Dual band antennas for wireless voice and data communications are known. For example, common frequency bands for GSM services include GSM900 and GSM1800. GSM900 operates at 880-960 MHz, and GSM1800 operates in the frequency range of 1710-1880 MHZ. Antennas for communications in these bands of frequencies typically include an array of radiating elements connected by a feed network. For efficient transmission and reception of Radio Frequency (RF) signals, the dimensions of radiating elements are typically matched to the wavelength of the intended band of operation. Because the wavelength of the 900 MHz band is longer than the wavelength of the 1800 MHz band, the radiating elements for one band are typically not used for the other band. In this regard, dual band antennas have been developed which include different radiating elements for the two bands.
In these known dual band antennas, the radiating elements of the GSM1800 Band may be interspersed with radiating elements of the GSM900 Band, or nested within the radiating elements of the GSM900 band, or a combination of nesting and interspersing. See, e.g., U.S. Pat. No. 7,283,101, FIG. 12; U.S. Pat. No. 7,405,710, FIG. 1, FIG. 7. Such nesting and interspersing is achievable, in part, because the radiating elements for the GSM1800 Band do not unduly interfere with the radiating elements for the GSM900 Band and vice-versa.
However, this known solution is not acceptable when high and low bands are sufficiently close in frequency so that coupling occurs between the arrays of radiating elements. Also, multiple radiating elements occupy additional area in an antenna, and add to the costs of an antenna.
An antenna having a passive feed network in one band, and an active radio network in an adjacent band, is provided herein. The antenna includes plurality of radiating elements arranged in an array. The radiating elements are dimensioned to transmit and receive RF signals, for example, in a band of 790 MHz to 960 MHz. The antenna includes a plurality of diplexers having a first port, a second port and a third port. The first port of each diplexer coupled to at least one radiating element. The diplexer has a first filter coupling the first port to the second port and a second filter coupling the first port to the third port. In one example, involving the GSM900 band, the first filter is a band pass filter having a pass band of 790-862 MHz and the second filter is a band pass filter having a pass band of 880-960 MHz. Other pass bands would be used when the invention is applied to different communications bands. A passive feed network includes a phase shifter, which is coupled to an input transmission line and an plurality of output transmission lines. Each of the output transmission lines may be coupled to one of the second ports of one of the diplexers. An active feed network comprising a plurality of active radios is also included. An active radio is coupled to each of the third ports of the plurality of diplexers.
In a further example, the active feed network further includes a duplexer. The active radio further comprises a transmitter and a receiver. A common port of the duplexer is coupled to the third port of one of the plurality of diplexers, a transmit port of the duplexer is coupled to the transmitter, and a receive port of the duplexer is coupled to the receiver.
In another example, at least one of the plurality of diplexers is a modified diplexer having a fourth port and a fourth filter coupling the first port to the fourth port. The fourth filter is substantially the same as the third filter. An active radio is coupled to the fourth port of the modified diplexer. In another example, the plurality of radiating elements is greater than the plurality of output transmission lines from the phase shifter of the passive feed network.
In a first example of an antenna 10 of the present invention, an array of radiating elements 20 are associated with both a first band, fed by a single radio and amplifier (not illustrated) via a passive feed network 14, and a second band, fed by an active feed network 16 comprising a plurality of active radios 18, including receivers 18a and transmitters 18b.
Referring to
For clarity, in
Coupled to each dipole is a low loss diplexer 30. The diplexer 30 has a combined port 32, a high port 34 and a low port 36. The high port 34 is coupled to a dipole (either a first dipole 22 or a second dipole 24). The low port 36 may be coupled to a low band pass filter 37, and the high port 34 may be coupled to a high band pass filter 35. The high band pass filter 37 may have a pass band of 880-960 MHz, and the low band pass filter may have a pass band of 790-862 MHz.
An example of a low-loss diplexer is illustrated in
The low band pass filter 37 allows frequencies in the range of 790 MHz-862 MHz to pass through the low port 36 to the combined port 32. Also, the low band pass filter 37 allows frequencies in the same range to pass from the combined port 32 to the low port 36. However, the low band pass filter 37 blocks frequencies in the range 880 MHz-900 MHz from passing from the combined port 32 to the low port 36. The high band pass filter 35 allows frequencies in the range of 880 MHz-900 MHz to pass through between the high port 34 and the combined port 32 in either direction, but blocks frequencies in the range of 790 MHz-862 MHz from passing from the combined port 32 to the high port 34. This arrangement allows the radiating element 20 coupled to the combined port 32 to be shared by distinct feed networks operating in adjacent frequency bands.
In the example of
In the example of
A plurality of such radio transmitters and receivers are present in the active feed network 16. In one example, each radiating element is associated with a radio transmitter and a radio receiver. A radio receiver/transmitter pair in the active radio feed network 16 comprises an active radio 18. In alternate examples, more than one radiating element may be coupled to an active radio 18. Each active radio 18 may operate at a different phase angle with respect to other active radios 18 in the active radio feed network 16, the phase angles of the individual radiating elements 20 may be adjusted across the array without the need for an electro-mechanical phase shifter 40.
In the example of
For example, in the illustration of
Each high port 64 is associated with a different active radio 18 in the active radio feed network 16, which may be configured to operate at different phase delays. Thus the radiating elements 20 associated with a modified diplexer 60 may operate at different phase delays relative to each other with respect to the active radio feed network 16. In this example, the radiating elements 20 may receive different phase information from the active radio feed network 16, while receiving common phase information from the passive feed network 14.
While an eight element array and a 1 to 5 phase shifter are illustrated, this alternate example is not limited to such quantities. The phase shifter 40 may be a 1 to 2 phase shifter, 1 to 7 phase shifter or have any number of outputs (e.g., 1 to N). Additionally, the array may have greater or fewer than eight radiating elements 20.
In another alternate example of the invention, portions of the diplexer 30 or modified diplexer 60 may be integrated into the diplexer 50. In this example, some or all of the filtering performed by the high band pass filter 35 may be included in the diplexer 50. This would simplify the construction of the diplexer 30 or modified diplexer 60.
This application claims priority to and incorporates by reference U.S. Provisional Patent Application No. 61/391,507 filed Oct. 8, 2010 and titled “Passive Antenna And Feed Network”
Number | Name | Date | Kind |
---|---|---|---|
5745079 | Wang et al. | Apr 1998 | A |
6043790 | Derneryd | Mar 2000 | A |
20020090974 | Hagn | Jul 2002 | A1 |
20030052828 | Scherzer et al. | Mar 2003 | A1 |
20090286501 | Rousu et al. | Nov 2009 | A1 |
20110128092 | Fritz et al. | Jun 2011 | A1 |
20110156974 | Kenington et al. | Jun 2011 | A1 |
20110159808 | Kenington et al. | Jun 2011 | A1 |
20110159810 | Kenington et al. | Jun 2011 | A1 |
20110291773 | Tong et al. | Dec 2011 | A1 |
20110305174 | Hensley et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1250549 | Apr 2000 | CN |
2514507 | Oct 2002 | CN |
WO 9843315 | Oct 1998 | WO |
WO 0207254 | Jan 2002 | WO |
Entry |
---|
International Search Report for related and written opinion for related PCT App. No. PCT/US2011/055813 dated Feb. 8, 2012. |
PCT International Written Opinion for related app. No. PCT/US2011/055813 dated Apr. 9, 2013. |
Office Action regarding companion Chinese Application No. 201180042854.0, dated Dec. 11, 2014 (8pgs.). |
English summary of Office Action regarding companion Chinese Application No. 201180042854.0, dated Dec. 11, 2014 (5pgs.). |
Number | Date | Country | |
---|---|---|---|
20120087284 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61391507 | Oct 2010 | US |