A dipole antenna is a useful antenna for receiving or transmitting radio frequency radiation. However, a dipole antenna operates in only one frequency band, and antennas that operate in multiple bands are sometimes needed. For example, an antenna that operates in multiple bands is often needed for Worldwide Interoperability for Microwave Access (WiMAX), Ultra Wideband (UWB), Wireless Fidelity (Wi-Fi), ZigBee and Long Term Evolution (LTE) applications.
In one embodiment, an antenna comprises a dielectric material having i) a first side opposite a second side, and ii) a conductive via therein. A first planar conducting element is on the first side of the dielectric material and has an electrical connection to the conductive via. A second planar conducting element is also on the first side of the dielectric material, and is electrically isolated from the first planar conducting element by a gap. An electrical microstrip feed line is on the second side of the dielectric material. The electrical microstrip feed line electrically connects to the conductive via and has a route extending from the conductive via, to across the gap, to under the second planar conducting element. The second planar conducting element provides a reference plane for both the electrical microstrip feed line and the first planar conducting element. The first planar conducting element has a plurality of electromagnetic radiators. Each radiator has dimensions that cause it to resonate over a range of frequencies that differs from a range of frequencies over which an adjacent radiator resonates. At least first and second of the radiators bound an open slot in the first planar conducting element. The open slot has an orientation perpendicular to the gap.
In another embodiment, an antenna comprises a dielectric material having i) a first side opposite a second side, and ii) a conductive via therein. A first planar conducting element is on the first side of the dielectric material. The first planar conducting element has i) an electrical connection to the conductive via, and ii) a first edge opposite a second edge. The second edge is a stepped edge, wherein each step defines an electromagnetic radiator or an open slot in the first planar conducting element. A second planar conducting element is also on the first side of the dielectric material, and is electrically isolated from the first planar conducting element by a gap. The first edge of the first planar conducting element abuts the gap. An electrical microstrip feed line is on the second side of the dielectric material. The electrical microstrip feed line electrically connects to the conductive via and has a route extending from the conductive via, to across the gap, to under the second planar conducting element. The second planar conducting element provides a reference plane for both the electrical microstrip feed line and the first planar conducting element.
Other embodiments are also disclosed.
Illustrative embodiments of the invention are illustrated in the drawings, in which:
In the drawings, like reference numbers in different figures are used to indicate the existence of like (or similar) elements in different figures.
First and second planar conducting elements 108, 110 (
An electrical microstrip feed line 114 (
The dielectric material 102 has a plurality of conductive vias (e.g., vias 116, 118) therein, with each of the conductive vias 116, 118 being positioned proximate others of the conductive vias at a connection site 120. The first planar conducting element 108 and the electrical microstrip feed line 114 are each electrically connected to the plurality of conductive vias 116, 118, and are thereby electrically connected to one another. By way of example, the first planar conducting element 108 is electrically connected directly to the plurality of conductive vias 116, 118, whereas the electrical microstrip feed line 114 is electrically connected to the plurality of conductive vias 116, 118 by a rectangular conductive pad 122 that connects the electrical microstrip feed line 114 to the plurality of conductive vias 116, 118.
As best shown in
The first planar conducting element 108 has a plurality of electromagnetic radiators. By way of example, the first planar conducting element 108 is shown to have three electromagnetic radiators 130, 132, 134. In other embodiments, the first planar conducting element 108 could have any number of two or more electromagnetic radiators.
Each of the radiators 130, 132, 134 has dimensions (e.g., radiator 132 has dimensions “w” and “l”) that cause it to resonate over a range of frequencies that differs from a range of frequencies over which one or more adjacent radiators resonate. At least some of the frequencies in each range of frequencies differ from at least some of the frequencies in one or more other ranges of frequencies. In this manner, and during operation, each of the radiators 130, 132, 134 is capable of receiving different frequency signals and energizing the electrical microstrip feed line 114 in response to the received signals (in receive mode). Combinations of radiators may at times simultaneously energize the electrical microstrip feed line 114. In a similar fashion, a radio connected to the electrical microstrip feed line 114 may energize any of (or multiple ones of) the radiators 130, 132, 134, depending on the frequency (or frequencies) at which the radio operates in transmit mode.
By way of example, each of the radiators 130, 132, 134 shown in
First and second ones of the radiators 130, 132 bound an open slot 140 in the first planar conducting element 108. The open slot 140 has an orientation that is perpendicular to the gap 112. Thus, the open slot 140 opens away from the gap 112.
By way of example, the second and third radiators 132, 134 shown in
The widths and lengths of the radiators 130, 132, 134 may be chosen to cause each radiator 130, 132, 134 to resonate over a particular range of frequencies. By way of example, and in the antenna 100, the length of the second radiator 132 is greater than the length of the first radiator 130, and the length of the third radiator 134 is greater than the length of the second radiator 132.
The second planar conducting element 110 provides a reference plane for both the electrical microstrip feed line 114 and the first planar conducting element 108, and in some embodiments may have a rectangular perimeter 142.
As shown in
The antenna 100 has a length, L, extending from the first planar conducting element 108 to the second planar conducting element 110. The length, L, crosses the gap 112. The antenna 100 has a width, W, that is perpendicular to the length. The coax cable 400 follows a route that is parallel to the width of the antenna 100. The coax cable 400 is urged along the route by the electrical connection of its conductive sheath 404 to the second planar conducting element 110, or by the electrical connection of its center conductor 402 to the electrical microstrip feed line 114.
In the antenna shown in
As previously mentioned, each of the radiators 130, 132, 134 of the first planar conducting element 108 has dimensions that cause it to resonate over a range of frequencies. The center frequencies and bandwidths of each frequency range can be configured by adjusting, for example, the length and width of each radiator 130, 132, 134. Although the perimeter of the first planar conducting element 108 is shown to have a plurality of straight edges, some or all of the edges may alternately be curved, or the perimeter of the first planar conducting element 108 may have a shape with a continuous curve. The center frequency and bandwidth of each frequency range can also be configured by configuring the positions and relationships of the radiators 130, 132, 134 with respect to each other, or with respect to one or more open slots 140.
Although the perimeter 142 of the second planar conducting element 110 is shown to have a plurality of straight edges, some or all of the edges may alternately be curved, or the perimeter 142 of the second planar conducting element 110 may have a shape with a continuous curve.
An advantage of the antenna 100 shown in
The antenna 100 shown in
For the antenna 100 shown in
In some embodiments, the holes 124, 126 in the second planar conducting element 110 and dielectric material 102 may be sized, positioned and aligned as shown in
In some embodiments, the plurality of conductive vias 116, 118 shown in
In
The operating bands of an antenna that is constructed as described herein may be contiguous or non-contiguous. In some cases, each operating band may cover part or all of a standard operating band, or multiple standard operating bands. However, it is noted that increasing the range of an operating band can in some cases narrow the gain of the operating band.
In some cases, the radio 806 may be mounted on the same dielectric material 804 as the antenna 800. To avoid the use of additional conductive vias or other electrical connection elements, the radio 806 may be mounted on the second side 808 of the dielectric material 804 (i.e., on the same side of the dielectric material 804 as the electrical microstrip feed line 114). The radio 806 may comprise an integrated circuit.
This application is a continuation of prior U.S. patent application Ser. No. 12/777,103, filed on May 10, 2010, the entire contents of which are incorporated herein by reference.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5532708 | Krenz et al. | Jul 1996 | A |
| 6018324 | Kitchener | Jan 2000 | A |
| 6624793 | Su et al. | Sep 2003 | B1 |
| 6847329 | Ikegaya et al. | Jan 2005 | B2 |
| 6956536 | Lee | Oct 2005 | B2 |
| 7193565 | Caimi et al. | Mar 2007 | B2 |
| 7205944 | Lee | Apr 2007 | B2 |
| 7362271 | Iwai et al. | Apr 2008 | B2 |
| 7659851 | DeJean et al. | Feb 2010 | B2 |
| 7684781 | Saito et al. | Mar 2010 | B2 |
| 8462070 | Wolf | Jun 2013 | B2 |
| 8471769 | Wolf | Jun 2013 | B2 |
| 20020000940 | Moren et al. | Jan 2002 | A1 |
| 20030179143 | Iwai et al. | Sep 2003 | A1 |
| 20030231139 | Tai et al. | Dec 2003 | A1 |
| 20050035919 | Yang et al. | Feb 2005 | A1 |
| 20060208956 | Surducan et al. | Sep 2006 | A1 |
| 20070120751 | Saito et al. | May 2007 | A1 |
| 20070262908 | Yu | Nov 2007 | A1 |
| 20080198084 | Yeap | Aug 2008 | A1 |
| 20090073059 | Ikegaya | Mar 2009 | A1 |
| 20090115679 | Chou et al. | May 2009 | A1 |
| 20100039345 | Kim et al. | Feb 2010 | A1 |
| Number | Date | Country |
|---|---|---|
| 2008079066 | Jul 2008 | WO |
| Entry |
|---|
| International Search Report and Written Opinion dated Aug. 29, 2011 for PCT Application No. PCT/US2011/035963, 11 pp. |
| Katsuta et al., “Planar Trapezoid Dipole Antenna Having Band Notch at 5GHz and Multi band for 2 GHz WLAN and UWB,” 2007 IEEE Antennas and Propagation Society International Symposium, Jun. 9-15, 2007, pp. 641-644. ** pages. |
| Number | Date | Country | |
|---|---|---|---|
| 20140168023 A1 | Jun 2014 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 12777103 | May 2010 | US |
| Child | 13915479 | US |