A large and growing population of users is enjoying entertainment through the consumption of digital media items, such as music, movies, images, electronic books, and so on. The users employ various electronic devices to consume such media items. Among these electronic devices (referred to herein as endpoint devices, user devices, clients, client devices, or user equipment) are electronic book readers, cellular telephones, Personal Digital Assistants (PDAs), portable media players, tablet computers, netbooks, laptops, and the like. These electronic devices wirelessly communicate with a communications infrastructure to enable the consumption of digital media items. These electronic devices include one or more antennas to communicate with other devices wirelessly.
The present inventions will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments, which, however, should not be taken to limit the present invention to the specific embodiments but are for explanation and understanding only.
Technologies directed to overlaid shared aperture array with improved total efficiency are described. Conventionally, wireless devices with multiple phased array antennas would have separate printed circuit boards (PCBs), each PCB including one of the multiple phased array antennas. The phased array antenna synthesizes a specified electric field (phase and amplitude) across an aperture, and the elements of the phased array antenna are spaced apart with a specified inter-element spacing value (e.g., a distance between any two elements of the phased array antenna). As a result, a wireless device with multiple phased array antennas has multiple apertures, one aperture per phased array antenna. A user terminal that communicates with a satellite using a first frequency band for downlink communications and another frequency band for uplink communications includes two separate PCBs with two different apertures. An aperture refers to an absence of materials above the phased array antenna elements that allow the antenna elements to radiate electromagnetic energy to send a signal (TX signal) to another device or receive and measure an incoming signal (receive (RX) signal) at the antenna elements. In some cases, there may be some protective material in the aperture above the antenna elements that do not affect the sending and receiving of wireless signals. The multiple apertures and the corresponding PCBs contribute to the size and cost of the wireless device.
When two antenna arrays, which operate in different frequency bands, share an aperture, the higher frequency array has closer spaced antenna elements than the lower frequency array since the size is proportional to wavelength. The spacing of antenna elements can result in under-sampling the aperture when the elements are spaced too far apart, resulting in grating lobes in the radiation pattern. The grating lobes are beams that point in undesired directions relative to the scanning array's main beam. The grating lobes may violate regulatory pattern masks when transmitting or be susceptible to interference/jamming when receiving data. One approach is to overlay the lattice arrays of antenna elements. There can be challenges when implementing overlaid lattice arrays. Overlaying the lower frequency array over the higher frequency array introduces a periodic defect in the lattice at a spacing under-sampled at the high frequency. The lattice's periodic defect causes grating lobes to appear in the radiation pattern, even if at a lower level than an under-sampled array.
It should be noted that if lower frequency elements were added to the array with a 1:1 ratio to eliminate the under-sampled lattice, the array would now be over-sampling the lower frequency array. Adding lower frequency elements to the overlaid lattices will increase the number of active components needed to drive the array. Adding lower frequency elements to the overlaid lattices will increase printed circuit board (PCB) stack-up and layout complexity, driving up cost and power consumption. Adding lower frequency elements to the overlaid lattices is impractical for a low-cost consumer product.
Aspects of the present disclosure overcome the conventional solution's deficiencies by providing parasitic antenna elements in the lower frequency lattice to reduce the grating lobe effects while maintaining good antenna performance. Parasitic antenna elements are passive elements and have no active feed. These parasitic elements are not directly connected to the feed and can increase the radiation indirectly. The lower frequency parasitic elements are designed such that currents, excited on them by the higher frequency antenna elements, are similar to what happens on the actively fed lower frequency antenna elements. The lower frequency parasitic elements have similar characteristic modes as the actively fed lower frequency antenna elements. The higher frequency elements' patterns are now similar when over an active lower frequency element and a parasitic element, resulting in significant suppression of grating lobes. As such, there are no additional active components that are needed for these added parasitic antenna elements. The lattice with parasitic elements can provide a simpler PCB stack-up and layout design, driving down cost and power consumption instead of adding additional lower frequency antenna elements to eliminate the under-sampled lattice.
Another practical consideration is that degradation in antenna efficiency with overlaid apertures can be observed. Aspects of the present disclosure overcome the deficiencies by providing a dual linearly polarized element that mitigates much of this performance degradation. The two overlaid arrays are implemented in orthogonal polarizations of the dual linearly polarized elements. This overlaid array achieves good efficiency by separating the high band and low band into orthogonal linearly polarized components using elements with good cross-polarized isolation. A meander-line polarizer can be added to achieve circular polarization with this array.
As described in more detail with respect to
In at least one embodiment, a communication system includes a first antenna and a second antenna overlaid in the same aperture. The first antenna includes a first set of antenna elements disposed on a first plane of the support structure 106. A second antenna includes a second set of antenna elements disposed on a second plane of the support structure 106. Two adjacent antenna elements of the first set of antenna elements are separated by a first distance 110. Two adjacent elements of the second set of antenna elements are separated by a second distance 112 that is less than the first distance 110. A set of parasitic elements is disposed on the first plane in connection with the first set of antenna elements of the first antenna. Two adjacent antenna elements of the first set of antenna elements and parasitic antenna elements are separated by the second distance 112. In a further embodiment, the first antenna is configured to operate in a first frequency range. The second antenna is configured to operate in a second frequency range that is higher in frequency than the first frequency range. In at least one embodiment, the first frequency range is between approximately 17.7 GHz and approximately 19.3 GHz. In at least one embodiment, the second frequency range is between approximately 28.5 GHz and approximately 29.1 GHz. Each of the first set of antenna elements and the set of parasitic antenna elements has a first size and each of the second set of antenna elements has a second size that is smaller than the first size. In at least one embodiment, the first size is proportional to a wavelength corresponding to the first frequency range, and the second size is proportional to a wavelength corresponding to the second frequency range. In at least one embodiment, the first distance 110 is approximately √2 times (e.g., 1.5 times) greater than the second distance 112. In another embodiment, the first distance 110 is approximately √3 times greater than the second distance 112.
As illustrated in
In at least one embodiment, the first antenna and the second antenna are constructed with multiple unit cells, each of the unit cells comprising one of the first set of antenna elements (e.g., 102), two of the set of parasitic antenna elements (e.g., 108), and three of the second set of antenna elements (e.g., 104). Alternatively, the unit cells can include different combinations of antenna elements and parasitic elements to make up the first and second antennas.
As illustrated in
As described herein, when overlaying the lower frequency array over the higher frequency array, a periodic defect in the lattice at a spacing that is still under-sampled at the higher frequency, such as illustrated in
As described above, another practical consideration is that degradation in antenna efficiency with overlaid apertures can be observed. As described below, the two overlaid antenna arrays can include dual linearly polarized elements that mitigate performance degradation caused by overlaying two antenna arrays, such as illustrated in
The unit cells 606 can be identical for ease of manufacturing, assembly, and part management. The unit cell 606, for example, can be a single SKU. As illustrated in
The long dimension of the element with solid lines can have horizontal polarization and operate as the low band. The long dimension of the element with dashed lines can also have horizontal polarization and operate as parasitic elements in the lower band. The short dimension of the elements can have vertical polarization and operate as the high band. All high-band polarization feeds are active and represented by solid arrows. Some of the low-band polarization feeds are active and represented by solid arrows. Some of the low-band polarization feeds are parasitic at the horizontal polarization and represented as dashed arrays. When combined, the collection of unit cells 606 results in specific repeated patterns to create the overlaid phased array antennas in a single aperture. The two overlaid arrays are implemented in orthogonal polarizations of the dual linearly polarized elements. This overlaid array achieves good efficiency by separating the high band and low band into orthogonal linearly polarized components using elements with good cross-polarized isolation. In another embodiment, a meander-line polarizer can be added to achieve circular polarization with this array.
As illustrated in
In at least one embodiment, as illustrated in
It should be noted that although described above as a single feed per element, in other embodiments, each feed can be a multi-point feed, such as a dual-point feed, a quad-point feed, or the like. In the case of two feeds on a single element, the two feeds still have an orientation. It should also be noted that antenna elements can be active antenna elements or terminated elements. A terminated element is an antenna element that is terminated to the ground as a notch filter. An active antenna element is an antenna element coupled to a signal source, such as a radio or a microwave source.
In at least one embodiment, the first phased array antenna's active and parasitic elements are organized as a first lattice structure or a first lattice. The second phased array antenna's active elements are organized as a second lattice structure or a second lattice. The first lattice has a first inter-element spacing of a first distance between each of the first phased array antenna's active and parasitic elements. Each of these elements has a first size proportional to a first wavelength corresponding to a frequency of the first frequency band. It should be noted that the driven elements are spaced by a greater distance than the first distance, but the lattice is defined as having the same distance as the second lattice when parasitic elements are added as described herein. The second lattice has a second inter-element spacing of a second distance between each element of the second phased array antenna. The second distance can be equal to the first distance when using overlaid arrays. Each of these elements of the second phased array antenna has a second size proportional to a second wavelength corresponding to a frequency of the second frequency band. Since the second frequency band is higher than the first frequency band, the second distance is less than the first distance, and the second size is less than the first size.
In some cases, the second lattice is disposed within the spaces between the first lattice's elements. In other cases, the second lattice is rotated 45 degrees with respect to the first lattice to achieve a specific inter-element spacing ratio between the first inter-element spacing and the second inter-element spacing.
As described above, the first phased array antenna, including the parasitic elements, and the second phased array antenna are constructed of unit cells 606, such as illustrated in
In another embodiment, the first phased array antenna's elements are spaced apart by a first distance on the support structure's surface. The parasitic elements are located in spaces between the elements of the first phased array antenna on the same surface. The elements of the second phased array antenna are spaced apart by a second distance. In one embodiment, the first size of the elements of the first phased array antenna is proportional to a wavelength corresponding to the first frequency range (e.g., 30 GHz frequency band). The second size of the second phased array antenna's elements is proportional to a wavelength corresponding to the second frequency range (e.g., 20 GHz). In one embodiment, the first frequency range is between approximately 28.5 GHz and approximately 29.1 GHz. In one embodiment, the second frequency range is between approximately 17.7 GHz and approximately 19.3 GHz. Alternatively, other frequency ranges can be used.
Although the various elements of the first phased array antenna and the second phased array antenna 604 are represented in the figures as rectangular elements, any size or type of antenna can be located at the corresponding rectangular element. In some cases, the antenna elements are rectangular-shape patch antenna elements. In another embodiment, the antenna elements are slots in material as slot elements. Alternatively, the elements can be other types of antenna element types used in phased array antennas. Alternatively, the elements are not necessarily part of a phased array antenna but a group of elements that can be used for other wireless communications than beam steering.
The elements can be overlaid elements in a single van der Pol square lattice in some embodiments, such as illustrated in
The unit cell 900 also includes, in the first layer, a first parasitic element 904 and a second parasitic element 906 that are parasitic in the lower band. The active lower-band element 902 causes currents to be induced on the first and second parasitic elements 904, 906 during operation. Unlike the active lower-band element 902, the first and second parasitic elements 904, 906 are not coupled to the first radio. The feed of the first parasitic element 904 is coupled to a second stub 916, and the feed of the second parasitic element 906 is coupled to a third stub 918. The second stub 916 and the third stub 918 are used in connection with the first and second parasitic elements 904, 906 to form a similar structure as the first stub 914 used in connection with the active lower-band element 902. In this manner, the same antenna structure is presented to the higher-band elements, regardless of whether the higher-band element is disposed above an active element or a parasitic element. The stubs on the low-band feeds improve the TX/RX port isolation at the TX band. In at least one embodiment, the stubs can be disposed above the ground plane to conserve real estate on inner RF routing layers in the unit cell 900. Because the parasitic elements' low-band feeds are not driven, the parasitic elements appear as the same impedance as the active lower-band element 902. The second and third stubs operate as notch filters with respect to the higher frequencies. The unit cell 900 also includes, in a second layer above the first layer, a first active higher-band element 908, a second active higher-band element 910, and a third active higher-band element 912. The first active higher-band element 908 is disposed above the active lower-band element 902. The second active higher-band element 910 is disposed above the first parasitic element 904, and the third active higher-band element 912 is disposed above the second parasitic element 906. Each of the first active higher-band element 908, the second active higher-band element 910, and the third active higher-band element 912 is coupled to a second radio that operates in a second frequency range that is higher than the first frequency range of the first radio. The first radio and the second radio can be the same and can operate at the two frequency ranges in another embodiment.
As illustrated in
The unit cell 1100 also includes, in the first layer, a first parasitic element 1104 and a second parasitic element 1106 that are parasitic in the lower band. The active lower-band element 1102 causes currents to be induced on the first and second parasitic elements 1104, 1106 during operation. Unlike the active lower-band element 1102, the first and second parasitic elements 1104, 1106 are not coupled to the first radio. The feed of the first parasitic element 1104 is coupled to a second stub 1116, and the feed of the second parasitic element 1106 is coupled to a third stub 1118. The stubs on the low-band feeds improve the TX/RX port isolation at the TX band. In at least one embodiment, the stubs can be disposed above the ground plane to conserve real estate in the inner RF routing layers in the unit cell 1100. Because the parasitic elements' low-band feeds are not driven, the parasitic elements appear as the same impedance as the active lower-band element 1102. The second and third stubs operate as notch filters with respect to the higher frequencies. The unit cell 1100 also includes, in a second layer above the first layer, a first active higher-band element 1108, a second active higher-band element 1110, and a third active higher-band element 1112. The first active higher-band element 1108 is disposed above the active lower-band element 1102. The second active higher-band element 1110 is disposed above the first parasitic element 1104, and the third active higher-band element 1112 is disposed above the second parasitic element 1106. Each of the first active higher-band element 1108, the second active higher-band element 1110, and the third active higher-band element 1112 is coupled to a second radio that operates in a second frequency range that is higher than the first frequency range of the first radio. The first radio and the second radio can be the same and can operate at the two frequency ranges in another embodiment.
As illustrated in
The constellation may comprise hundreds or thousands of satellites 1402, in various orbits 1404. For example, one or more of these satellites 1402 may be in non-geosynchronous orbits (NGOs) in which they are in constant motion with respect to the Earth. For example, orbit 1404 is a low earth orbit (LEO). In this illustration, orbit 1404 is depicted with an arc pointed to the right. A first satellite (SAT1) 1402(1) is leading (ahead of) a second satellite (SAT2) 1402(2) in the orbit 1404.
Satellite 1402 may comprise a structural system 1420, a control system 1422, a power system 1424, a maneuvering system 1426, and a communication system 1428 described herein. In other implementations, some systems may be omitted, or other systems added. One or more of these systems may be communicatively coupled with one another in various combinations.
The structural system 1420 comprises one or more structural elements to support the operation of satellite 1402. For example, the structural system 1420 may include trusses, struts, panels, and so forth. The components of other systems may be affixed to, or housed by, the structural system 1420. For example, the structural system 1420 may provide mechanical mounting and support for solar panels in the power system 1424. The structural system 1420 may also provide thermal control to maintain components of the satellite 1402 within operational temperature ranges. For example, the structural system 1420 may include louvers, heat sinks, radiators, and so forth.
The control system 1422 provides various services, such as operating the onboard systems, resource management, providing telemetry, processing commands, and so forth. For example, the control system 1422 may direct the operation of the communication system 1428.
The power system 1424 provides electrical power for the operation of the components onboard satellite 1402. The power system 1424 may include components to generate electrical energy. For example, the power system 1424 may comprise one or more photovoltaic cells, thermoelectric devices, fuel cells, and so forth. The power system 1424 may include components to store electrical energy. For example, the power system 1424 may comprise one or more batteries, fuel cells, and so forth.
The maneuvering system 1426 maintains the satellite 1402 in one or more of a specified orientation or orbit 1404. For example, the maneuvering system 1426 may stabilize satellite 1402 with respect to one or more axis. In another example, the maneuvering system 1426 may move the satellite 1402 to a specified orbit 1404. The maneuvering system 1426 may include one or more computing devices, sensors, thrusters, momentum wheels, solar sails, drag devices, and so forth. For example, the sensors of the maneuvering system 1426 may include one or more global navigation satellite system (GNSS) receivers, such as global positioning system (GPS) receivers, to provide information about the position and orientation of satellite 1402 relative to Earth. In another example, the sensors of the maneuvering system 1426 may include one or more star trackers, horizon detectors, and so forth. The thrusters may include, but are not limited to, cold gas thrusters, hypergolic thrusters, solid-fuel thrusters, ion thrusters, arcjet thrusters, electrothermal thrusters, and so forth.
The communication system 1428 provides communication with one or more other devices, such as other satellites 1402, ground stations 1406, user terminals 1408, and so forth. The communication system 1428 may include one or more modems, digital signal processors, power amplifiers, antennas (including at least one antenna that implements multiple antenna elements, such as a phased array antenna, and including an embedded calibration antenna, such as the calibration antenna 1404 as described herein), processors, memories, storage devices, communications peripherals, interface buses, and so forth. Such components support communications with other satellites 1402, ground stations 1406, user terminals 1408, and so forth using radio frequencies within a desired frequency spectrum. The communications may involve multiplexing, encoding, and compressing data to be transmitted, modulating the data to a desired radio frequency, and amplifying it for transmission. The communications may also involve demodulating received signals and performing any necessary de-multiplexing, decoding, decompressing, error correction, and formatting of the signals. Data decoded by the communication system 1428 may be output to other systems, such as to the control system 1422, for further processing. Output from a system, such as the control system 1422, may be provided to the communication system 1428 for transmission.
One or more ground stations 1406 are in communication with one or more satellites 1402. The ground stations 1406 may pass data between the satellites 1402, a management system 1450, networks such as the Internet, and so forth. The ground stations 1406 may be emplaced on land, on vehicles, at sea, and so forth. Each ground station 1406 may comprise a communication system 1440. Each ground station 1406 may use the communication system 1440 to establish communication with one or more satellites 1402, other ground stations 1406, and so forth. The ground station 1406 may also be connected to one or more communication networks. For example, the ground station 1406 may connect to a terrestrial fiber optic communication network. The ground station 1406 may act as a network gateway, passing user data 1412 or other data between the one or more communication networks and the satellites 1402. Such data may be processed by the ground station 1406 and communicated via the communication system 1440. The communication system 1440 of a ground station may include components similar to those of the communication system 1428 of a satellite 1402 and may perform similar communication functionalities. For example, the communication system 1440 may include one or more modems, digital signal processors, power amplifiers, antennas (including at least one antenna that implements multiple antenna elements, such as a phased array antenna), processors, memories, storage devices, communications peripherals, interface buses, and so forth.
The ground stations 1406 are in communication with a management system 1450. The management system 1450 is also in communication, via the ground stations 1406, with the satellites 1402 and the UTs 1408. The management system 1450 coordinates the operation of the satellites 1402, ground stations 1406, UTs 1408, and other resources of the communication system 1400. The management system 1450 may comprise one or more of an orbital mechanics system 1452 or a scheduling system 1456. In some embodiments, the scheduling system 1456 can operate in conjunction with an HD controller.
The orbital mechanics system 1452 determines orbital data 1454 that is indicative of a state of a particular satellite 1402 at a specified time. In one implementation, the orbital mechanics system 1452 may use orbital elements that represent characteristics of the orbit 1404 of the satellites 1402 in the constellation to determine the orbital data 1454 that predicts location, velocity, and so forth of particular satellites 1402 at particular times or time intervals. For example, the orbital mechanics system 1452 may use data obtained from actual observations from tracking stations, data from the satellites 1402, scheduled maneuvers, and so forth to determine the orbital elements. The orbital mechanics system 1452 may also consider other data, such as space weather, collision mitigation, orbital elements of known debris, and so forth.
The scheduling system 1456 schedules resources to provide communication to the UTs 1408. For example, the scheduling system 1456 may determine handover data that indicates when communication is to be transferred from the first satellite 1402(1) to the second satellite 1402(2). Continuing the example, the scheduling system 1456 may also specify communication parameters such as frequency, timeslot, and so forth. During operation, the scheduling system 1456 may use information such as the orbital data 1454, system status data 1458, user terminal data 1460, and so forth.
The system status data 1458 may comprise information such as which UTs 1408 are currently transferring data, satellite availability, current satellites 1402 in use by respective UTs 1408, capacity available at particular ground stations 1406, and so forth. For example, the satellite availability may comprise information indicative of satellites 1402 that are available to provide communication service or those satellites 1402 that are unavailable for communication service. Continuing the example, a satellite 1402 may be unavailable due to malfunction, previous tasking, maneuvering, and so forth. The system status data 1458 may be indicative of past status, predictions of future status, and so forth. For example, the system status data 1458 may include information such as projected data traffic for a specified interval of time based on previous transfers of user data 1412. In another example, the system status data 1458 may be indicative of future status, such as a satellite 1402 being unavailable to provide communication service due to scheduled maneuvering, scheduled maintenance, scheduled decommissioning, and so forth.
The user terminal data 1460 may comprise information such as a location of a particular UT 1408. The user terminal data 1460 may also include other information such as a priority assigned to user data 1412 associated with that UT 1408, information about the communication capabilities of that particular UT 1408, and so forth. For example, a particular UT 1408 in use by a business may be assigned a higher priority relative to a UT 1408 operated in a residential setting. Over time, different versions of UTs 1408 may be deployed, having different communication capabilities such as being able to operate at particular frequencies, supporting different signal encoding schemes, having different antenna configurations, and so forth.
The UT 1408 includes a communication system 1480 to establish communication with one or more satellites 1402. The communication system 1480 of the UT 1408 may include components similar to those of the communication system 1428 of a satellite 1402 and may perform similar communication functionalities. For example, the communication system 1480 may include one or more modems, digital signal processors, power amplifiers, antennas (including at least one antenna that implements multiple antenna elements, such as a phased array antenna), processors, memories, storage devices, communications peripherals, interface buses, and so forth. The UT 1408 passes user data 1412 between the constellation of satellites 1402 and the user device 1410. The user data 1412 includes data originated by the user device 1410 or addressed to the user device 1410. The UT 1408 may be fixed or in motion. For example, the UT 1408 may be used at a residence, or on a vehicle such as a car, boat, aerostat, drone, airplane, and so forth.
The UT 1408 includes a tracking system 1482. The tracking system 1482 uses almanac data 1484 to determine tracking data 1486. The almanac data 1484 provides information indicative of orbital elements of the orbit 1404 of one or more satellites 1402. For example, the almanac data 1484 may comprise orbital elements such as “two-line element” data for the satellites 1402 in the constellation that are broadcast or otherwise sent to the UTs 1408 using the communication system 1480.
The tracking system 1482 may use the current location of the UT 1408 and the almanac data 1484 to determine the tracking data 1486 for satellite 1402. For example, based on the current location of the UT 1408 and the predicted position and movement of the satellites 1402, the tracking system 1482 is able to calculate the tracking data 1486. The tracking data 1486 may include information indicative of azimuth, elevation, distance to the second satellite, time of flight correction, or other information at a specified time. The determination of the tracking data 1486 may be ongoing. For example, the first UT 1408 may determine tracking data 1486 every 700 ms, every second, every five seconds, or at other intervals.
With regard to
The satellite 1402, the ground station 1406, the user terminal 1408, the user device 1410, the management system 1450, or other systems described herein may include one or more computing devices or computer systems comprising one or more hardware processors, computer-readable storage media, and so forth. For example, the hardware processors may include application-specific integrated circuits (ASIC s), field-programmable gate arrays (FPGAs), microcontrollers, digital signal processors (DSPs), and so forth. The computer-readable storage media can include system memory, which may correspond to any combination of volatile and/or non-volatile memory or storage technologies. The system memory can store information that provides an operating system, various program modules, program data, and/or other software or firmware components. In one embodiment, the system memory stores instructions of methods to control the operation of the electronic device. The electronic device performs functions by using the processor(s) to execute instructions provided by the system memory. Embodiments may be provided as a software program or computer program including a non-transitory computer-readable storage medium having stored thereon instructions (in compressed or uncompressed form) that may be used to program a computer (or other electronic devices) to perform the processes or methods described herein. The computer-readable storage medium may be one or more of an electronic storage medium, a magnetic storage medium, an optical storage medium, a quantum storage medium, and so forth. For example, the computer-readable storage medium may include, but is not limited to, hard drives, floppy diskettes, optical disks, read-only memories (ROMs), random access memories (RAMs), erasable programmable ROMs (EPROMs), electrically erasable programmable ROMs (EEPROMs), flash memory, magnetic or optical cards, solid-state memory devices, or other types of physical media suitable for storing electronic instructions. Further embodiments may also be provided as a computer program product including a transitory machine-readable signal (in compressed or uncompressed form). Examples of transitory machine-readable signals, whether modulated using a carrier or unmodulated, include, but are not limited to, signals that a computer system or machine hosting or running a computer program can be configured to access, including signals transferred by one or more networks. For example, the transitory machine-readable signal may comprise transmission of software by the Internet.
The structural system 1502 comprises one or more structural elements to support the operation of satellite 1402. For example, the structural system 1502 may include trusses, struts, panels, and so forth. The components of other systems may be affixed to, or housed by, the structural system 1502. For example, the structural system 1502 may provide mechanical mounting and support for solar panels in the power system 1506. The structural system 1502 may also provide for thermal control to maintain components of the satellite 1402 within operational temperature ranges. For example, the structural system 1502 may include louvers, heat sinks, radiators, and so forth.
The control system 1504 provides various services, such as operating the onboard systems, resource management, providing telemetry, processing commands, and so forth. For example, the control system 1504 may direct the operation of the communication system 1512. The control system 1504 may include one or more flight control processors 1520. The flight control processors 1520 may comprise one or more processors, FPGAs, and so forth. A tracking, telemetry, and control (TTC) system 1522 may include one or more processors, radios, and so forth. For example, the TTC system 1522 may comprise a dedicated radio transmitter and receiver to receive commands from a ground station 1406, send telemetry to the ground station 1406, and so forth. Power management and distribution (PMAD) system 1524 may direct operation of the power system 1506, control distribution of power to the systems of the satellite 1402, control battery 1534 charging, and so forth.
The power system 1506 provides electrical power for the operation of the components onboard the satellite 1402. The power system 1506 may include components to generate electrical energy. For example, the power system 1506 may comprise one or more photovoltaic arrays 1530 comprising a plurality of photovoltaic cells, thermoelectric devices, fuel cells, and so forth. One or more PV array actuators 1532 may be used to change the orientation of the photovoltaic array(s) 1530 relative to the satellite 1402. For example, the PV array actuator 1532 may comprise a motor. The power system 1506 may include components to store electrical energy. For example, the power system 1506 may comprise one or more batteries 1534, fuel cells, and so forth.
The maneuvering system 1508 maintains the satellite 1402 in one or more of a specified orientation or orbit 1404. For example, the maneuvering system 1508 may stabilize satellite 1402 with respect to one or more axes. In another example, the maneuvering system 1508 may move the satellite 1402 to a specified orbit 1404. The maneuvering system 1508 may include one or more of reaction wheel(s) 1540, thrusters 1542, magnetic torque rods 1544, solar sails, drag devices, and so forth. The thrusters 1542 may include, but are not limited to, cold gas thrusters, hypergolic thrusters, solid-fuel thrusters, ion thrusters, arcjet thrusters, electrothermal thrusters, and so forth. During operation, the thrusters may expend propellant. For example, an electrothermal thruster may use water as propellant, using electrical power obtained from the power system 1506 to expel the water and produce thrust. During operation, the maneuvering system 1508 may use data obtained from one or more of the sensors 1510.
Satellite 1402 includes one or more sensors 1510. The sensors 1510 may include one or more engineering cameras 1550. For example, an engineering camera 1550 may be mounted on satellite 1402 to provide images of at least a portion of the photovoltaic array 1530. Accelerometers 1552 provide information about the acceleration of satellite 1402 along one or more axes. Gyroscopes 1554 provide information about the rotation of satellite 1402 with respect to one or more axes. The sensors 1510 may include a global navigation satellite system (GNSS) 1556 receiver, such as Global Positioning System (GPS) receiver, to provide information about the position of the satellite 1402 relative to Earth. In some implementations, the GNSS 1556 may also provide information indicative of velocity, orientation, and so forth. One or more star trackers 1558 may be used to determine an orientation of satellite 1402. A coarse sun sensor 1560 may be used to detect the sun, provide information on the relative position of the sun with respect to satellite 1402, and so forth. The satellite 1402 may include other sensors 1510 as well. For example, satellite 1402 may include a horizon detector, radar, LIDAR, and so forth.
The communication system 1512 provides communication with one or more other devices, such as other satellites 1402, ground stations 1406, user terminals 1408, and so forth. The communication system 1512 may include one or more modems 1576, digital signal processors, power amplifiers, antennas 1582 (including at least one antenna that implements multiple antenna elements, such as a phased array antenna such as the antenna elements 104 of
The communication system 1512 may include hardware to support the intersatellite link 1490. For example, an intersatellite link FPGA 1570 may be used to modulate data that is sent and received by an ISL transceiver 1572 to send data between satellites 1402. The ISL transceiver 1572 may operate using radio frequencies, optical frequencies, and so forth.
A communication FPGA 1574 may be used to facilitate communication between satellite 1402 and the ground stations 1406, UTs 1408, and so forth. For example, the communication FPGA 1574 may direct the operation of a modem 1576 to modulate signals sent using a downlink transmitter 1578 and demodulate signals received using an uplink receiver 1580. The satellite 1402 may include one or more antennas 1582. For example, one or more parabolic antennas may be used to provide communication between satellite 1402 and one or more ground stations 1406. In another example, a phased array antenna may be used to provide communication between satellite 1402 and the UTs 1408.
In orbit 1404, the satellite 1600 follows a path 1614, the projection of which onto the surface of the Earth forms a ground path 1616. In the example illustrated in
As shown in
In
In
The phase modulation imposed on each antenna element 1730 can differ and can be dependent on a spatial location of a communication target that determines an optimum beam vector (e.g., where the beam vector 1712 is found by one or more of maximizing signal intensity or connection strength). The optimum beam vector may change with time as the communication target 1622 moves relative to the phased array antenna system.
In the above description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that embodiments may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the description.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to convey the substance of their work most effectively to others skilled in the art. An algorithm is used herein, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “determining,” “sending,” “receiving,” “scheduling,” or the like, refer to the actions and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Embodiments also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer-readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, Read-Only Memories (ROMs), compact disc ROMs (CD-ROMs) and magnetic-optical disks, Random Access Memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present embodiments are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the present embodiments as described herein. It should also be noted that the terms “when” or the phrase “in response to,” as used herein, should be understood to indicate that there may be intervening time, intervening events, or both before the identified operation is performed.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the present embodiments should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
6114998 | Schefte | Sep 2000 | A |
6211841 | Smith | Apr 2001 | B1 |
6795020 | Sreenivas | Sep 2004 | B2 |
7250918 | Puente Baliarda | Jul 2007 | B2 |
7557768 | Baliarda | Jul 2009 | B2 |
10381736 | Jung | Aug 2019 | B2 |
11158948 | Lee | Oct 2021 | B2 |
11462828 | Yousefi | Oct 2022 | B1 |
20050225498 | Koparan | Oct 2005 | A1 |
20090135078 | Lindmark | May 2009 | A1 |
20090224995 | Puente | Sep 2009 | A1 |
20100171675 | Borja | Jul 2010 | A1 |
20140002326 | Puente | Jan 2014 | A1 |
20140242930 | Barker | Aug 2014 | A1 |
20140368395 | Dauguet | Dec 2014 | A1 |
20150263431 | Moon | Sep 2015 | A1 |
20150318622 | Pruett | Nov 2015 | A1 |
20170222325 | Sudo | Aug 2017 | A1 |
20190013590 | Rowell | Jan 2019 | A1 |
20190020714 | Lee | Jan 2019 | A1 |
20190148839 | Lin | May 2019 | A1 |
20190386393 | Chiang | Dec 2019 | A1 |
20200106158 | Gomez Angulo | Apr 2020 | A1 |
20200127387 | Park | Apr 2020 | A1 |
20200403322 | Ryu | Dec 2020 | A1 |
20210006300 | Bisiules | Jan 2021 | A1 |
20210044028 | Lee | Feb 2021 | A1 |
20210066817 | Tehran | Mar 2021 | A1 |
20210111482 | Raj | Apr 2021 | A1 |
20210151899 | Park | May 2021 | A1 |
20210305697 | Chen | Sep 2021 | A1 |
20210320413 | Wu | Oct 2021 | A1 |
20220045442 | Fabrega Sanchez | Feb 2022 | A1 |
20220077586 | Jeong | Mar 2022 | A1 |
20220085502 | Arai | Mar 2022 | A1 |
20220094061 | Yong | Mar 2022 | A1 |
20220190484 | Lee | Jun 2022 | A1 |
20230028526 | Kim | Jan 2023 | A1 |
20230065251 | Wayton | Mar 2023 | A1 |
20230076013 | Moallem | Mar 2023 | A1 |
20230187848 | Fabrega Sanchez | Jun 2023 | A1 |
20230216205 | Li | Jul 2023 | A1 |
Entry |
---|
International Search Report and Written Opinion on application No. PCT/US2022/024905, dated Jul. 25, 2022. |
Mao, C.X., Gao, S., Luo, Q., Rommel, T. and Chu, Q.X., 2017. Low-cost X/Ku/Ka-band dual-polarized array with shared aperture. IEEE Transactions on Antennas and Propagation, 65(7), pp. 3520-3527. |
Number | Date | Country | |
---|---|---|---|
20220344816 A1 | Oct 2022 | US |