The subject matter herein generally relates to antenna structures, and particular to an multiband antenna structure and a wireless communication device employing same.
With improvements in the integration of wireless communication systems, antennas have become increasingly important. For a wireless communication device to utilize various frequency bandwidths, antennas having wider bandwidth have become a significant technology.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “comprising” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The antenna structure 20 includes a monopole antenna 21 and a short parasitic antenna 22. The monopole antenna 21 includes a first radiating body 211, a second radiating body 212, and a feeding portion 213 electronically coupled to the first radiating body 211 and the second radiating body 212. The first radiating body 211 is configured to excite a low-frequency resonating mode. The second radiating body 212 is configured to excite a first high-frequency resonating mode. The short parasitic antenna 22 includes a parasitic body 221 spaced from the second radiating body 212, and a grounding portion 222 coupled to the parasitic body 221. The short parasitic antenna 22 is configured to excite a second high-frequency resonating mode, and resonate with the second radiating body 212 to excite a third high-frequency resonating mode.
A first current path defined by the first radiating body 211 is longer than a second current path defined by the second radiating body 212. The parasitic body 221 partially surrounds the second radiating body 212.
The impedance matching circuit 23 further includes an inductor L1. The variable capacitor C is electronically coupled between the feeding portion 213 and the feeding point 14. The inductor L1 is electronically coupled between ground and a node between the variable capacitor C and the feeding point 14. In one embodiment, an inductance value of the inductor L1 is about 15 nH.
The variable capacitor C can be a digital tuned capacitor that is an integrated circuit capacitor, such as a variable capacitor based on micro-electro-mechanical systems (MEMS) technology. In another embodiment, the variable capacitor 70 is a capacitance-variable diode of which the capacitance value can be changed by changing an applied voltage. In another embodiment, the variable capacitor C can include a plurality of parallel capacitors with different capacitance values and a switch configured to selectively couple one of the capacitors between the feeding portion 213 and the feeding point 14. A range of the capacitor C can be set from about 1.5 pF to about 8 pF.
An inductor L2 is also included that is electronically coupled between the first radiation body 211 and the feeding portion 213. In other words, the second radiation body 212 is electronically coupled to a node between the feeding portion 213 and the inductor L2. By this arrangement, the inductor L2 can isolate the first radiating body 211 from the second radiating body 212, such that the high-frequency resonating modes resonated by the second radiating body 212 can be prevent from the interference of the first radiating body 211. In addition, the inductor L2 can optimize the impedance matching of the antenna structure 20. In one embodiment, an inductance of the inductor L2 is about 7 nH.
As illustrated in
The first radiating body 211 includes a first arm 2111, a second arm 2112, a third arm 2113, and a fourth arm 2114. The first arm 2111 is substantially perpendicular to the second arm 2112. The third am 2113 extends from one side of the first arm 2111 away from the second arm 2112, and is narrower than the first arm 2111. An end of the third arm 2113 away from the first arm 2111 is electronically coupled to the feeding portion 213 via the inductor L2 (shown in
The second radiating body 212 includes a first strip 2121 and a second strip 2122 coupled to the first strip 2121. The first strip 2121 is substantially perpendicularly coupled to the feeding portion 212 as shown in
The parasitic body 221 includes a first section 2211 and a second section 2212 coupled to the first section 2211. The first section 2211 is a substantially rectangular strip, and is substantially perpendicularly coupled to the grounding portion 222 as shown in
In one embodiment, the grounding portion 222 is longer than the feeding portion 213, such that the first strip 2121 and the first section 2211 are positioned in two parallel planes respectively. In addition, the first section 2211 is longer than the first strip 2121, such that the second section 2212 and the second strip 2122 are positioned in two parallel planes respectively. By changing a distance 24 (shown in
Therefore, the antenna structure 20 and the wireless communication device 100 employing the antenna structure 20 can be utilized in common wireless communication systems, such as such as LTE Band 13/17 (700 MHz), GSM (850/900 MHz), GSM (1800-1900 MHz), WCDMA (2100 MHz), LTE Band 1 (2100 MHz), and LTE Band 7 (2600 MHz), with exceptional communication quality.
The embodiments shown and described above are only examples. Many details are often found in the art. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013103858768 | Aug 2013 | CN | national |