The present invention relates to an antenna technology suitable for being used in a mobile communication (PCS, Cellular, IMT-2000, etc.) base station or a relay and, in particular, to an antenna radiation element suitable for implementing a dual polarized antenna and a multiband antenna using the same.
At present, according to the universalization of mobile communication and activation of wireless broadband data communication, various frequency bands are used as available frequency bands in order to sufficiently ensure frequency band which is insufficient. The mainly used frequency bands are a low frequency band (698-960 MHz) and a high frequency band (1.71-2.17 GHz or 2.3-2.7 GHz). In addition, a multiple input multiple output (MIMO) technology based on a multiband antenna is an essential technology for increasing data transmission speed and is being applied to recent mobile communication network systems such as long term evolution (LTE) and Mobile WiMAX.
However, to install a plurality of antennas in order to support MIMO in the various frequency bands causes limitations in terms of tower space in which an antenna is installed in real outside environment as well as an increase in installation costs. Thus, a multiband antenna such as a dual band antenna or a triple band antenna is necessarily required. The multiband antenna has a structure in which a high frequency band antenna is inserted in the same space as that used for installing a low frequency band antenna, while maximally reducing an interference effect between elements, so as to maximally efficiently design an antenna area, especially, the width of the antenna. An example of such a multiband antenna is the earlier application by the present applicant in Korean Patent Publication No. 10-2010-0033888 (Title: “Dual band dual polarized antenna for a mobile communication base station”, inventors: Youngchan MOON, Ohseok CHOI, Published: described in the Mar. 31, 2010).
Generally, a multiband antenna, as described in Patent Publication NO. 10-2010-0033888, has a structure in which first radiation modules of a low frequency band and second and/or third radiation modules of a high frequency band are properly placed on at least one reflector erected in the lengthwise direction. For example, the first radiation modules may be vertically arranged in a row, and the second and/or third radiation modules may be vertically arranged on the left and right sides of the first radiation elements in a row, respectively. At this time, generally, each of the first radiation modules, the second radiation modules, and third radiation modules is combined in four directions of four radiation elements and, overall, is arranged with an angle of +45 and −45 degrees with respect to verticality (or horizontality), thereby generating two linearly polarized wave which are orthogonal.
Meanwhile, recently, as a radiation element and radiation module having a broadband characteristic have been required, a radiation element including a band where about 45 percent of the band is a fractional band width has been provided. The radiation element, for example, may have an operation characteristic of 1710-2690 MHz bands. In case of implementing the multiband antenna using a broadband radiation element, an interference problem between elements of each band is seriously on the rise, thus, this problem causes difficulty which is insurmountable at the time of efficiently designing a multiband antenna.
Accordingly, an aspect of the present invention is to provide an antenna radiation element and a multiband antenna having a more optimized structure, convenience of antenna design by enabling the optimization of an antenna size, and a more stable characteristic.
Another aspect of the present invention is to provide an antenna radiation element and a multiband antenna, which can reduce the interference between the radiation elements, make the width of the antenna narrower, and easily implement a multiband antenna within a limited width.
To achieve the aspects, according to a standpoint of the present invention, a multiband antenna includes: a reflector providing a ground plane; a first radiation module for a first frequency band installed on the reflector; and a second radiation module for a second frequency band installed to be laminated on the first radiation module, wherein: the first radiation module includes first to fourth radiation elements symmetrically combined in four directions on an entire plane, wherein each of the first to fourth radiation elements includes a cup-shaped radiation arm and a support for supporting and fixing the radiation arm to the reflector, and the second radiation modules are installed to each radiation arm of the first to fourth radiation elements, wherein the lower surface of the cup shape of each radiation arm of the first to fourth radiation elements is designed to have a predetermined area for providing the ground plane to the second radiation modules which are installed on the upper side.
According to another standpoint of the present invention, an antenna radiation element includes a cup-shaped radiation arm and a support for supporting and fixing the radiation arm on the reflector of the antenna.
In the above, each of the cup-shaped radiation arms of the radiation element has a stepped cup shape in which an upper portion is wide and a lower portion is narrow, and is an overall square-shaped cup.
Hereinafter, an exemplary embodiment according to the present invention will be described in detail with reference to the accompanying drawings. Various specific definitions found in the following description are provided only to help general understanding of the present invention, and it is apparent to those skilled in the art that the present invention can be implemented without such definitions.
Referring to
More specifically, the radiation arms 110: 110a and 110b of the first radiation element 11 may have a stepped cup shape in which an upper portion 110a is wide and a lower portion 110b is narrow and an overall cup shape may be a square. The support 112 for supporting the first radiation elements 11 which is installed to be spaced apart from each other on the reflector 5 is configured to be fixed on the reflector 5 by integrally extending with a radiation arm 110 at a position corresponding to the center side in an installation area of the entire first radiation module 10. At this time, the support 112 may be fixedly attached to the reflector 5 by a welding or screw-coupling way.
The radiation arms 120, 130, etc. of the second to fourth radiation element 12, 13, and 14 and the supports 122, 132, etc. are similarly configured. For example, the first to fourth radiation arms 11, 12, 13, and 14 sequentially form a partial structure corresponding to the upper right part, lower right part, lower left part, and upper left part, respectively, in an entire form of the first radiation module 10.
Meanwhile, as illustrated more clearly in
In this case, a parallel plane which is opposed to the strip lines of the first and second feed lines 31 and 32 and is configured to maintain a predetermined distance is formed on a central longitudinal axis of each support 112, 122, 132, etc., and spacers 41, 42, 43, and 44, which have a proper structure for supporting the relevant feed line and maintaining a space between the relevant feed line and the relevant support to be spaced consistently, may be installed at predetermined position between the parallel plane of each support 112, 122, 132, etc. and the strip lines of the first and second feed lines 31 and 32.
Since the feed structure is provided, as described in
As described above, in the first radiation module 10 configured by the first to fourth radiation elements 11-14, according to an embodiment of the present invention, second radiation modules 20-1, 20-2, 20-3, and 20-4 for generating an X polarized wave for a first frequency band (for example, a broadband of 1710-2690 MHz bands) are respectively installed in each of the radiation arms 110, 120, 130, etc. of the first to fourth radiation elements 11-14. Each of the second radiation modules 20-1, 20-2, 20-3, and 20-4 may be implemented by intactly adopting conventional radiation elements provided in various structures such as dipole type.
In
At this time, it is a very important feature that each of the radiation arms 110, 120, 130, etc. of the first to fourth radiation elements 11-14 has a cup shape. More specifically, primarily, a sufficient ground plane is provided on the second radiation modules 20-1, 20-2, 20-3, and 20-4 in which a lower surface of a large area of a cup shape is installed on an upper side. In order to reduce the entire size of an antenna, when it is possible to consider laminating and installing the second radiation module on an upper portion of the first radiation module, a problem of real implementation is that a sufficient ground characteristic cannot be provided to the second radiation module. The symmetry of the ground plane of the radiation element is a very important factor in a radiation pattern characteristic, the present invention solves such a problem through each cup-shaped radiation element of the first radiation module as described above.
In addition, cup-shaped sides of each of the radiation arms 110, 120, 130, etc. of the first to fourth radiation elements 11-14 serve to remove (or reduce) an effect of the first radiation module 10 with respect to the second radiation modules 20-1, 20-2, 20-3, and 20-4 which are installed on each of the radiation arms 110, 120, 130, etc., thus, it helps make the radiation characteristic of the second radiation modules 20-1, 20-2, 20-3, and 20-4 stable and make the beam width of a radiation pattern symmetrical.
In addition, each of the radiation arms 110, 120, 130, etc. of the first to fourth radiation elements 11-14 may have a simple shape but, in the present embodiment, each of the radiation arms 110, 120, 130, etc. of the first to fourth radiation elements 11-14 has a stepped cup shape in which upper portions 110a, 120a, 130a, etc. are wide and lower portions 110b, 120b, and 130b are narrow. As it is implemented to form a radiation pattern optimized according to a radiation characteristic of the first radiation module 10 and the second radiation module 20, for example, cup-shaped lower portions 110b, 120b, 130b, etc. are designed by considering a space with the second radiation module 20 to optimize a radiation characteristic of the second radiation modules 20-1, 20-2, 20-3, and 20-4 which are installed inside, cup-shaped upper portions 110a, 120a, 130a, etc. are designed by considering a space with (an radiation arm of) another first radiation module which is installed around.
Thus, it is possible to have a structure in which the second radiation module 20 is laminated to the first radiation module 10 of the present invention, in terms of the laminated structure, the radiation elements of the first radiation module which is in a relatively lower frequency band function as a radiation element of the first frequency band and a ground of the second radiation module at the same time. That is, the radiation elements of the first radiation module function as a reflector of the second radiation module.
By having the configuration as described above, it is possible to reduce interaction between bands which is a problem in a prior art.
Referring to a structure illustrated in
An antenna radiation element according to an embodiment of the present invention as described above and a multiband antenna configuration and operation using the same may be performed. Meanwhile, specific embodiments according to the present invention have been described above, but various modifications may be performed without departing from the scope of the present invention.
For example, the above description shows that a plurality of the first radiation modules according to an embodiment of the present invention is vertically placed on one reflector in a row, however, a plurality of the first radiation modules may be vertically placed in two or more rows in another embodiment of the present invention. Of course, in this case, the second radiation module may be installed to be laminated on all or at least a part of first radiation modules.
Furthermore, in the above description, the example in which the second radiation module is always laminated to the first radiation module is described, but as indicated by a reference numeral 10-6 in
In addition to that, various modifications and variations can be made without departing from the scope of the present disclosure, and the scope of the present disclosure shall not be determined by the above-described embodiments and has to be determined by the following claims and equivalents thereof.
As described above, a radiation element and a multiband antenna according to the present invention can have a more optimized structure, convenience of antenna design by enabling the optimization of the antenna size, and a more stable characteristic. In particular, the radiation element and multiband antenna can reduce the interference between the radiation elements, make the width of the antenna narrower, and easy implement a multiband antenna within a limited width.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0133571 | Nov 2013 | KR | national |
This application is a continuation of International Application No. PCT/KR2014/009827 filed on Oct. 20, 2014, which claims priority to Korean Application No. 10-2013-0133571 filed on Nov. 5, 2013, which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20040140942 | Gottl | Jul 2004 | A1 |
20060114168 | Gottl et al. | Jun 2006 | A1 |
20120112977 | Yun | May 2012 | A1 |
20120133567 | Harel et al. | May 2012 | A1 |
20120146871 | Choi | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
10 2007 060 083 | Jun 2009 | DE |
10 2014 014 434 | Mar 2016 | DE |
2002-043838 | Feb 2002 | JP |
2005-516513 | Jun 2005 | JP |
2012-529827 | Nov 2012 | JP |
2013-503550 | Jan 2013 | JP |
10-2007-0083723 | Aug 2007 | KR |
10-2010-0033888 | Mar 2010 | KR |
10-0987367 | Oct 2010 | KR |
10-2012-0088471 | Aug 2012 | KR |
Entry |
---|
Supplementary European Search Report dated Jun. 16, 2017 in corresponding European Patent Application No. 14859690.1. |
Office Action dated Jun 19, 2017 in corresponding Japanese Patent Application No. JP 2016-527436. |
Examination Report dated Mar. 6, 2017 in corresponding Japanese Patent Application No. JP 2016-527436. |
Number | Date | Country | |
---|---|---|---|
20160248171 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2014/009827 | Oct 2014 | US |
Child | 15143888 | US |