The present invention relates to an antenna module and, more particularly, to an antenna module integrally having an antenna layer including a radiation conductor and a circuit layer including a filter circuit.
As an antenna module integrally having an antenna layer including a radiation conductor and a circuit layer including a filter circuit, an antenna module described in JP 2004-040597 A is known. In the antenna module described in JP 2004-040597 A, the antenna layer and the circuit layer are laminated with a ground pattern interposed therebetween to prevent mutual interference between the antenna layer and the circuit layer. Further, in this antenna module, the ground pattern is provided on the bottom surface of the circuit layer, and a signal terminal is provided in a clearance region where the ground pattern is cut away.
When such an antenna module is mounted on a print board, a strong stress is sometimes generated in a solder ball connecting the antenna module and the printed circuit board due to a difference in thermal expansion coefficient therebetween. The stress resulting from a difference in thermal expansion coefficient becomes particularly noticeable when the planar size of the antenna module is increased by arraying the antenna modules. In order to solve this problem, it is necessary to increase the size of the solder ball to some extent so as to prevent the signal terminal from peeling off from the printed circuit board even when the stress is applied to the solder ball.
In order to increase the size of the solder ball, it is necessary to increase the size of the clearance region of the ground pattern. For example, as illustrated in
On the other hand, as illustrated in
As described above, in conventional antenna modules, it is difficult to enhance bonding strength with respect to the printed circuit board without significantly affecting circuit characteristics.
It is therefore an object of the present invention to enhance bonding strength with respect to a printed circuit board without significantly affecting circuit characteristics in an antenna module in which an antenna layer and a circuit layer are laminated.
An antenna module according to the present invention includes: a circuit layer having a filter circuit; an antenna layer laminated on the circuit layer and having a radiation conductor; a wiring layer positioned between the circuit layer and the antenna layer and having a connection wiring connected to the filter circuit; a first ground pattern provided on the surface of the circuit layer located on the opposite side of the wiring layer; a second ground pattern provided between the circuit layer and the wiring layer; a third ground pattern provided between the wiring layer and the antenna layer; and a signal terminal provided on the surface of the circuit layer and positioned within a clearance region where the first ground pattern is cut away. The clearance region is formed at a position not overlapping the filter circuit as viewed in the lamination direction. The signal terminal is connected to the filter circuit through a pillar conductor penetrating the circuit layer and the connection wiring. The radiation conductor receives power through a feed pattern connected to the filter circuit.
According to the present invention, the clearance region formed in the first ground pattern does not overlap the filter circuit, so that a large part of, preferably, the entire filter circuit can be covered with the first ground pattern. This can suppress leakage of an electromagnetic field from the filter circuit. In addition, the wiring layer is disposed between the circuit layer and the antenna layer, so that a parasitic capacitance generated between the signal terminal and the second ground pattern can be reduced. Thus, according to the present invention, it is possible to increase the size of the signal terminal without significantly affecting circuit characteristics. This allows the use of a large-sized solder ball, making it possible to enhance bonding strength with respect to a printed circuit board.
In the present invention, the diameter of the clearance region may be equal to or larger than 1/10 of the wavelength of an antenna signal radiated from the radiation conductor in the circuit layer. When the clearance region is to be disposed immediately below the filter circuit and if the diameter of the clearance region is equal to or larger than 1/10, a large part of the filter circuit is exposed without being covered by the first ground pattern, with the result that the leakage of an electromagnetic field from the filter circuit becomes extremely large. However, in the present invention, the clearance region is disposed at a location not overlapping the filter circuit, so that even when the diameter of the clearance region is designed to be equal to or larger than 1/10 of the wavelength, the leakage of an electromagnetic field from the filter circuit hardly occurs.
In the present invention, the dielectric constant of the dielectric constituting the wiring layer may be lower than the dielectric constant of the dielectric constituting the circuit layer. This can reduce a parasitic capacitance generated in the connection wiring. In this case, the dielectric constant of the dielectric constituting the wiring layer may be equal to the dielectric constant of a dielectric constituting the antenna layer. This allows the wiring layer and the antenna layer to be formed using the same dielectric material.
In the present invention, the feed pattern may be electromagnetically coupled to the radiation conductor through a slot formed in the third ground pattern. This eliminates the need to provide a feed line in the antenna layer, thereby simplifying the configuration of the antenna layer. In this case, the feed pattern may be formed in the wiring layer. Thus, the feed pattern and the connection wiring can be formed in the same layer, so that the height dimension of the antenna module can be reduced.
The antenna module according to the present invention may further include a feed layer provided between the wiring layer and the antenna layer and having the feed pattern and a fourth ground pattern provided between the wiring layer and the feed layer, and the third ground pattern may be provided between the feed layer and the antenna layer. This allows the feed pattern and the connection wiring to overlap each other in a plan view. Further, since the fourth ground pattern is interposed between the feed pattern and the connection wiring, a layout in which the feed pattern and the connection wiring cross each other can be adopted.
In the present invention, the filter circuit may include a band-pass filter. This allows only an antenna signal in a specific band to pass.
In the present invention, the antenna layer may further have another radiation conductor that overlaps the radiation conductor as viewed in the lamination direction. This allows the antenna bandwidth to be further broadened.
In the antenna module according to the present invention, a plurality of radiation conductors may be arranged in an array. Thus, a so-called phased array can be constituted.
Thus, according to the present invention, it is possible to enhance bonding strength with respect to a printed circuit board without significantly affecting the circuit characteristics in an antenna module in which an antenna layer and a circuit layer are laminated.
The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will be explained below in detail with reference to the accompanying drawings.
The antenna module 1 according to the first embodiment is a module that performs wireless communication using millimeter wavebands and includes a circuit layer 10 positioned in the lower layer, an antenna layer 30 positioned in the upper layer, and a wiring layer 20 positioned between the circuit layer 10 and the antenna layer 30, as illustrated in
In the present embodiment, some or all of the circuit layer 10, wiring layer 20 and antenna layer 30 may be formed using mutually different materials. For example, it is possible to form the circuit layer 10 using LTCC and to form the wiring layer 20 and the antenna layer 30 using resin. Particularly, when the dielectric layers 21 and 31 constituting the wiring layer 20 and the antenna layer 30, respectively, are formed using a material having a dielectric constant lower than that of a material used for forming the dielectric layer 11 constituting the circuit layer 10, high antenna characteristics can be obtained, and parasitic capacitance generated in the wiring layer 20 can be reduced. When the dielectric layers 21 and 31 constituting the wiring layer 20 and antenna layer 30, respectively, are formed using the same dielectric material, a manufacturing process can be simplified.
The circuit layer 10 is a layer in which a filter circuit such as a band-pass filter 12 is formed. The lower surface of the circuit layer 10 is covered with a ground pattern G1, and the upper surface thereof is covered with a ground pattern G2. The ground patterns G1 and G2 are short-circuited to each other by a number of pillar conductors 13 extending in the lamination direction (z-direction), whereby a ground potential is stabilized. The ground pattern G1 is formed on almost the entire lower surface of the circuit layer 10, excluding a clearance region CL1 at which a signal terminal SP is formed, to thereby function as an electromagnetic wave shield below the circuit layer 10. Particularly, the ground pattern G1 has no clearance region CL immediately below the band-pass filter 12, so that the lower surface of the band-pass filter 12 is completely covered with the ground pattern G1. The ground pattern G2 is formed on almost the entire upper surface of the circuit layer 10, excluding clearance regions CL2 to CL4, to thereby function as an electromagnetic wave shield above the circuit layer 10. Signal patterns S2 to S4 are formed on the clearance regions CL2 to CL4, respectively.
The lower surface of the wiring layer 20 is covered with the ground pattern G2, and the upper surface thereof is covered with a ground pattern G3. The ground patterns G2 and G3 are short-circuited to each other by a number of pillar conductors 22 extending in the lamination direction, whereby a ground potential is stabilized. Further, the wiring layer 20 has a connection wiring S1 embedded in the dielectric layer 21. One end of the connection wiring S1 is connected to the signal pattern S2 through a pillar conductor 23, and the other end thereof is connected to the signal pattern S3 through a pillar conductor 24.
Further, the wiring layer 20 has a feed pattern F embedded in the dielectric layer 21. The feed pattern F is a strip-shaped conductor pattern extending in the y-direction and partially overlaps a radiation conductor 32, as viewed in the z-direction, in the present embodiment. One end of the feed pattern F is connected to the signal pattern S4 through a pillar conductor 25, and the other end thereof is opened. The feed pattern F and the connection wiring S1 may be positioned in the same layer or different layers. When the feed pattern F and the connection wiring S1 are formed in the same layer, the thickness of the wiring layer 20 can be reduced.
As illustrated in
The antenna layer 30 has a radiation conductor 32. The radiation conductor 32 is a rectangular conductor pattern provided at substantially the center of the antenna module 1 as viewed in the lamination direction. The radiation conductor 32 is not connected to other conductor patterns and is in a DC-floating state. The upper surface of the antenna layer 30 is opened, while the lower surface thereof is covered with the ground pattern G3. The ground pattern G3 is formed on almost the entire lower surface of the antenna layer 30, excluding a slot SL, to thereby function as a reference conductor for a patch antenna. The slot SL extends in the x-direction so as to cross the feed pattern F.
The feed pattern F is electromagnetically coupled to the radiation conductor 32 through the slot SL1. As a result, an antenna signal fed from the band-pass filter 12 to the feed pattern F is fed to the radiation conductor 32 through the slot SL1 to be radiated to a space. As described above, in the present embodiment, power is not directly fed to the radiation conductor 32 using the pillar-shaped conductor, but is fed by electromagnetic coupling through the slot SL1. This significantly simplifies the configuration of the antenna layer 30, which in turn can simplify the manufacturing process.
As described above, in the antenna module 1 according to the present embodiment, the band-pass filter 12 and the signal terminal SP are disposed at different locations in a plan view, so that the entire lower surface of the band-pass filter 12 can be covered with the ground pattern G1. This can effectively suppress leakage of an electromagnetic field from the band-pass filter 12. Further, in the present embodiment, a change in the size of the signal terminal SP does not cause a change in the characteristics of the band-pass filter 12 and a significant change in the leakage amount of an electromagnetic field, so that it is possible to increase the size of the signal terminal SP without significantly affecting the circuit characteristics. This allows the use of a large-sized solder ball B, making it possible to enhance bonding strength with respect to the printed circuit board.
Here, it is assumed that the clearance region CL is disposed immediately below the band-pass filter 12. In this case, when the diameter of the clearance region CL is equal to or larger than 1/10 of the wavelength of an antenna signal in the circuit layer 10, a large part of the band-pass filter 12 is exposed without being covered with the ground pattern G1, with the result that the leakage of an electromagnetic field from the band-pass filter 12 becomes extremely large. However, in the antenna module 1 according to the present embodiment, the clearance region CL1 is disposed at a location not overlapping the band-pass filter 12, so that even when the diameter of the clearance region CL is designed to be equal to or larger than 1/10 of the wavelength, the leakage of an electromagnetic field from the band-pass filter 12 hardly occurs.
Further, in the present embodiment, the wiring layer 20 including the connection wiring S1 is disposed between the circuit layer 10 and the antenna layer 30, so that a parasitic capacitance C generated between the signal terminal SP and the ground pattern G2 can also be reduced. This facilitates impedance matching.
As illustrated in
The lower surface of the feed layer 40 is covered with the ground pattern G4, and the upper surface thereof is covered with the ground pattern G3. The ground patterns G4 and G3 are short-circuited to each other by a number of pillar conductors 42 extending in the lamination direction, whereby a ground potential is stabilized. In the present embodiment, the feed pattern F is provided not in the wiring layer 20, but in the feed layer 40. The feed pattern F is embedded in the dielectric layer 41 constituting the feed layer 40, and one end thereof is connected to a signal pattern S5 provided in a clearance region CL5 through a pillar conductor 43. The signal pattern S5 is connected to the signal pattern S4 through a pillar conductor 26 penetrating the wiring layer 20. As a result, an antenna signal output from the band-pass filter 12 is fed to the feed pattern F through the pillar conductor 16, signal pattern S4, pillar conductor 26, signal pattern S5 and pillar conductor 43.
Further, in the present embodiment, the antenna layer 30 has another radiation conductor 33. The radiation conductor 33 is a rectangular conductor pattern provided above the radiation conductor 32 so as to overlap the radiation conductor 32 as viewed in the z-direction. The radiation conductor 33 is not connected to other conductor patterns and is in a DC-floating state. When the plurality of radiation conductors 32 and 33 are thus formed in the antenna layer 30, antenna bandwidth can be further broadened. The size of each of the radiation conductors 32 and 33 and the distance therebetween may be adjusted as needed according to required antenna characteristics.
When the feed layer 40 is provided separately from the wiring layer 20 as in the antenna module 2 according to the present embodiment, it is possible to realize a layout in which the connection wiring S1 and the feed pattern F cross each other in a plan view, increasing the freedom of layout. In addition, the ground pattern G4 is interposed between the connection wiring S1 and the feed pattern F, so that the connection wiring S1 and the feed pattern F are not coupled even when they are made to cross each other. Thus, the antenna module 2 according to the present embodiment achieves a high degree of layout freedom, so that it is possible to easily constitute a dual-polarized antenna module by feeding power to the radiation conductor 32 from two locations.
The following describes a specific configuration of the antenna module 2 of a dual-polarized type.
As illustrated in
The other area of the back surface is fully covered with the ground pattern G1. In actual use, a part of the ground pattern G1 is covered by a solder resist, and the exposed part thereof through the solder resist is used as a ground terminal GP. In the example illustrated in
As illustrated in
As illustrated in
Similarly, one end of the connection wiring S1b is connected to the signal pattern S2b through a pillar conductor 23b, and the other end thereof is connected to a signal pattern S3b through a pillar conductor 24b.
The pillar conductor 24a is connected to one end of the resonance pattern P2 included in the band-pass filter 12a, and the pillar conductor 24b is connected to one end of the resonance pattern P2 included in the band-pass filter 12b. The other end of the resonance pattern Ps included in the band-pass filter 12a is connected to a signal pattern S5a through a pillar conductor 26a. The signal pattern S5a is disposed in a clearance region CL5a formed in the ground pattern G4.
Similarly, the other end of the resonance pattern P2 included in the band-pass filter 12b is connected to a signal pattern S5b through a pillar conductor 26b. The signal pattern S5b is disposed in a clearance region CL5b formed in the ground pattern G4.
A plurality of pillar conductors 22 are disposed around each of the clearance regions CL2a to CL5a and CL2b to CL5b, whereby a ground potential is stabilized. Further, the plurality of pillar conductors 22 are arranged in the diagonal direction, whereby isolation between a horizontal polarization signal and a vertical polarization signal is enhanced.
As illustrated in
As a result, a vertical polarization signal is fed from the feed pattern Fa through the slot SLa to the center position of the side (lower side in
When the antenna module 2 according to the present embodiment is used as a dual-polarized antenna module, the number of patterns to be formed in each of the circuit layer 10, wiring layer 20 and feed layer 40 is approximately doubled. However, in the antenna module 2 according to the present embodiment, the wiring layer 20 and the feed layer 40 are laminated together, thus making it possible to adopt a layout in which the connection wirings S1a and S1b cross the feed patterns Fa and Fb, respectively.
It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2018-217000 | Nov 2018 | JP | national |