The present disclosure generally relates to antenna radial systems.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Antenna radial systems are sometimes used to simulate a ground plane to enhance radio frequency (RF) radiation. For example, an antenna radial system may be used to convert a mobile antenna to a base station antenna.
According to various aspects, exemplary embodiments are provided of antenna radial systems. In one exemplary embodiment, an antenna radial system generally includes a washer having a channel disposed along a first side of the washer. A radial includes a locking portion configured to be received within the channel. The radial also includes elongate portions extending outwardly from the locking portion such that an angle is defined between each elongate portion and the locking portion. A bushing cooperates with the washer for sandwiching the radial's locking portion therebetween to thereby help retain the radial's locking portion within the channel.
Additional aspects provide methods relating to antenna radial systems, such as methods of assembling, installing and/or using antenna radial systems. The antenna radial system may generally include a washer, a radial, and a bushing. In one exemplary embodiment, a method generally includes positioning a radial relative to the washer such that a locking portion of the radial is at least partially within a channel of the washer and such that elongate portions of the radial are adjacent the corresponding open ends of the channel. The method may also include positioning the bushing relative to the radial and the washer such that the bushing and the washer cooperate to sandwich the radial's locking portion therebetween to thereby help retain the positioning of the radial's locking portion within the channel.
Further aspects and features of the present disclosure will become apparent from the detailed description provided hereinafter. In addition, any one or more aspects of the present disclosure may be implemented individually or in any combination with any one or more of the other aspects of the present disclosure. It should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the present disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is in no way intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
According to various aspects, exemplary embodiments are provided of antenna radial systems. In one exemplary embodiment, an antenna radial system generally includes a washer having a channel disposed along a first side of the washer. A radial includes a locking portion configured to be received within the channel. The radial also includes elongate portions extending outwardly from the locking portion such that an angle is defined between each elongate portion and the locking portion. A bushing cooperates with the washer for sandwiching the radial's locking portion therebetween to thereby help retain the radial's locking portion within the channel.
Additional aspects provide methods relating to antenna radial systems, such as methods of assembling, installing and/or using antenna radial systems. The antenna radial system may generally include a washer, a radial, and a bushing. In one exemplary embodiment, a method generally includes positioning a radial relative to the washer such that a locking portion of the radial is at least partially within a channel of the washer and such that elongate portions of the radial are adjacent the corresponding open ends of the channel. The method may also include positioning the bushing relative to the radial and the washer such that the bushing and the washer cooperate to sandwich the radial's locking portion therebetween to thereby help retain the positioning of the radial's locking portion within the channel.
As disclosed herein, an exemplary antenna radial system may generally include six primary components, namely, radial (e.g., wire radial, etc.), bushing, washer, sealing member (e.g., o-ring, etc.), antenna adaptor/connector (e.g., NMO (a new Motorola antenna mount) to N-Female adaptor, etc.), and a mechanical fastener or locking member (e.g., nut, etc.). The radial may be formed with two locking angles for locking inside a corresponding recessed channel, slot, or groove defined by the washer such the channel has two parallel inner sidewalls. The radial may be captured and retained within the channel by the bushing. The washer, sealing member, bushing, and radial may be assembled together along a centerline axis of a threaded portion (e.g., threaded stud, etc.) of the adaptor. With the radial locked in place within the channel (via the interaction between the washer and radial's locking angles and cooperation of the washer and the bushing to clamp, capture and retain the radial within the channel), the radial is thus constrained from movement in all three x, y, and z axes directions.
The antenna radial system disclosed herein may be secured to a mounting surface by inserting a threaded portion (e.g., threaded stud, etc.) of the bushing through a mounting hole in the mounting surface. Then, from the opposite side of the mounting surface, a nut (or other suitable mechanical fastener or locking member) may be threaded onto that threaded portion of the bushing that extends out through the mounting hole.
With reference now to the drawings,
The radials 104 include portions 128 that are configured to fit at least partially within channels, grooves, or slots 132 of the washer 112, as shown in
With reference to
An exemplary process for assembling and installing the antenna radial system 100 is now provided for purpose of illustration only. With reference to
With the radial locking portions 128 disposed within the grooves 132, the threaded protruding portion 148 of the adaptor 120 may be threadedly engaged with the internally threaded opening 110 of the bushing 108. At this stage of the process, the adaptor 120, washer 112, sealing member 116, radials 104, and bushing 108 are accordingly assembled so as to form a subassembly.
This subassembly may be moved relative to the mounting surface 144 so as to insert the threaded protruding portion 114 of the bushing 108 at least partially through the mounting hole 152. Then, from the opposite side of the mounting surface 140 (e.g., the lower surface in
Alternative methods may also be used for assembling and/or installing the antenna radial system 100, including methods in which one or more of the above-described processes or operations are performed differently and/or in a different order. For example, some embodiments may include positioning the threaded protruding portion 148 of the bushing 108 through the mounting hole 152 and threadedly engaged the nut 124 thereto, before the adaptor 120, nesting washer 112, sealing member 116, and radials 104 are assembled to the bushing 108.
The components of the antenna radial system 100 will now be described in more detail, starting with the radials 104. As shown in
Preferably, the locking angles 168 are configured such that sliding movement (generally left and right in
In addition, antenna balls 172 may be disposed (e.g., crimped, etc.) at the ends of the radial elongate portions 166. The radials 104 may be dimensionally sized such that the distance separating the antenna balls 172a and 172b shown in
A wide range of materials may be used for the radials 104 and antenna balls 172, such as stainless steel, etc. In one exemplary embodiment, the radials 104 comprise stainless steel tempered ground wire radials. Alternative embodiments may include different numbers of radials and/or differently configured radials, such as radials having different shapes, different dimensions and/or angular values, differently shaped antenna balls, different materials, more or less than two elongate portions, etc., depending, for example, on the particular application.
With further reference to
Each channel 132 may be configured for frictionally engaging the corresponding radial locking portion 128 received within the channel 132. For example, the channel's sidewall portions may be configured to frictionally engage (e.g., grip, etc.) diametrically opposing sides of the radial locking portion 128.
By way of example only, the washer 112 may be formed from brass and be generally circular with an outer diameter of about 1.50 inches. Alternative embodiments may include differently configured washers (e.g., larger, smaller, different shapes, different materials, more or less than two slots, different slots, etc.).
With further reference to
In some embodiments, the bushing 108 may be formed from a synthetic resin plastic (e.g., Delrin synthetic resin plastic, etc.) or other suitable electrically-insulating dielectric material (e.g., other plastics, etc.). In these embodiments, the bushing 108 may thus provide a direct current (DC) ground isolation option. By way of example, the bushing 108 may be further configured so as to provide the ground isolation option in compliance with Underwriter's Laboratory certification for certain applications. In other embodiments, the bushing 108 may be formed from brass (or other suitable material) so as to be electrically conductive for DC grounding purposes. Alternative embodiments may include differently configured bushings (e.g., larger, smaller, different shapes, different materials, etc.).
In the illustrated embodiment, the sealing member 116 is an O-ring, although other suitable sealing members may also be used. The sealing member 16 is configured such that when the antenna radial system 100 is assembled (
By way of example only, the sealing member 116 may be formed from rubber (e.g., ethylene propylene diene monomer (EPDM) rubber, etc.) and have a diameter of about 0.625 inches. Alternative embodiments may include more than one sealing member and/or differently configured (e.g., larger, smaller, different shapes, different materials, etc.) sealing members.
Referring to
In some embodiments, a coaxial cable (or other suitable communication link) may be electrically connected to the adaptor 120 for communicating signals between the antenna radial system 100 and another device, such as a radio receiver, display screen, and/or other suitable device. Accordingly, various embodiments allow for pluggable electrical connections between a communication link and the antenna radial system's adaptor or connector 120 without requiring the installer to route wiring or cabling through the mounting hole 152 of the mounting surface 144.
With continued reference to
Various antenna radial systems (e.g., 100, etc.) disclosed herein may be mounted to a wide range of supporting structures, including stationary platforms and mobile platforms. Accordingly, the specific mounting arrangement shown in
Numerical dimensions and values and the specific materials disclosed herein are provided for illustrative purposes only. The particular dimensions, values, and materials disclosed are not intended to limit the scope of the present disclosure.
Certain terminology is used herein for purposes of reference only, and thus is not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, “below”, “upward”, “downward”, “forward”, and “rearward” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “bottom” and “side”, describe the orientation of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
When introducing elements or features and the exemplary embodiments, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of such elements or features. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 60/976,771 filed Oct. 1, 2007. The disclosure of this provisional application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60976771 | Oct 2007 | US |