The present disclosure is related generally to mobile electronic device construction, and, more particularly, to a system and method for linking to one or more antennas in a device having a single-piece metal housing design with integral antennas.
In an effort to deliver more premium electronic devices to consumers, cellular phone manufacturers are increasingly using exterior cosmetic housings fabricated from metal alloys. However, the use of metal for an exterior housing in high capability phones or “smartphones” currently requires complex manufacturing techniques. For example, one technique that is used to provide a metal exterior while maintaining the electrical isolation needed by current antenna technology requires the manufacturer to form a segmented metal housing having multiple pieces which are held together by a plastic resin. In particular, the plastic divisions in the metal allow the separate exterior metal pieces to act as antennas while maintaining separation from each other and/or from grounded pieces of metal.
While this technique may provide the needed electrical isolation, it does so at the expense of device integrity. Significant metal to plastic interlock geometry is required to keep the plastic and metal from detaching, and the multiple plastic divisions are cosmetically undesirable. Moreover, only certain grades of plastic may be used, since the plastic must typically survive subsequent processing steps such as molding, anodizing and so on. This limit on usable plastics may also limit other aspects of the device such as color. Moreover, when plastic divisions run across the full width of a device, a double wall section (metal plus plastic) contributes to device thickness.
Finally, it will be appreciated that such devices often require I/O (input/output) ports to fall in the middle of a functional antenna element. Not only does this placement physically disrupt the antenna element, but it may also lead to coupling between the antenna element and the port, requiring that additional precautions be taken.
Certain other devices use a perimeter metal housing instead of a full metal back housing. However, this configuration does not solve the above-noted deficiencies. For example, the corners of the housing in these devices are often used as antennas, and therefore four or more perimeter separators of nonconductive material are needed to isolate the four antennas.
While the present disclosure is directed to a system that can eliminate some of the shortcomings noted in this Background section, it should be appreciated that any such benefit is not a limitation on the scope of the disclosed principles, nor of the attached claims, except to the extent expressly noted in the claims. Additionally, the discussion of technology in this Background section is reflective of the inventors' own observations, considerations, and thoughts, and is in no way intended to accurately catalog or comprehensively summarize the prior art. As such, the inventors expressly disclaim this section as admitted or assumed prior art with respect to the discussed details. Moreover, the identification herein of a desirable course of action reflects the inventors' own observations and ideas, and should not be assumed to indicate an art-recognized desirability.
While the appended claims set forth the features of the present techniques with particularity, these techniques, together with their objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
Before presenting a detailed discussion of embodiments of the disclosed principles, an overview of certain embodiments is given to aid the reader in understanding the later discussion. As noted above, the use of metal for the exterior of a wireless communication device often entails compromises that affect the device functionality and aesthetic appeal. For example, the metal housing must be divided to electrically isolate certain sections for use as antennas. This results in unsightly plastic joint sections and requires extra care when locating an I/O port through an antenna element.
Thus, the inventors have previously conceived to employ a single-piece metal exterior housing having a plurality of arms. These arms are able to function as antennas in the finished device. In an example wherein four such arms are included, the housing may be configured with two arms at one end of the housing and two arms at the opposite end of the housing.
The use of an all-metal housing such as that described herein allows for unique and effective antenna linking strategies to ensure the best available antenna performance within a small device. In embodiments, both direct and indirect linking are provided. In an embodiment, a printed circuit board (PCB) is configured and located to rest against the inside of the rear surface of the metal housing to carry antenna signals to and from a mobile chipset.
Several different approaches for using portions of the single-piece metal housing as functional antennas are enabled. In one embodiment, direct contact is provided from the PCB to an antenna portion of the housing. In an alternative embodiment, direct contact is provided from the PCB to an interior plastic carrier with a plated antenna element on it, such that the plated element then capacitivly couples to an antenna portion of the metal housing. No physical contact between the plated antenna element and metal housing occurs.
In addition, a contactless solution is provided wherein an antenna element is created on or in the PCB such that it runs substantially parallel to an antenna portion of the metal housing, thus creating a capacitive coupling effect between the antenna trace on the PCB and the antenna portion of the metal housing. No physical contact between the metal PCB trace and metal housing occurs.
With respect to capacitive antenna coupling, consistent proximity of the traces to the housing arms is beneficial to promote optimum antenna performance. To this end, different techniques are disclosed for ensuring consistent proximity with respect to capacitivly coupled embodiments.
With this overview in mind, and turning now to a more detailed discussion in conjunction with the attached figures, the techniques of the present disclosure are illustrated as being implemented in a suitable computing environment. The following device description is based on embodiments and examples of the disclosed principles and should not be taken as limiting the claims with regard to alternative embodiments that are not explicitly described herein. Thus, for example, while
The schematic diagram of
In the illustrated embodiment, the components of the user device 110 include a display screen 120, applications (e.g., programs) 130, a processor 140, a memory 150, one or more input components 160 such as speech and text input facilities, and one or more output components 170 such as text and audible output facilities, e.g., one or more speakers.
The processor 140 can be any of a microprocessor, microcomputer, application-specific integrated circuit, or the like. For example, the processor 140 can be implemented by one or more microprocessors or controllers from any desired family or manufacturer. Similarly, the memory 150 may reside on the same integrated circuit as the processor 140. Additionally or alternatively, the memory 150 may be accessed via a network, e.g., via cloud-based storage. The memory 150 may include a random access memory (i.e., Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRM) or any other type of random access memory device). Additionally or alternatively, the memory 150 may include a read only memory (i.e., a hard drive, flash memory or any other desired type of memory device).
The information that is stored in the memory 150 can include program code associated with one or more operating systems or applications as well as informational data, e.g., program parameters, process data, etc. The operating system and applications are typically implemented via executable instructions stored in a non-transitory computer readable medium (e.g., memory 150) to control basic functions of the electronic device 110. Such functions may include, for example, interaction among various internal components and storage and retrieval of applications and data to and from the memory 150.
Further with respect to the applications, these typically utilize the operating system to provide more specific functionality, such as file system service and handling of protected and unprotected data stored in the memory 150. Although many applications may provide standard or required functionality of the user device 110, in other cases applications provide optional or specialized functionality, and may be supplied by third party vendors or the device manufacturer.
Finally, with respect to informational data, e.g., program parameters and process data, this non-executable information can be referenced, manipulated, or written by the operating system or an application. Such informational data can include, for example, data that are preprogrammed into the device during manufacture, data that are created by the device or added by the user, or any of a variety of types of information that are uploaded to, downloaded from, or otherwise accessed at servers or other devices with which the device is in communication during its ongoing operation.
The device 110 includes software and hardware networking components 180 to allow communications to and from the device via antennas (not shown in
In an embodiment, a power supply 190, such as a battery or fuel cell, is included for providing power to the device 110 and its components. All or some of the internal components communicate with one another by way of one or more shared or dedicated internal communication links 195, such as an internal bus. It will be appreciated that in practice, some or all of the components 110 are supported on and linked by a PCB as described above.
In an embodiment, the device 110 is programmed such that the processor 140 and memory 150 interact with the other components of the device 110 to perform a variety of functions. The processor 140 may include or implement various modules and execute programs for initiating different activities such as launching an application, transferring data, and toggling through various graphical user interface objects (e.g., toggling through various display icons that are linked to executable applications).
Turning to
In addition, a break 207 is located in the top of the metal back plate 201, causing the opening 203 to be non-closed. Similarly, a break 209 is located in the bottom of the metal back plate 201, causing the opening 205 to be non-closed. The result of the first opening 203, the second opening 205, the first break 207 and the second break 209 is to cause a pair of antenna arms to be formed at both the top and the bottom of the metal back plate 201. In particular, a pair of antenna arms 211, 213 is formed at the top of the metal back plate 201 and another pair of antenna arms 215, 217 is formed at the bottom of the metal back plate 201. The remainder of the metal back plate 201 may be referred to herein as the main body 219 of the metal back plate 201.
Similarly, the bottom opening 205 in the metal back plate 201 includes a gap between the pair of antenna arms 215, 217. In the embodiment illustrated in
Continuing,
Although the internal device components are not shown in this view, device thinness can be maintained by locating the ribs between internal device components such as batteries, PCBs, hatches and the like. Moreover, the ribs 501, 503 need not be straight, but may include turns, angles, notches and other features allowing the rib to clear internal device components.
In the illustrated example, neither rib 501 nor rib 503 entirely traverses the one-piece metal back plate 201, and the first rib 501 is jogged rather than uniformly straight. These shapes are configured to directly accept a battery and printed circuit board in an implementation of the described principles, as will be more fully described with respect to later figures.
Although the illustrated embodiment utilizes two ribs for the sake of example, those of skill in the art will understand that a greater or lesser number of ribs may be used as reinforcement. Moreover, while the ribs 501, 503 are shown generally traversing the major axis 505 of the one-piece metal back plate 201, and while some transverse element is desired in each rib, one or both ribs 501, 503 may be directed or formed in such a way that they do not actually touch the major axis 505.
Turning to
In lieu of the plated antenna carrier 601, the device antenna coupling may be implemented via one or more conductive traces on the main PCB 603 as shown in
The antenna trace 901 may alternatively be internal, e.g., between different layers of the main PCB 603. In either case, consistency of antenna coupling is assured by maintaining the antenna trace 901 at a set distance from the metal antenna arm 213. This allows the antenna trace 901 on the board to capacitivly couple in a consistent manner with the antenna 213.
To this end, an alignment system may be used to ensure consistent location of the main PCB 603 relative to the housing 201. An example alignment system is shown in
The main PCB 603 has one or more holes 1005 formed or drilled in the board 603, and one or more slots 1007 to tightly control the position and rotation of the PCB 603 relative to the housing 201. The spatial arrangement of the one or more holes 1005 and one or more slots 1007 in the main PCB 603 mirrors the spatial arrangement of the one or more alignment pins 1001 and one or more alignment keys 1003 on the housing 201.
As noted earlier, another technique for coupling to the antennas from the main PCB 603 is to directly connect from the PCB 603 to one or more of the antennas.
With respect to the attachment of the plated antenna carrier 601 into the housing 201,
The manner in which the plated antenna carrier 601 engages the housing 201 is shown in greater detail in
With respect to the specific configuration of the antennas and metal traces 901, those of skill in the art will appreciate from the foregoing that the spacing, shape and orientation of the elements can be modified to affect tuning of the antennas. For example, although the antenna arms 211, 213, 215, 217 are shown as straight objects, in an embodiment the terminal end of any or all of the antenna arms is turned to extend toward the main body 219 of the housing 201 so as to lengthen the antenna arm 211, 213, 215, 217 and effectively tune a resonance of the antenna arm 211, 213, 215, 217.
It will be further appreciated by those of skill in the art that the metal traces associated with different antenna arms may be of different lengths and widths, such that the antenna arms have different natural resonant responses over a predetermined frequency range. For example, the predetermined frequency range may be a low frequency range and may include a different low band resonance for each antenna. Similarly, the predetermined frequency range may be a high frequency range and may include a different high band resonance for each antenna.
Moreover, although the leg of the metal trace 901 parallel to the antenna 211, 213, 215, 217 lies in the plane of the PCB 603 in the illustrated embodiment, a different orientation is possible. For example, the metal trace 901 associated with any or all of the antenna arms 211, 213, 215, 217 may be oriented such that its width is parallel to the width of the antenna 211, 213, 215, 217. Although not shown, an additional metal trace may be used in conjunction with an existing metal trace 901 to improve antenna tuning as well. In an embodiment, a grounded metal trace is oriented parallel to but not touching the length of a metal trace 901 coupled to an antenna arm 211, 213, 215, 217, such that the metal trace 901 is between the additional metal trace and the antenna arm.
As noted above, in a given device design, an I/O (input/output) port may fall in between antenna arms. A benefit of the disclosed design is that an I/O port such as port 1205, including a grounded metal sheath, can pass through the non-conductive material in the gap between antenna arms without adversely affecting the performance of the two antenna arms either by its existence or by the insertion of an input/output cable into the input/output port 1205.
It will be appreciated that a new system and method for antenna coupling in a portable communication device having a one-piece metal backing have been disclosed herein. However, in view of the many possible embodiments to which the principles of the present disclosure may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of the claims. Therefore, the techniques as described herein contemplate all such embodiments as may come within the scope of the following claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
6138050 | Schneider | Oct 2000 | A |
8779999 | Gummalla | Jul 2014 | B2 |
9209513 | Ely | Dec 2015 | B2 |
20140112511 | Corbin | Apr 2014 | A1 |
20140375515 | Qiu | Dec 2014 | A1 |
Entry |
---|
Joseph L Allore, et al., “Single-Piece Metal Housing with Integral Antennas”, U.S. Appl. No. 14/613,406, filed Feb. 4, 2015. |
Number | Date | Country | |
---|---|---|---|
20160301139 A1 | Oct 2016 | US |