may further include a flash drive such as compact flash (CF), secure digital (SD), micro secure digital (Micro-SD), mini secure digital (Mini-SD), extreme digital (xD), a multimedia card (MMC), a memory stick, or the like. The external memory 1734 may be operatively and/or physically connected to the electronic device 1701 through various interfaces.
A security module 1736 may be a module that includes a storage space of which a security level is higher than that of the memory 1730 and may be a circuit that guarantees safe data storage and a protected execution environment. The security module 1736 may be implemented with a separate circuit and may include a separate processor. For example, the security module 1736 may be in a smart chip or a secure digital (SD) card, which is removable, or may include an embedded secure element (eSE) embedded in a fixed chip of the electronic device 1701. Furthermore, the security module 1736 may operate based on an operating system (OS) that is different from the OS of the electronic device 1701. For example, the security module 1736 may operate based on java card open platform (JCOP) OS.
The sensor module 1740 may measure, for example, a physical quantity or may detect an operation state of the electronic device 1701. The sensor module 1740 may convert the measured or detected information to an electrical signal. For example, the sensor module 1740 may include, for example, and without limitation, at least one of a gesture sensor 1740A, a gyro sensor 1740B, a barometric pressure sensor 1740C, a magnetic sensor 1740D, an acceleration sensor 1740E, a grip sensor 1740F, the proximity sensor 1740G, a color sensor 1740H (e.g., red, green, blue (RGB) sensor), a biometric sensor 1740I, a temperature/humidity sensor 1740J, an illuminance sensor 1740K, and/or an UV sensor 1740M, or the like. Although not illustrated, additionally or alternatively, the sensor module 1740 may further include, for example, an E-nose sensor, an electromyography (EMG) sensor, an electroencephalogram (EEG) sensor, an electrocardiogram (ECG) sensor, an infrared (IR) sensor, an iris sensor, and/or a fingerprint sensor. The sensor module 1740 may further include a control circuit for controlling at least one or more sensors included therein. According to an embodiment, the electronic device 1701 may further include a processor that is a part of the processor 1710 or independent of the processor 1710 and is configured to control the sensor module 1740. The processor may control the sensor module 1740 while the processor 1710 remains at a sleep state.
The input device 1750 may include various input circuitry, such as, for example, and without limitation, a touch panel 1752, a (digital) pen sensor 1754, a key 1756, and/or an ultrasonic input unit 1758, or the like. For example, the touch panel 1752 may use at least one of capacitive, resistive, infrared and ultrasonic detecting methods. Also, the touch panel 1752 may further include a control circuit. The touch panel 1752 may further include a tactile layer to provide a tactile reaction to a user.
The (digital) pen sensor 1754 may be, for example, a part of a touch panel or may include an additional sheet for recognition. The key 1756 may include, for example, a physical button, an optical key, a keypad, or the like. The ultrasonic input device 1758 may detect (or sense) an ultrasonic signal, which is generated from an input device, through a microphone (e.g., a microphone 1788) and may check data corresponding to the detected ultrasonic signal.
The display 1760 (e.g., the display 1660) may include, for example, and without limitation, a panel 1762, a hologram device 1764, and/or a projector 1766, or the like. The panel 1762 may be the same as or similar to the display 1660 illustrated in
The interface 1770 may include various interface circuitry, such as, for example, and without limitation, a high-definition multimedia interface (HDMI) 1772, a universal serial bus (USB) 1774, an optical interface 1776, and/or a D-subminiature (D-sub) 1778, or the like. The interface 1770 may be included, for example, in the communication interface 1670 illustrated in
The audio module 1780 may convert a sound and an electric signal in dual directions. At least a component of the audio module 1780 may be included, for example, in the input/output interface 1650 illustrated in
For example, the camera module 1791 may shoot a still image or a video. According to an embodiment, the camera module 1791 may include at least one or more image sensors (e.g., a front sensor or a rear sensor), a lens, an image signal processor (ISP), or a flash (e.g., an LED or a xenon lamp).
The power management module 1795 may manage, for example, power of the electronic device 1701. According to an embodiment, a power management integrated circuit (PMIC), a charger IC, or a battery or fuel gauge may be included in the power management module 1795. The PMIC may have a wired charging method and/or a wireless charging method. The wireless charging method may include, for example, a magnetic resonance method, a magnetic induction method or an electromagnetic method and may further include an additional circuit, for example, a coil loop, a resonant circuit, or a rectifier, and the like. The battery gauge may measure, for example, a remaining capacity of the battery 1796 and a voltage, current or temperature thereof while the battery is charged. The battery 1796 may include, for example, a rechargeable battery and/or a solar battery.
The indicator 1797 may display a specific state of the electronic device 1701 or a part thereof (e.g., the processor 1710), such as a booting state, a message state, a charging state, and the like. The motor 1798 may convert an electrical signal into a mechanical vibration and may generate the following effects: vibration, haptic, and the like. Although not illustrated, a processing device (e.g., a GPU) for supporting a mobile TV may be included in the electronic device 1701. The processing device for supporting the mobile TV may process media data according to the standards of digital multimedia broadcasting (DMB), digital video broadcasting (DVB), MediaFlo™, or the like.
Each of the above-mentioned components of the electronic device according to various embodiments of the present disclosure may be configured with one or more parts, and the names of the components may be changed according to the type of the electronic device. In various embodiments, the electronic device may include at least one of the above-mentioned components, and some components may be omitted or other additional components may be added. Furthermore, some of the components of the electronic device according to various embodiments may be combined with each other so as to form one entity, so that the functions of the components may be performed in the same manner as before the combination.
According to an embodiment, a program module 1810 (e.g., the program 1640) may include an operating system (OS) to control resources associated with an electronic device (e.g., the electronic device 1601), and/or diverse applications (e.g., the application program 1647) driven on the OS. The OS may be, for example, Android™ iOS™, Windows™, Symbian™, or Tizen™.
The program module 1810 may include a kernel 1820, a middleware 1830, an application programming interface (API) 1860, and/or an application 1870. At least a portion of the program module 1810 may be preloaded on an electronic device or may be downloadable from an external electronic device (e.g., the first electronic device 1602, the second electronic device 1604, the server 1606, or the like).
The kernel 1820 (e.g., the kernel 1641) may include, for example, a system resource manager 1821 and/or a device driver 1823. The system resource manager 1821 may perform control, allocation, or retrieval of system resources. According to an embodiment, the system resource manager 1821 may include a process managing unit, a memory managing unit, or a file system managing unit. The device driver 1823 may include, for example, a display driver, a camera driver, a Bluetooth driver, a shared memory driver, a USB driver, a keypad driver, a Wi-Fi driver, an audio driver, or an inter-process communication (IPC) driver.
The middleware 1830 may provide, for example, a function that the application 1870 needs in common, or may provide diverse functions to the application 1870 through the API 1860 to allow the application 1870 to efficiently use limited system resources of the electronic device. According to an embodiment, the middleware 1830 (e.g., the middleware 1643) may include at least one of a runtime library 1835, an application manager 1841, a window manager 1842, a multimedia manager 1843, a resource manager 1844, a power manager 1845, a database manager 1846, a package manager 1847, a connectivity manager 1848, a notification manager 1849, a location manager 1850, a graphic manager 1851, a security manager 1852, and/or a payment manager 1854, or the like.
The runtime library 1835 may include, for example, a library module that is used by a compiler to add a new function through a programming language while the application 1870 is being executed. The runtime library 1835 may perform input/output management, memory management, or capacities about arithmetic functions.
The application manager 1841 may manage, for example, a life cycle of at least one application of the application 1870. The window manager 1842 may manage a graphic user interface (GUI) resource that is used in a screen. The multimedia manager 1843 may identify a format necessary for playing diverse media files, and may perform encoding or decoding of media files using a codec suitable for the format. The resource manager 1844 may manage resources such as a storage space, memory, or source code of at least one application of the application 1870.
The power manager 1845 may operate, for example, with a basic input/output system (BIOS) to manage a battery or power, and may provide power information for an operation of an electronic device. The database manager 1846 may generate, search for, or modify database that is to be used in at least one application of the application 1870. The package manager 1847 may install or update an application that is distributed in the form of package file.
The connectivity manager 1848 may manage, for example, wireless connection such as Wi-Fi or Bluetooth. The notification manager 1849 may display or notify an event such as arrival message, appointment, or proximity notification in a mode that does not disturb a user. The location manager 1850 may manage location information about an electronic device. The graphic manager 1851 may manage a graphic effect that is provided to a user, or manage a user interface relevant thereto. The security manager 1852 may provide a general security function necessary for system security, user authentication, or the like. According to an embodiment, in the case where an electronic device (e.g., the electronic device 1601) includes a telephony function, the middleware 1830 may further include a telephony manager for managing a voice or video call function of the electronic device.
The middleware 1830 may include a middleware module that combines diverse functions of the above-described components. The middleware 1830 may provide a module specialized to each OS kind to provide differentiated functions. Additionally, the middleware 1830 may dynamically remove a part of the preexisting components or may add new components thereto.
The API 1860 (e.g., the API 1645) may be, for example, a set of programming functions and may be provided with a configuration that is variable depending on an OS. For example, in the case where an OS is Android™ or iOS™, it may provide one API set per platform. In the case where an OS is Tizen™, it may provide two or more API sets per platform.
The application 1870 (e.g., the application program 1647) may include, for example, and without limitation, one or more applications capable of providing functions for a home 1871, a dialer 1872, an SMS/MMS 1873, an instant message (IM) 1874, a browser 1875, a camera 1876, an alarm 1877, a contact 1878, a voice dial 1879, an e-mail 1880, a calendar 1881, a media player 1882, an album 1883, a timepiece 1884, and/or a payment 1885, or the like. Additionally, or alternatively, though not illustrated, various other applications may be including, such as, for example, applications for offering health care (e.g., measuring an exercise quantity, blood sugar, or the like) or environment information (e.g., information of barometric pressure, humidity, temperature, or the like).
According to an embodiment, the application 1870 may include an application (hereinafter referred to as “information exchanging application” for descriptive convenience) to support information exchange between an electronic device (e.g., the electronic device 1601) and an external electronic device (e.g., the first electronic device 1602 or the second electronic device 1604). The information exchanging application may include, for example, a notification relay application for transmitting specific information to an external electronic device, or a device management application for managing the external electronic device.
For example, the notification relay application may include a function of transmitting notification information, which arise from other applications (e.g., applications for SMS/MMS, e-mail, health care, or environmental information), to an external electronic device. Additionally, the notification relay application may receive, for example, notification information from an external electronic device and provide the notification information to a user.
The device management application may manage (e.g., install, delete, or update), for example, at least one function (e.g., turn-on/turn-off of an external electronic device itself (or a part) or adjustment of brightness (or resolution) of a display) of the external electronic device which communicates with the electronic device, an application running in the external electronic device, or a service (e.g., a call service, a message service, or the like) provided from the external electronic device.
According to an embodiment, the application 1870 may include an application (e.g., a health care application of a mobile medical device) that is assigned in accordance with an attribute of an external electronic device. According to an embodiment, the application 1870 may include an application that is received from an external electronic device (e.g., the first electronic device 1602, the second electronic device 1604, or the server 1606). According to an embodiment, the application 1870 may include a preloaded application or a third party application that is downloadable from a server. The names of components of the program module 1810 according to the embodiment may be modifiable depending on kinds of operating systems.
According to various embodiments, at least a portion of the program module 1810 may be implemented by software, firmware, hardware, or a combination of two or more thereof. At least a portion of the program module 1810 may be implemented (e.g., executed), for example, by the processor (e.g., the processor 1710). At least a portion of the program module 1810 may include, for example, modules, programs, routines, sets of instructions, processes, or the like for performing one or more functions.
The term “module” used in the present disclosure may refer, for example, to a unit including one or more combinations of hardware, software and/or firmware. The term “module” may be interchangeably used with the terms “unit”, “logic”, “logical block”, “part” and “circuit”. The “module” may be a minimum unit of an integrated part or may be a part thereof. The “module” may be a minimum unit for performing one or more functions or a part thereof. The “module” may be implemented mechanically or electronically. For example, the “module” may include, for example, and without limitation, at least one of an application-specific IC (ASIC) chip, a field-programmable gate array (FPGA), and a programmable-logic device for performing some operations, which are known or will be developed.
At least a part of an apparatus (e.g., modules or functions thereof) or a method (e.g., operations) according to various embodiments may be, for example, implemented by instructions stored in a non-transitory computer-readable storage media in the form of a program module. The instruction, when executed by a processor (e.g., the processor 1620), may cause the one or more processors to perform a function corresponding to the instruction. The computer-readable storage media, for example, may be the memory.
A computer-readable recording medium may include a hard disk, a floppy disk, a magnetic media (e.g., a magnetic tape), an optical media (e.g., a compact disc read only memory (CD-ROM) and a digital versatile disc (DVD), a magneto-optical media (e.g., a floptical disk)), and hardware devices (e.g., a read only memory (ROM), a random access memory (RAM), or a flash memory). Also, the one or more instructions may contain a code made by a compiler or a code executable by an interpreter. The above hardware unit may be configured to operate via one or more software modules for performing an operation according to various embodiments, and vice versa.
A module or a program module according to various embodiments may include at least one of the above components, or a part of the above components may be omitted, or additional other components may be further included. Operations performed by a module, a program module, or other components according to various embodiments may be executed sequentially, in parallel, repeatedly, or in a heuristic method. In addition, some operations may be executed in different sequences or may be omitted. Alternatively, other operations may be added.
While the present disclosure has been illustrated and described with reference to various embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined, for example, by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0110533 | Aug 2017 | KR | national |
This application is a Continuation of U.S. application Ser. No. 16/117,179, filed Aug. 30, 2018 (now U.S. Pat. No. 10,879,597), which claims priority to Korean Application No. KR 10-2017-0110533, filed Aug. 30, 2017, the entire contents of which are all hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
9172148 | Lyons et al. | Oct 2015 | B2 |
9257740 | Lyons et al. | Feb 2016 | B2 |
9281553 | Tsai et al. | Mar 2016 | B2 |
9647339 | Lo et al. | May 2017 | B2 |
9853377 | Kim et al. | Dec 2017 | B2 |
9891667 | Jung et al. | Feb 2018 | B2 |
9979426 | Na et al. | May 2018 | B2 |
10333211 | Kim et al. | Jun 2019 | B2 |
10879597 | Kang et al. | Dec 2020 | B2 |
20110013491 | Fujisawa | Jan 2011 | A1 |
20140225786 | Lyons et al. | Aug 2014 | A1 |
20150048979 | Asrani et al. | Feb 2015 | A1 |
20150255855 | Tsai et al. | Sep 2015 | A1 |
20160013544 | Lyons et al. | Jan 2016 | A1 |
20160056533 | Nissinen | Feb 2016 | A1 |
20160156094 | Lo et al. | Jun 2016 | A1 |
20160218419 | Vance | Jul 2016 | A1 |
20160064804 | Kim et al. | Aug 2016 | A1 |
20160254587 | Kim et al. | Sep 2016 | A1 |
20160255733 | Jung et al. | Sep 2016 | A1 |
20160294038 | Lo | Oct 2016 | A1 |
20160294086 | Kim | Oct 2016 | A1 |
20170048991 | Kim et al. | Feb 2017 | A1 |
20170214422 | Na et al. | Jul 2017 | A1 |
20180062249 | Sung | Mar 2018 | A1 |
20180069300 | Choi | Mar 2018 | A1 |
20180129170 | Yun et al. | May 2018 | A1 |
20190067795 | Shin | Feb 2019 | A1 |
20190109367 | Tseng | Apr 2019 | A1 |
20190210703 | Sepanniitty | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
105814747 | Jul 2016 | CN |
106159415 | Nov 2016 | CN |
205863383 | Jan 2017 | CN |
106921030 | Jul 2017 | CN |
3 319 170 | May 2018 | EP |
2017-085397 | May 2017 | JP |
10-2017-0089668 | Aug 2017 | KR |
10-2018-0050151 | May 2018 | KR |
Entry |
---|
Chinese Notice of Allowance dated Jul. 5, 2021 for CN Application No. 201880056077.7. |
U.S. Appl. No. 16/117,179, filed Aug. 30, 2018; Kang et al. |
Search Report and Written Opinion dated Oct. 31, 2018 in counterpart International Patent Application No. PCT/KR2018/010036. |
Extended European Search Report dated Jun. 23, 2020 for European Application No. 18850382.5. |
Chinese Office Action dated Oct. 12, 2020 for CN Application No. 201880056077.7. |
Number | Date | Country | |
---|---|---|---|
20210119324 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16117179 | Aug 2018 | US |
Child | 17134832 | US |