The present application claims priority to the Chinese patent application No. 201710221891.7 titled “ANTENNA STRUCTURE AND MANUFACTURE METHOD THEREOF, COMMUNICATION DEVICE” filed Apr. 6, 2017, the entire disclosure of which is incorporated herein by reference as part of the present application.
Embodiments of the present disclosure relate to an antenna structure, a manufacturing method thereof and a communication device.
With continuous developments of communication technologies, antennas have been developed towards smaller size, broadband, multiband and high gain. As compared with conventional antennas such as horn antenna, helical antenna and dipole antenna, liquid crystal (LC) antenna has become the one most adaptable for current development direction of technology.
Generally, the LC antenna includes a transmitter patch, a grounding electrode and liquid crystals (LCs) located between the transmitter patch and the grounding electrode. When flowing into the LC antenna, an electromagnetic wave having a certain frequency may radiate outwards through the LC antenna in case that the certain frequency is consistent with a resonant frequency of the LC antenna, or may not radiate outwards through the LC antenna in case that the certain frequency is inconsistent with the resonant frequency. Furthermore, a change in an orientation of LCs would lead to a difference in an effective dielectric constant, and hence result in a change of capacitance. Therefore, the orientation of LCs between the transmitter patch and the grounding electrode may be adjustable by applying a voltage to the transmitter patch, so as to adjust the resonant frequency of the LC antenna.
At least one embodiment of the present disclosure provides an antenna structure, a manufacturing method thereof, and a communication device.
At least one embodiment of the present disclosure provides an antenna structure, including a first substrate; a second substrate; a dielectric layer disposed between the first substrate and the second substrate; a plurality of first electrodes disposed at intervals on a side of the first substrate adjacent to the dielectric layer; and a plurality of second electrodes disposed at intervals on a side of the second substrate adjacent to the dielectric layer. A side of the first substrate facing the second substrate includes a plurality of first recess portions each including a first concaved surface which is dented into the first substrate. The dielectric layer is at least partly disposed in the plurality of first recess portions.
For example, the plurality of first electrodes are disposed in one-to-one correspondence with the plurality of first recess portions, and each of the plurality of first electrodes is disposed on the first concaved surface of a corresponding first recess portion.
For example, a cross section of the first recess portion includes a semi-circular shape.
For example, a side of the second substrate facing the first substrate includes a plurality of second recess portions each including a second concaved surface which is dented into the second substrate, and the dielectric layer is at least partly disposed in the plurality of second recess portions.
For example, the plurality of second recess portions are disposed in one-to-one correspondence with the plurality of first recess portions.
For example, the first substrate further includes a plurality of first flat portions each connecting adjacent first recess portions, and the first flat portions and the second substrate are configured to seal the plurality of first recess portions.
For example, the first substrate further includes a plurality of first flat portions each connecting adjacent first recess portions, the second substrate further includes a plurality of second flat portions each connecting adjacent second recess portions, and the plurality of first flat portions and the plurality of second flat portions are configured to seal the plurality of first recess portions and the plurality of second recess portions, respectively.
For example, the antenna structure further includes a plurality of buffer blocks disposed between the first flat portions and the second substrate.
For example, the plurality of second electrodes are disposed in one-to-one correspondence with the plurality of second flat portions, and each of the plurality of second electrodes is disposed on a corresponding second flat portion.
For example, an orthographic projection of the second concaved surface on the first substrate is fallen within an orthographic projection of the first concaved surface on the first substrate.
For example, a cross section of the second concaved surface includes a semi-circular shape.
For example, the dielectric layer includes liquid crystals (LCs).
For example, each of the first substrate and the second substrate is a flexible substrate.
For example, the antenna structure further includes: a first control electrode which is disposed between the first substrate and the first electrode and is electrically connected to the first electrode; and a second control electrode, which is disposed between the second substrate and the second electrode, and is electrically connected to the second electrode.
At least one embodiment of the present disclosure provides a manufacturing method of an antenna structure, including: providing a first substrate and a second substrate; forming a plurality of first recess portions in the first substrate; forming a plurality of first electrodes at intervals on a side of the first substrate on which the plurality of first recess portions are formed; forming a plurality of second electrodes at intervals on the second substrate; and disposing the first substrate and the second substrate to be opposite to each other and disposing a dielectric layer between the first substrate and the second substrate in such a manner that the side of the first substrate on which the plurality of first electrodes are formed is opposite to the side of the second substrate on which the plurality of second electrodes are formed, and the dielectric layer is partly filled in the plurality of first recess portions.
At least one embodiment of the present disclosure provides a communication device including any of the abovementioned antenna structures.
Hereafter, the embodiments of the present invention will be described in detail with reference to the drawings, so as to make one person skilled in the art understand the present invention more clearly.
Hereafter, the technical solutions in the embodiments of the present disclosure will be clearly, completely described with reference to the drawings in the embodiments of the present disclosure. Obviously, the embodiments described are only a part of the embodiments, not all embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by one skilled in the art without paying inventive labor are within the protection scope of the present disclosure.
Unless otherwise defined, all the technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the present invention belongs. The terms “first,” “second,” etc., which are used in the description and the claims of the present application for invention, are not intended to indicate any sequence, amount or importance, but distinguish various components. Also, the terms such as “a,” “an,” etc., are not intended to limit the amount, but indicate the existence of at least one. The phrases “connect”, “connected”, etc., are not intended to define a physical connection or mechanical connection, but may include an electrical connection, directly or indirectly. “On,” “under,” “right,” “left” and the like are only used to indicate relative position relationship, and when the position of the object which is described is changed, the relative position relationship may be changed accordingly.
During research, the inventors of the present application noticed that, customers have proposed relatively higher requirements on wearable intelligent products having powerful functions such as physical index monitoring, GPS and 4G or 5G mobile network, with the continuous development of communication technology and communication device. However, the wearable intelligent product will inevitably be curved or bent during practical usage; therefore antennas in the wearable intelligent product may, more or less, need to be flexible.
The embodiment of the present disclosure provides an antenna structure, a manufacturing method thereof and a communication device. The antenna structure includes a first substrate, a second substrate, a dielectric layer, a plurality of first electrodes and a plurality of second electrodes. The dielectric layer is disposed between the first substrate and the second substrate; the plurality of first electrodes are disposed at intervals on a side of the first substrate adjacent to the dielectric layer; the plurality of second electrodes are disposed at intervals on a side of the second substrate adjacent to the dielectric layer; a side of the first substrate facing the second substrate includes a plurality of first recess portions each including a first concaved surface dented into the first substrate; the dielectric layer is partly disposed in the plurality of first recess portions. In this way, the antenna structure can limit a flowing movement of the dielectric layer by the plurality of first recess portions disposed on the first substrate, so as to prevent the dielectric layer from flowing and leading to uneven thickness thereof when the antenna structure is curved or bent, thereby avoiding various defects of the antenna structure due to uneven thickness of the dielectric layer.
Hereinafter the antenna structure, the manufacturing method thereof and the communication device provided by the embodiments of the present disclosure will be described in conjunction with the drawings.
An embodiment of the present disclosure provides an antenna structure.
In the antenna structure provided by the present embodiment, the first substrate includes a plurality of first recess portions formed into accommodation spaces in which the dielectric layer may be disposed. In this way, side walls of the first recess portions may serve to restrict the dielectric layer in the accommodation space to a certain degree, so as to prevent the dielectric layer from flowing. In this way, the antenna structure can limit a flowing movement of the dielectric layer by the plurality of first recess portions disposed on the first substrate, so as to prevent the dielectric layer from flowing and leading to uneven thickness thereof when the antenna structure is curved or bent, thereby avoiding various defects of the antenna structure due to uneven thickness of the dielectric layer. Moreover, the abovementioned antenna structure has no need of additionally disposing a component for blocking the flowing of the dielectric layer, and hence is advantageous in simpler structure, smaller size and weight, and the like.
For example, in the antenna structure provided by an example of the present embodiment, the dielectric layer may include liquid crystals (LCs). In this way, an orientation of LC molecules in the dielectric layer located between the first substrate and the second substrate may be changed by changing an electric field applied between the first electrodes and the second electrodes, so as to adjust a resonant frequency of the antenna structure, thereby increasing a frequency band of the electromagnetic wave which is receivable or transmittable by the antenna structure.
For example, in the antenna structure provided by an example of the present embodiment, each of the first substrate and the second substrate may be a flexible substrate. In this way, the antenna structure may be applied in a flexible electronic device, for example, a wearable intelligent product having powerful functions such as physical index monitoring, GPS and 4G or 5G mobile network.
For example, the first substrate and the second substrate may adopt a polymer substrate or a metallic substrate with excellent ductility.
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, a material of the buffer block may have a viscosity larger than that of a material of the second substrate. In this way, the buffer block can increase the bonding force between the second electrode and the buffer block by adopting a material having higher viscosity, so as to further prevent the second electrode from breaking off or separating from the second substrate when the antenna structure is curved or bent. For example, the material of the first and the second buffer block has a viscosity larger than 1000 Pa·s.
For example, the material of the buffer block includes polydimethylsiloxane (PDMS). The PDMS has not only lower elasticity modulus but also higher viscosity, so as to increase the bonding force between the second electrode and the buffer block, and also to well buffer the external force which may result in curving or bending. Additionally, the PDMS barely hinders the electromagnetic wave, and will not affect the transmission of the signals of the antenna structure.
Another embodiment of the present disclosure provides an antenna structure.
On the basis of the embodiment illustrated in
In the antenna structure provided by the present embodiment, the second substrate includes a plurality of second recess portions formed into accommodation spaces in which the dielectric layer (e.g., LCs) is further disposed. In this way, side walls of the second recess portions may also serve to restrict the dielectric layer in the accommodation space to a certain degree, so as to prevent the dielectric layer from flowing. In this way, the antenna structure can further limit the flowing of the dielectric layer by the plurality of second recess portions disposed on the second substrate, so as to prevent the dielectric layer from flowing and leading to uneven thickness thereof when the antenna structure is curved or bent, thereby avoiding various defects of the antenna structure due to the uneven thickness of the dielectric layer. In addition, when the antenna structure is subjected to an excessively larger external force, the second recess portion also serves to provide a buffering space for the dielectric layer to prevent the LCs from impacting a bonding portion between the first substrate and the second substrate due to the excessively larger external force which may affect a sealing effect of the device.
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
For example, in the antenna structure provided by an example of the present embodiment, as illustrated in
Still another embodiment of the present disclosure provides a manufacturing method of an antenna structure.
Providing a first substrate and a second substrate.
Forming a plurality of first recess portions on the first substrate.
For example, it may be possible to form the plurality of first recess portions on the first substrate by an etching process.
Forming a plurality of first electrodes at intervals on a side of the first substrate on which the plurality of first recess portions are formed.
For example, it may be possible to form a film layer of first electrode on the side of the first substrate, on which the plurality of first recess portions are formed, by a film forming process such as depositing or evaporating, and to pattern the film layer of first electrode by a patterning process so as to form the plurality of first electrodes. Of course, the embodiments of the present disclosure are not limited thereto, and the plurality of first electrodes may be formed by a transfer printing process.
Forming a plurality of second electrodes at intervals on the second substrate.
For example, it may be possible to form a film layer of second electrode on the second substrate by a film forming process such as depositing or evaporating, and to pattern the film layer of second electrode by a patterning process so as to form the plurality of second electrodes. Of course, the embodiments of the present disclosure are not limited thereto, and the plurality of second electrodes may be formed by a transfer printing process.
Disposing the first substrate and the second substrate to be opposite to each other, and interposing a dielectric layer between the first substrate and the second substrate in such a manner that the side of the first substrate, on which the plurality of first electrodes are formed, is facing the side of the second substrate, on which the plurality of second electrodes are formed, and the dielectric layer is at least partly filled in the plurality of first recess portions. It should be explained that, it may be possible to firstly bond the first substrate with the second substrate and then interpose the dielectric layer there-between; or it may be possible to firstly dispose the dielectric layer in the first recess portions and then bond the first substrate with the second substrate, without particularly limited herein.
In the manufacturing method of antenna structure provided by the present embodiment, the first substrate includes a plurality of first recess portions formed into accommodation spaces in which the dielectric layer is disposed. In this way, side walls of the first recess portions may serve to restrict the dielectric layer in the accommodation spaces to a certain degree, so as to prevent the dielectric layer from flowing. In this way, the antenna structure can limit a flowing movement of the dielectric layer by the plurality of first recess portions disposed on the first substrate, so as to prevent the dielectric layer from flowing and leading to uneven thickness thereof when the antenna structure is curved or bent, thereby avoiding various defects of the antenna structure due to uneven thickness of the dielectric layer.
For example, in the antenna structure provided by an example of the present embodiment, the dielectric layer may include crystal liquids (LCs). In this way, an orientation of LC molecules in the dielectric layer located between the first substrate and the second substrate may be changed by changing an electric field applied between the first electrodes and the second electrodes, so as to adjust a resonant frequency of the antenna structure, thereby increasing a frequency band of the electromagnetic wave which is receivable or transmittable by the antenna structure.
For example, in the antenna structure provided by an example of the present embodiment, each of the first substrate and the second substrate may be a flexible substrate. In this way, the antenna structure may be applied in a flexible electronic device, for example, a wearable intelligent product having powerful functions such as physical index monitoring, GPS, and 4G or 5G mobile network.
For example, the first substrate and the second substrate may adopt a polymeric substrate or a metallic substrate with excellent ductility.
Further another embodiment of the present disclosure provides a communication device, which includes the antenna structure described in any of the embodiments illustrated in
For example, the communication device may be a flexible wearable device. The communication device adopts the antenna structure of any of the embodiments illustrated in
The following statements should be noted:
(1) The accompanying drawings involve only the structure(s) in connection with the embodiment(s) of the present disclosure, and other structure(s) can be referred to common design(s).
(2) For the purpose of clarity only, in accompanying drawings for illustrating the embodiment(s) of the present disclosure, the thickness and size of a layer or a structure may be enlarged. However, it should understood that, in the case in which a component or element such as a layer, film, area, substrate or the like is referred to be “on” or “under” another component or element, it may be directly on or under the another component or element or a component or element is interposed therebetween.
(3) In case of no conflict, features in one embodiment or in different embodiments can be combined.
The foregoing are merely specific embodiments of the invention, but not limitative to the protection scope of the invention. Within the technical scope disclosed by the present disclosure, any alternations or replacements which can be readily envisaged by one skilled in the art shall be within the protection scope of the present disclosure. Therefore, the protection scope of the invention shall be defined by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
201710221891.7 | Apr 2017 | CN | national |