This application claims priority from Japanese Patent Application No. 2016-165647 filed on Aug. 26, 2016. The content of this application is incorporated herein by reference in its entirety.
The present disclosure relates to an antenna module. A wireless communication device including an antenna integrated type module is known (Japanese Unexamined Patent Application Publication No. 2009-81833). This wireless communication device includes a mounting substrate having a substantially rectangular through-hole and the antenna integrated type module mounted on the mounting substrate so as to cover the through-hole. A patch antenna is provided on a surface, which is exposed to the through-hole, of the antenna integrated type module. Radio waves radiated from the patch antenna propagate in the through-hole, and are radiated in a front direction as they are.
Normally, in front of a patch antenna, an opening portion in which a metal member which serves as a radio wave shielding object is not disposed is necessary. In a small mobile terminal such as a smartphone or the like, a position where an opening portion can be provided in a housing is limited. Due to a large display being disposed on a front surface of the housing, a position of the opening portion provided on the front surface is largely restricted in particular. The position of the opening portion is restricted, and thus an installation place of an antenna module including the patch antenna or the like is also limited.
When an installation place is limited for each mobile terminal model, it is necessary to design an antenna module having a shape and directional characteristics suitable for the installation place for each mobile terminal model. Even in the case where a requirement specification for the antenna module is different for each mobile terminal model, an easily customizable antenna module in accordance with requirement specifications for various models is desired.
The present disclosure provides an easily customizable antenna module in accordance with requirement specifications for various models.
An antenna module according to a first aspect of the present disclosure includes:
a dielectric substrate;
a circuit element mounting portion provided on the dielectric substrate, configured so as to mount a high-frequency integrated circuit element, and including a ground land and a plurality of high-frequency signal lands;
an antenna element including at least one radiation element provided on the dielectric substrate;
an exposed terminal portion provided on the dielectric substrate, and including an exposed ground land and an exposed high-frequency signal land;
a first transmission line provided in the dielectric substrate, and connecting one high-frequency signal land of the circuit element mounting portion and the radiation element;
a second transmission line provided in the dielectric substrate, and connecting another high-frequency signal land of the circuit element mounting portion and the high-frequency signal land of the exposed terminal portion; and
a ground conductor connecting the ground land of the circuit element mounting portion and the ground land of the exposed terminal portion.
An antenna element customized in accordance with a requirement specification can be mounted on the exposed terminal portion. Mounting a common antenna module for mobile terminals or the like of different models and mounting an antenna element customized for each model on the exposed terminal portion of the antenna module make it possible to flexibly cope with a requirement specification for each model.
In an antenna module according to a second aspect of the present disclosure, in addition to the configuration of the antenna module according to the first aspect,
the antenna element includes the radiation element provided on a surface on an opposite side from a surface of the dielectric substrate on which the circuit element mounting portion is provided, and
the exposed terminal portion is provided on a surface same as the surface of the dielectric substrate on which the circuit element mounting portion is provided.
The antenna element provided on the dielectric substrate makes it possible to radiate radio waves in a direction to which the surface on the opposite side from the surface on which the circuit element mounting portion is provided faces, and the antenna element mounted on the exposed terminal portion makes it possible to radiate radio waves in a direction to which the surface on which the circuit element mounting portion is provided faces.
In an antenna module according to a third aspect of the present disclosure, in addition to the configuration of the antenna module according to the first aspect,
the dielectric substrate is configured of a flexible printed circuit substrate,
the antenna element is provided on the surface on the opposite side from the surface of the dielectric substrate on which the circuit element mounting portion is provided, and includes the radiation element disposed at a position at least partially overlapping with the circuit element mounting portion, and
the exposed terminal portion is disposed at a position not overlapping with both the circuit element mounting portion and the radiation element.
Deforming the flexible printed circuit substrate makes it possible to change a positional relationship between the antenna element provided on the dielectric substrate and the antenna element mounted on the exposed terminal portion. This makes it possible to enhance the degree of freedom of an arrangement position of the antenna element.
In an antenna module according to a fourth aspect of the present disclosure, in addition to the configurations of the antenna modules according to the first to third aspects,
the circuit element mounting portion further includes an intermediate-frequency signal land and a DC power supply land,
the exposed terminal portion further includes an exposed intermediate-frequency signal land and an exposed DC power supply land,
the antenna module further includes:
an intermediate-frequency signal fourth transmission line provided in the dielectric substrate, and connecting the intermediate-frequency signal land of the circuit element mounting portion and the intermediate-frequency signal land of the exposed terminal portion; and
a power supply wiring provided in the dielectric substrate, and connecting the DC power supply land of the circuit element mounting portion and the DC power supply land of the exposed terminal portion.
A baseband integrated circuit element can be connected to the antenna module through the DC power supply land and the intermediate-frequency signal land of the exposed terminal portion.
An antenna element customized in accordance with a requirement specification can be mounted on the exposed terminal portion. Mounting a common antenna module for mobile terminals or the like of different models and mounting an antenna element customized for each model on the exposed terminal portion of the antenna module make it possible to flexibly cope with a requirement specification for each model.
Other features, elements, and characteristics of the present disclosure will become more apparent from the following detailed description of embodiments of the present disclosure with reference to the attached drawings.
An antenna module according to a first embodiment will be described with reference to
The circuit element mounting portion 11 includes a plurality of ground lands 11A and a plurality of high-frequency signal lands 11B provided on the upper surface of the dielectric substrate 10. Terminals of a high-frequency integrated circuit element 30 are connected to these lands 11A and 11B. For example, the plurality of ground lands 11A and ground terminals of the high-frequency integrated circuit element 30 are connected, and the plurality of high-frequency signal lands 11B and corresponding high-frequency signal terminals of the high-frequency integrated circuit element 30 are connected. In this manner, the circuit element mounting portion 11 is configured such that the high-frequency integrated circuit element 30 is mounted.
The exposed terminal portion 13 includes at least one ground land 13A and at least one high-frequency signal land 13B provided on the upper surface of the dielectric substrate 10. A part of an upper surface of each of the lands 13A and 13B of the exposed terminal portion 13 is exposed in an opening provided in the solder resist film 31.
Ground conductors 15 are disposed on the upper surface and in the inside of the dielectric substrate 10. Furthermore, a first transmission line 16, a second transmission line 17, and a third transmission line 18 are provided in the dielectric substrate 10. The first transmission line 16 connects one high-frequency signal land 11B of the circuit element mounting portion 11 and the radiation element 12A. The second transmission line 17 connects another high-frequency signal land 11B of the circuit element mounting portion 11 and the high-frequency signal land 13B of the exposed terminal portion 13. The third transmission line 18 connects still another high-frequency signal land 11B of the circuit element mounting portion 11 and the radiation element 12B. The ground conductor 15 connects the ground land 11A of the circuit element mounting portion 11 and the ground land 13A of the exposed terminal portion 13.
Each of the radiation elements 12A and 12B configures a patch antenna with the ground conductor 15 in an inner layer. The radiation element 12A radiates radio waves to the upper surface side of the dielectric substrate 10, the radiation element 12B radiates radio waves to the lower surface side of the dielectric substrate 10.
When the high-frequency integrated circuit element 30 is mounted on the circuit element mounting portion 11, from the high-frequency integrated circuit element 30, high-frequency power is supplied to the radiation element 12A through the first transmission line 16, high-frequency power is supplied to the high-frequency signal land 13B of the exposed terminal portion 13 through the second transmission line 17, and high-frequency power is supplied to the radiation element 12B through the third transmission line 18.
Next, a first utilization form of the antenna module according to the first embodiment will be described with reference to
The high-frequency probe 33 being brought into contact with the exposed terminal portion 13 makes it possible to perform wired inspection of the high-frequency integrated circuit element 30. The wired inspection makes it possible to inspect more easily and accurately than inspection in which radio waves radiated from the radiation elements 12A and 12B are measured. In this manner, in the first utilization form, the exposed terminal portion 13 is used as a terminal for inspection.
Next, a second utilization form of the antenna module according to the first embodiment will be described with reference to
The antenna element 40 is post-installed on the antenna module according to the first embodiment. In contrast, the antenna element 12 (
Next, a third utilization form of the antenna module according to the first embodiment will be described with reference to
As described above, in the second and third utilization forms illustrated in
Next, excellent effects of the antenna module according to the first embodiment when used in the second and third utilization forms will be described.
When the lower surface of the dielectric substrate 10 (
On the other hand, directional characteristics of the antenna element installed at an end portion of the housing depend on a positional relationship between the antenna element and the end portion of the housing and a positional relationship between the antenna element and peripheral components. These positional relationships are not always the same for respective models of the mobile terminals. Accordingly, in order to obtain desired directional characteristics in various models, it is necessary to adjust characteristics of the antenna element positioned at the end portion of the housing for each model.
In the antenna module according to the first embodiment, it is possible to customize the post-installed antenna element 40 (
Next, an antenna module according to a second embodiment will be described with reference to
A flexible printed circuit substrate (FPC substrate) 50 is connected to the exposed terminal portion 13. The FPC substrate 50 is provided with a transmission line 51 and an antenna element 52. The antenna element 52 is connected to the ground land 13A and the high-frequency signal land 13B of the exposed terminal portion 13 through the transmission line 51. As the antenna element 52, for example, a patch antenna including a radiation element and a ground plane is used.
The antenna module 20 is housed in a substantially thin housing 60 such as a mobile terminal or the like. A surface of the dielectric substrate 10 on which the antenna element 24 is provided is close contact with an inner side surface of a front surface plate 60F of the housing 60. The antenna element 52 provided on the FPC substrate 50 is close contact with an inner side surface of a back surface plate 60B of the housing 60 by curving the FPC substrate 50.
The antenna element 24 built in the antenna module 20 radiates radio waves in a front surface direction of the housing 60, and the antenna element 52 provided on the FPC substrate 50 radiates radio waves in a back surface direction of the housing 60.
Next, excellent effects of the antenna module according to the second embodiment will be described.
In the case where the dielectric substrate 10 is provided with both an antenna element for the front surface and an antenna element for the back surface, a positional relationship between the antenna element for the front surface and the antenna element for the back surface cannot be adjusted. It is difficult to secure a housing space of the antenna module at a position in the housing in which favorable antenna characteristics for both the antenna element for the front surface and the antenna element for the back surface can be obtained in some cases.
In contrast, in the antenna module according to the second embodiment, by deforming the FPC substrate 50, as illustrated in
The radiation element 23 of the antenna element 24 is provided on a surface on the opposite side from a surface on which the circuit element mounting portion 11 and the exposed terminal portion 13 are provided. Accordingly, it is possible to dispose the radiation element 23 in close contact with or near the front surface plate 60F of the housing 60.
Furthermore, as illustrated in
Next, various variations on the second embodiment will be described. As the post-installed antenna element 52 illustrated in
Although the second embodiment indicates an example in which the FPC substrate 50 is provided with the antenna element 52, the FPC substrate 50 may be provided with a mounting portion for mounting an antenna element, and an antenna element having desired characteristics may be mounted on this mounting portion.
In the example illustrated in
In the example illustrated in
Next, an antenna module according to a third embodiment will be described with reference to
The intermediate-frequency signal land and the DC power supply land are also disposed in the circuit element mounting portion 11. The intermediate-frequency signal land and the DC power supply land of the circuit element mounting portion 11 do not appear in a cross section illustrated in
The FPC substrate 50 connected to the exposed terminal portion 13 is provided with an intermediate-frequency signal transmission line 53 and a DC power supply wiring 54 in addition to the high-frequency signal transmission line 51. On the FPC substrate 50, the antenna element 52 is provided and a baseband integrated circuit element 55 is mounted. The baseband integrated circuit element 55 is connected to the intermediate-frequency signal land 13C and the DC power supply land 13D of the exposed terminal portion 13 through the transmission line 53 and the wiring 54 of the FPC substrate 50.
Next, an antenna module according to a variation on the third embodiment will be described with reference to
Next, excellent effects of the antenna module according to the third embodiment and the variation thereon will be described. In the third embodiment, the high-frequency integrated circuit element 30 and the baseband integrated circuit element 55 are connected through the FPC substrate 50 connected to the exposed terminal portion 13. In the variation on the third embodiment, the high-frequency integrated circuit element 30 and the baseband integrated circuit element 55 are connected through the FPC substrate 57 connected to the exposed terminal portion 14. Accordingly, it is not necessary to provide a connector for connecting to the baseband integrated circuit element 55 on the dielectric substrate 10.
Next, an antenna module according to a fourth embodiment will be described with reference to
The FPC substrate 70 is provided with the circuit element mounting portion 11, the exposed terminal portion 13, and the antenna element 24. The antenna element 24 is provided on a surface on the opposite side from a surface on which the circuit element mounting portion 11 is provided, and is disposed at a position at least partially overlapping with the circuit element mounting portion 11. The exposed terminal portion 13 is disposed at a position not overlapping with both the circuit element mounting portion 11 and the antenna element 24. The high-frequency integrated circuit element 30 is mounted on the circuit element mounting portion 11, and a post-installed antenna element 71 is mounted on the exposed terminal portion 13.
The antenna module is housed in the housing 60 such that a region, in which the antenna element 24 is disposed, of the FPC substrate 70 is close contact with the inner side surface of the front surface plate 60F of the housing 60, and the antenna element 71 is close contact with the inner side surface of the back surface plate 60B of the housing 60 by curving the FPC substrate 70.
Next, excellent effects of the antenna module according to the fourth embodiment will be described.
Because the exposed terminal portion 13 is disposed at the position not overlapping with both the circuit element mounting portion 11 and the antenna element 24, deforming the FPC substrate 70 makes it possible to change a positional relationship between the antenna element 71 mounted on the exposed terminal portion 13 and the built-in antenna element 24. Because the built-in antenna element 24 and the circuit element mounting portion 11 at least partially overlap with each other, the area of the FPC substrate 70 can be made smaller than that of the case where both of them are disposed so as not to overlap with each other.
As compared to the antenna module in the second utilization form (
Next, an antenna module according to a fifth embodiment will be described with reference to
The exposed terminal portion 13 is provided with a land 13E for connecting an antenna auxiliary component 76. Mounting the antenna auxiliary component 76 on the exposed terminal portion 13 makes it possible to adjust characteristics of the antenna element 75. As the antenna auxiliary component 76, for example, a reflector, a parasitic element, or the like can be cited. Mounting these types of the antenna auxiliary component 76 makes it possible to realize a wider band, directional characteristics control, characteristics deterioration suppression, or the like of the antenna element 75.
The embodiments described above are merely examples, and it goes without saying that partial replacements or combinations of configurations illustrated among different embodiments are also possible. The same actions and effects as in the same configurations in a plurality of embodiments are not stated for each embodiment. Furthermore, the present invention is not intended to be limited to the above-described embodiments. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, or the like can be made.
While preferred embodiments of the invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the invention. The scope of the invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-165647 | Aug 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6518932 | Matsui | Feb 2003 | B1 |
7239851 | Kosemura | Jul 2007 | B2 |
20050285234 | Kanno | Dec 2005 | A1 |
20060017157 | Yamamoto et al. | Jan 2006 | A1 |
20100001906 | Akkermans | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2005-340790 | Dec 2005 | JP |
2006-186436 | Jul 2006 | JP |
2009-081833 | Apr 2009 | JP |
2010-016789 | Jan 2010 | JP |
0048269 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20180062263 A1 | Mar 2018 | US |