This application claims priority to Chinese Patent Application No. 201611114590.6 filed on Dec. 7, 2016, the contents of which are incorporated by reference herein.
The subject matter herein generally relates to an antenna structure and a wireless communication device using the antenna structure.
Wireless communication devices, such as mobile phones or personal digital assistants (PDAs), mainly use monopole antennas or inverted-F antennas. However, these antennas must have a corresponding keep-out-zone. Then, it is an important issue for people to design an antenna in a limited keep-out-zone, wherein the antenna has a low frequency band of about 704-960 MHz, a high frequency band of about 1710-2690 MHz, and has good radiation characteristics.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
The present disclosure is described in relation to an antenna structure and a wireless communication device using same.
The wireless communication device 200 further includes a housing 21 and a keep-out-zone 23. The housing 21 includes at least a bottom board 211 and a side frame 212. The side frame 212 is positioned around a periphery of the bottom board 211. The bottom board 211 and the side frame 212 cooperatively form a receiving space 213. The receiving space 213 can receive a print circuit board, a processing unit, or other electronic components or modules.
The keep-out-zone 23 is positioned at a side of the receiving space 213. The purpose of the keep-out-zone 23 is to delineate an area from which other electronic elements, such as a battery, a camera, a vibrator, a speaker, or a Charge Coupled Device (CCD) are excluded, to prevent the electronic element from interfering with the antenna structure 100. In this exemplary embodiment, the keep-out-zone 23 has dimensions of about 69.2*8.7 mm2.
The wireless communication device 200 further includes at least one electronic element. In this exemplary embodiment, the wireless communication device 200 includes four electronic elements. The four electronic elements include a first electronic element 24, a second electronic element 25, a third electronic element 26, and a fourth electronic element 27. The first electronic element 24 and the second electronic element 25 are spaced apart from each other and are both adjacent to the keep-out-zone 23. The third electronic element 26 is positioned between the first electronic element 24 and the second electronic element 25. The third electronic element 26 is positioned above the keep-out-zone 23. The fourth electronic element 27 is positioned at one side of the first electronic element 24 and the second electronic element 25 away from the keep-out-zone 23.
In this exemplary embodiment, the first electronic element 24 is a vibrator. The second electronic element 25 is a speaker module. The third electronic element 26 is a Universal Serial Bus (USB) interface module. The fourth electronic element 27 is a battery.
The antenna structure 100 can be made of a metallic sheet or flexible printed circuit (FPC). The antenna structure 100 is positioned above the keep-out-zone 23. The antenna structure 100 includes a feed portion 10, a first ground portion 11, a second ground portion 12, a first radiating portion 13, a second radiating portion 14, a third radiating portion 15, a fourth radiating portion 16, and an extension portion 17.
The feed portion 10, the first ground portion 11, and the second ground portion 12 are all spaced apart from each other. The first radiating portion 13, the third radiating portion 15, and the fourth radiating portion 16 are all electrically connected to the feed portion 10. The second radiating portion 14 is spaced apart from the first radiating portion 13, the third radiating portion 15, the fourth radiating portion 16, and the extension portion 17. The second radiating portion 14 is electrically connected to the first ground portion 11. One end of the extension portion 17 is electrically connected to the first radiating portion 13. Another end of the extension portion 17 is electrically connected to the second ground portion 12.
As illustrated in
The first ground portion 11 is substantially rectangular. The first ground portion 11 is positioned at a plane perpendicular to a plane on which the bottom board 211 is positioned. The first ground portion 11 is spaced apart from the feed portion 10. The first ground portion 11 is electrically connected to a ground point 29 (shown in
The second ground portion 12 is substantially rectangular. The second ground portion 12 is positioned at a plane perpendicular to a plane on which the bottom board 211 is positioned. The second ground portion 12 is positioned at a side of the feed portion 10 away from the first ground portion 11 and is positioned adjacent to the first electronic element 24. The second ground portion 12 is electrically connected to the ground point 29 to ground the antenna structure 100.
The first radiating portion 13 includes a first radiating section 131, a second radiating section 133, a third radiating section 135, and a fourth radiating section 137. The first radiating section 131 is substantially rectangular. The first radiating section 131 is positioned at a plane parallel to a plane on which the bottom board 211 is positioned. The first radiating section 131 is electrically connected to one end of the feed portion 10 away from the bottom board 211 and extends along a direction away from the first electronic element 24.
The second radiating section 133 is substantially rectangular. The second radiating section 133 is coplanar with the first radiating section 131. One end of the second radiating section 133 is perpendicularly connected to one end of the first radiating section 131 away from the feed portion 10 and extends along a direction away from the first electronic element 24 and the second radiating portion 14. The extension continues until the second radiating section 133 passes over the third electronic element 26 and extends along a direction away from the first electronic element 24 and towards the second electronic element 25. The extension continues until a distal end of the second radiating section 133 is substantially collinear with one side of the second electronic element 25 adjacent to the first electronic element 24.
One end of the third radiating section 135 forms a curved connection with one end of the second radiating section 133 away from the first radiating section 131. Another end of the third radiating section 135 extends along a direction parallel to the feed portion 10 and towards the bottom board 211, then extends along a direction parallel to the second radiating section 133 and away from the first radiating section 131 and the second radiating section 133. The extension continues until the third radiating section 135 passes over the second electronic element 25.
The fourth radiating section 137 is substantially rectangular. The fourth radiating section 137 is positioned at a plane perpendicular to a plane on which the second radiating section 133 is positioned. One end of the fourth radiating section 137 forms a curved connection with one end of the third radiating section 135 away from the second radiating section 133. Another end of the fourth radiating section 137 extends along a direction towards the bottom board 211.
The second radiating portion 14 includes a first coupling arm 141, a second coupling arm 143, a third coupling arm 145, a fourth coupling arm 147, and a fifth coupling arm 149, connected in that order. The first coupling arm 141 is substantially rectangular. The first coupling arm 141 is coplanar with the first radiating section 131. The first coupling arm 141 is perpendicularly connected to one end of the first ground portion 11 away from the bottom board 211 and extends along a direction parallel to the first radiating section 131 and away from the first electronic element 24.
One end of the second coupling arm 143 forms a curved connection with one end of the first coupling arm 141 away from the first ground portion 11. Another end of the second coupling arm 143 extends along a direction parallel to the third radiating section 135 and towards the bottom board 211.
The third coupling arm 145, the fourth coupling arm 147, the fifth coupling arm 149, and the fourth radiating section 137 are coplanar with each other. The third coupling arm 145 is substantially rectangular. One end of the third coupling arm 145 forms a curved connection with one end of the second coupling arm 143 away from the first coupling arm 141 and extends along a direction parallel to the fourth radiating section 137 and towards the bottom board 211.
The fourth coupling arm 147 is substantially rectangular. The fourth coupling arm 147 is perpendicularly connected to one end of the third coupling arm 145 away from the second coupling arm 143. The fifth coupling arm 149 is substantially rectangular. The fifth coupling arm 149 is perpendicularly connected to one end of the fourth coupling arm 147 away from the third coupling arm 145 and extends along a direction parallel to the third coupling arm 145 and towards the second radiating section 133. The third coupling arm 145, the fourth coupling arm 147, and the fifth coupling arm 149 cooperatively form a U-shaped structure.
The third radiating portion 15 includes a first radiating arm 151 and a second radiating arm 153. One end of the first radiating arm 151 forms a curved connection with a junction of the first radiating section 131 and the second radiating section 133. Another end of the first radiating arm 151 extends along a direction parallel to the second coupling arm 143 and towards the bottom board 211.
The second radiating arm 153 is substantially rectangular. The second radiating arm 153 is positioned at a plane parallel to a plane on which the second radiating section 133 is positioned. One end of the second radiating arm 153 is perpendicularly connected to one end of the first radiating arm 151 away from the first radiating section 131. Another end of the second radiating arm 153 extends along a direction parallel to the second radiating section 133 and towards the second electronic element 25. In this exemplary embodiment, the second radiating arm 153 is shorter than the second radiating section 133. A U-shaped structure formed by the third coupling arm 145, the fourth coupling arm 147, and the fifth coupling arm 149 surrounds the third radiating portion 15.
The fourth radiating portion 16 is substantially rectangular. The fourth radiating portion 16 is coplanar with the first radiating section 131. One end of the fourth radiating portion 16 is perpendicularly connected to one side of the first radiating section 131 adjacent to the second radiating section 133 and away from the first coupling arm 141. Another end of the fourth radiating portion 16 extends along a direction parallel to the second radiating section 133 and towards the second electronic element 25. In this exemplary embodiment, the fourth radiating portion 16 and the second radiating section 133 are both positioned at a same side of the first radiating section 131 away from the first coupling arm 141. The fourth radiating portion 16 is shorter than the second radiating section 133. A length of the fourth radiating portion 16 is substantially equal to a length of the second radiating arm 153.
The extension portion 17 is substantially L-shaped. The extension portion 17 includes a first extension section 171 and a second extension section 173. The first extension section 171 is substantially rectangular. The first extension section 171 is coplanar with the first radiating section 131. The first extension section 171 is perpendicularly connected to a middle portion of one side of the second radiating section 133 and extends along a direction parallel to the first radiating section 131 and towards the first electronic element 24.
The second extension section 173 is substantially rectangular. The second extension section 173 is coplanar with the first extension section 171. One end of the second extension section 173 is perpendicularly connected to one end of the first extension section 171 away from the second radiating section 133. Another end of the second extension section 173 extends along a direction parallel to the second radiating section 133 and towards the first radiating section 131. The extension continues until the second extension section 173 is perpendicularly connected to one end of the second ground portion 12 away from the bottom board 211.
In this exemplary embodiment, the first extension section 171 is longer than the first radiating section 131. The fourth radiating portion 16 is positioned between the second radiating section 133 and the second extension section 173. That is, the second radiating section 133 and the extension portion 17 cooperatively surround the fourth radiating portion 16.
As illustrated in
In this exemplary embodiment, the first matching element 181 is a capacitor having a capacitance value of about 2.5 pF. The second matching element 183 is an inductor having an inductance value of about 8 nH. In other exemplary embodiments, the first matching element 181 can be an inductor or a combination of inductor and capacitor. The second matching element 183 can be a capacitor or the combination.
As illustrated in
The switching circuit 19 includes a switching unit 191 and a plurality of first switching elements 193. In this exemplary embodiment, the switching circuit 19 includes three first switching elements 193. The three first switching elements 193 are all inductors and have respective inductance values of about 6.2 nH, 12 nH, and 16 nH. The switching unit 191 is electrically connected to the second ground portion 12. The first switching elements 193 are connected in parallel. One end of each first switching element 193 is electrically connected to the switching unit 191. The other end of each first switching element 193 is electrically connected to the ground point 29 to be grounded.
Through controlling the switching unit 191, the second ground portion 12 can be switched to connect with different first switching elements 193. Since each first switching element 193 has a different inductance value, a low frequency band of the antenna structure 100 is adjustable through switching the switching unit 191.
For example, when the switching unit 191 switches to connect with a first switching element 193 having an inductance value of about 6.2 nH, the antenna structure 100 can work at frequency bands of LTE-A Band 5 (869-894 MHz) and LTE-A Band 8 (925-926 MHz). When the switching unit 191 switches to connect with a first switching element 193 having an inductance value of about 12 nH, the antenna structure 100 can work at a frequency band of LTE-A Band 20 (791-826 MHz). When the switching unit 191 switches to connect with a first switching element 193 having an inductance value of about 16 nH, the antenna structure 100 can work at a frequency band of LTE-A Band 17 (704-746 MHz).
In other exemplary embodiments, the first switching elements 193 are not limited to being inductors, and can be capacitors or a combination of inductor and capacitor. The number of the first switching elements 193 is also adjustable.
When the feed portion 10 supplies current, the current flows to the first radiating portion 13, the third radiating portion 15, the fourth radiating portion 16, and the extension portion 17, and is grounded through the second ground portion 12. The current from the first radiating section 131 is further coupled to the second radiating portion 14 and is grounded through the first ground portion 11. Then the first radiating portion 13 activates a low frequency operation mode. The second radiating portion 14 activates a first mode of a middle and high frequency band. A frequency-doubling of the first radiating portion 13 activates a second mode of the middle and high frequency band. The fourth radiating portion 16 activates a third mode of the middle and high frequency band. The third radiating portion 15 adjusts the first mode and the third mode of the middle and high frequency band. The antenna structure 100 includes the switching circuit 19 to adjust the low frequency mode of the antenna structure 100.
As described above, a low frequency operation mode of the antenna structure 100 is adjustable through the switching circuit 19. When the low frequency band of the antenna structure 100 is adjusted, a middle and high frequency band of the antenna structure 100 still maintains a wideband frequency and satisfies a design of Carrier Aggregation (CA) technology of LTE-Advanced. Additionally, the switching circuit 19 is positioned at the second ground portion 12 to effectively reduce losses in the feed portion 12.
Referring to curves S51-S53, when the switching circuit 19 switches to different first switching elements 193, the antenna structure 100 can work at different low frequency bands. For example, a frequency band of LTE-A Band 5 (869-894 MHz), a frequency band of LTE-A Band 8 (925-926 MHz), a frequency band of LTE-A Band 20 (791-862 MHz), and a frequency band of LTE-A Band 17 (704-746 MHz). Additionally, the antenna structure 100 can by design work at a high frequency band, for example, GSM1800/1900, UMTS 2100, and LTE-A Band 7.
The second mode of the middle and high frequency bands of the antenna structure 100 is activated by a frequency-doubling of the first radiating portion 13. When the antenna structure 100 adjusts to the low frequency operation mode through the switching circuit 19, the second mode of the middle and high frequency band of the antenna structure 100 is also adjustable. That is, when the antenna structure 100 adjusts to the low frequency operation mode through the switching circuit 19, the switching circuit 19 only affects the second mode of the middle and high frequency bands to maintain wideband characteristics of these middle and high frequency bands.
In detail, the first radiating portion 33 includes a first radiating section 331, a second radiating section 333, a third radiating section 335, and a fourth radiating section 337. The first radiating section 331 is substantially rectangular. The first radiating section 331 is positioned at a plane parallel to a plane on which the bottom board 211 is positioned. The first radiating section 331 is electrically connected to one end of the feed portion 10 away from the bottom board 211 and extends along a direction away from the first electronic element 24.
The second radiating section 333 is substantially rectangular. The second radiating section 333 is coplanar with the first radiating section 331. One end of the second radiating section 333 is perpendicularly connected to one end of the first radiating section 331 away from the feed portion 10 and extends along a direction away from the first electronic element 24 and the second radiating portion 34. The extension continues until the second radiating section 333 passes over the third electronic element 26 and extends along a direction away from the first electronic element 24 and towards the second electronic element 25. The extension continues until a distal end of the second radiating section 333 is substantially collinear with one side of the second electronic element 25 adjacent to the first electronic element 24.
The third radiating section 335 is coplanar with the first radiating section 331 and the second radiating section 333. One end of the third radiating section 335 is perpendicularly connected to one end of the second radiating section 333 away from the first radiating section 331. Another end of the third radiating section 335 extends along a direction parallel to and away from the first radiating section 331, then extends along a direction parallel to the second radiating section 333 and away from the first radiating section 331. The extension continues until the third radiating section 335 passes over the second electronic element 25.
The fourth radiating section 337 is substantially rectangular. The fourth radiating section 337 is positioned at a plane perpendicular to a plane on which the second radiating section 333 is positioned. One end of the fourth radiating section 337 is perpendicularly connected to one end of the third radiating section 335 away from the second radiating section 333. Another end of the fourth radiating section 337 extends along a direction towards the bottom board 211.
The second radiating portion 34 includes a first coupling arm 341, a second coupling arm 343, a third coupling arm 345, and a fourth coupling arm 347 connected in that order. The first coupling arm 341 is substantially rectangular. The first coupling arm 341 is coplanar with the first radiating section 331. The first coupling arm 341 is perpendicularly connected to one end of the first ground portion 11 away from the bottom board 211 and extends along a direction parallel to the first radiating section 331 and away from the first electronic element 24.
The second coupling arm 343 is coplanar with the fourth radiating section 337. One end of the second coupling arm 143 is perpendicularly connected to one end of the first coupling arm 341 away from the first ground portion 11. Another end of the second coupling arm 343 extends along a direction towards the bottom board 211.
The third coupling arm 345 is substantially rectangular. One end of the third coupling arm 345 is perpendicularly connected to one end of the second coupling arm 343 away from the first coupling arm 341 and extends along a direction towards the fourth radiating section 137.
The fourth coupling arm 347 is substantially rectangular. One end of the fourth coupling arm 347 is perpendicularly connected to one end of the third coupling arm 345 away from the second coupling arm 343. Another end of the fourth coupling arm 347 extends along a direction parallel to the second coupling arm 343 and towards the second radiating section 333. Then, the second coupling arm 343, the third coupling arm 345, and the fourth coupling arm 347 cooperatively form a U-shaped structure.
The third radiating portion 35 includes a first radiating arm 351 and a second radiating arm 353. The first radiating arm 351 is coplanar with the first radiating section 331. One end of the first radiating arm 351 is perpendicularly connected to a junction of the first radiating section 331 and the second radiating section 333. Another end of the first radiating arm 351 extends along a direction parallel to the first coupling arm 341 and away from the first radiating section 331.
The second radiating arm 353 is substantially rectangular. The second radiating arm 353 is positioned at a plane parallel to a plane on which the fourth radiating section 337 is positioned. One end of the second radiating arm 353 is perpendicularly connected to one end of the first radiating arm 351 away from the first radiating section 331. Another end of the second radiating arm 353 extends along a direction parallel to the third coupling arm 345 and towards the second electronic element 25.
As illustrated in
One end of the first matching element 381 is electrically connected to the feed source 28 and one end of the switcher S2. Another end of the first matching element 381 is grounded. The two second switching elements 383 are connected in parallel. One end of each second switching element 383 is electrically connected to another end of the switcher SW. The other end of each second switching element 383 is electrically connected to the feed portion 10.
Through controlling the switcher SW, the feed portion 10 can be switched to connect with different second switching elements 383. Since each second switching element 383 has a different capacitance value, a low frequency band of the antenna structure 300 is adjustable through switching the switcher SW.
For example, when the switcher SW switches to connect with a second switching element 383 having a capacitance value of about 4 pF, the antenna structure 300 can work at a frequency band of about 900 MHz. When the switcher SW switches to connect with a second switching element 383 having a capacitance value of about 14 pF, the antenna structure 300 can work at a frequency band of about 700 MHz. In other exemplary embodiments, the second switching elements 383 are not limited to being capacitors, and can be inductors or a combination of inductor and capacitor. The number of the second switching elements 383 is also adjustable.
In this exemplary embodiment, the base 401 is used to support the antenna structure 400. The base 401 includes a first surface 402, a second surface 403, a third surface 404, a fourth surface 405, a fifth surface 406, and a sixth surface 407. The first surface 402 is spaced apart from and parallel to the second surface 403. The third surface 404 forms a curved connection with one side of the first surface 402. One end of the fourth surface 405 forms a curved connection with the third surface 404. Another end of the fourth surface 405 is perpendicularly connected to the second surface 403. The fifth surface 406 is spaced apart from the third surface 404 and forms a curved connection with another side of the first surface 402 away from the third surface 404. The sixth surface 407 is spaced apart from and parallel to the first surface 402 and the second surface 403. The sixth surface 407 is positioned between the first surface 402 and the second surface 403. The sixth surface 407 further forms a curved connection with one side of the fifth surface 406 away from the first surface 402.
The feed portion 40 is substantially a strip. The feed portion 40 is positioned at the fifth surface 406 and extends to the sixth surface 407. The first ground portion 41 is spaced apart from the feed portion 40 and grounds the antenna structure 400.
The second ground portion 42 is substantially rectangular. The second ground portion 42 is positioned at the fifth surface 406 and extends to the sixth surface 407. The second ground portion 42 is positioned at one side of the feed portion 40 away from the first ground portion 41 and grounds the antenna structure 400.
The first radiating portion 43 is positioned at the first surface 402, the third surface 404, and the fourth surface 405. The first radiating portion 43 includes a first radiating section 431, a second radiating section 432, a third radiating section 433, a fourth radiating section 434, a fifth radiating section 435, a sixth radiating section 436, and a seventh radiating section 437.
The first radiating section 431 is substantially rectangular and is positioned at the first surface 402. The first radiating section 431 is electrically connected to one end of the feed portion 40 adjacent to the fifth surface 406 and extends along a direction towards the third surface 404. The second radiating section 432 is substantially rectangular and is coplanar with the first radiating section 431. One end of the second radiating section 432 is perpendicularly connected to one end of the first radiating section 431 away from the feed portion 40 and extends along a direction away from the first ground portion 41.
The third radiating section 433 is positioned at the third surface 404. One end of the third radiating section 433 forms a curved connection with one end of the second radiating section 432 away from the first radiating section 431. Another end of the third radiating section 433 extends towards the fourth surface 405. The fourth radiating section 434 is substantially rectangular and is positioned at the fourth surface 405. One end of the fourth radiating section 434 forms a curved connection with one end of the third radiating section 433 away from the second radiating section 432. Another end of the fourth radiating section 434 extends towards the second surface 403.
The fifth radiating section 435 is substantially rectangular and is positioned at the third surface 404. One end of the fifth radiating section 435 forms a curved connection with one side of the second radiating section 432 adjacent to the third radiating section 433 and opposite to the first radiating section 431. Another end of the fifth radiating section 435 extends towards the fourth surface 405.
The sixth radiating section 436 is substantially rectangular. The sixth radiating section 436 is coplanar with the fifth radiating section 435 and forms an L-shaped structure with the fifth radiating section 435. One end of the sixth radiating section 436 is perpendicularly connected to one side of the fifth radiating section 435 away from the second radiating section 432. Another end of the sixth radiating section 436 extends towards the fourth surface 405. In this exemplary embodiment, a width of the fifth radiating section 435 is larger than a width of the sixth radiating section 436.
The seventh radiating section 437 is substantially rectangular and is positioned at the fourth surface 405. One end of the seventh radiating section 437 forms a curved connection with one end of the sixth radiating section 436 away from the fifth radiating section 435. Another end of the seventh radiating section 437 extends towards the second surface 403.
The second radiating portion 44 includes a first coupling arm 441, a second coupling arm 443, a third coupling arm 445, and a fourth coupling arm 447. The first coupling arm 441 is substantially rectangular and is coplanar with the first radiating section 431. The first coupling arm 441 is electrically connected to one end of the first ground portion 11 and extends along a direction away from the first radiating section 431.
The second coupling arm 443 is positioned at the third surface 404. One end of the second coupling arm 443 forms a curved connection with one end of the first coupling arm 441 away from the first ground portion 41. Another end of the second coupling arm 443 extends towards the fourth surface 405. The third coupling arm 445 is substantially rectangular and is positioned at the fourth surface 405. One end of the third coupling arm 445 is perpendicularly connected to one end of the second coupling arm 443 away from the first coupling arm 441 and extends towards the seventh radiating section 437.
The fourth coupling arm 447 is substantially rectangular and is positioned at the fourth surface 405. The fourth coupling arm 447 is perpendicularly connected to one end of the third coupling arm 445 away from the second coupling arm 443 and extends along a direction parallel to the seventh radiating section 437 and towards the third surface 404.
The third radiating portion 45 includes a first radiating arm 451, a second radiating arm 452, a third radiating arm 453, a fourth radiating arm 454, a fifth radiating arm 455, a sixth radiating arm 456, a seventh radiating arm 457, and an eighth radiating arm 458. The first radiating arm 451 is substantially rectangular and is positioned at the third surface 404. One end of the first radiating arm 451 forms a curved connection with a junction of the first radiating section 431 and the second radiating section 432. Another end of the first radiating arm 451 extends along a direction parallel to the fifth radiating section 434 and towards the fourth surface 405.
The second radiating arm 452 is substantially rectangular and is positioned at the fourth surface 405. One end of the second radiating arm 452 forms a curved connection with one end of the first radiating arm 451 away from the second radiating section 432. Another end of the second radiating arm 452 extends along a direction parallel to the seventh radiating section 437 and towards the second surface 403. The third radiating arm 453 is substantially rectangular. One end of the third radiating arm 453 is perpendicularly connected to one end of the second radiating arm 452 away from the first radiating arm 451 and extends towards the seventh radiating section 437.
The fourth radiating arm 454 is substantially rectangular. One end of the fourth radiating arm 454 is perpendicularly connected to one end of the third radiating arm 453 away from the second radiating arm 452 and extends along a direction parallel to the second radiating arm 452 and towards the third surface 404. In this exemplary embodiment, the second radiating arm 452, the third radiating arm 453, and the fourth radiating arm 454 are coplanar with each other and form a U-shaped structure.
The fifth radiating arm 455 is substantially rectangular and is positioned at the third surface 404. One end of the fifth radiating arm 455 forms a curved connection with one end of the fourth radiating arm 454 away from the third radiating arm 453. Another end of the fifth radiating arm 455 extends along a direction parallel to the first radiating arm 451 and towards the first surface 402. The sixth radiating arm 456 is substantially rectangular and is coplanar with the fifth radiating arm 455. One end of the sixth radiating arm 456 is perpendicularly connected to one side of the fifth radiating arm 455 away from the first radiating arm 451. Another end of the sixth radiating arm 456 extends along a direction away from the first radiating arm 451.
The seventh radiating arm 457 is substantially rectangular and is coplanar with the sixth radiating arm 456. One end of the seventh radiating arm 457 is perpendicularly connected to one side of the fifth radiating arm 455 away from the sixth radiating arm 456. Another end of the seventh radiating arm 457 extends towards the first radiating arm 451. In this exemplary embodiment, a width of the sixth radiating arm 456 is larger than a width of the seventh radiating arm 457. The sixth radiating arm 456 is shorter than the seventh radiating arm 457. The eighth radiating arm 458 is substantially rectangular and is positioned at the second surface 403. The eighth radiating arm 458 is perpendicularly connected to one side of the third radiating arm 453 away from the second radiating arm 452 and the fourth radiating arm 454.
The extension portion 47 is positioned at the first surface 402. The extension portion 47 includes a first extension section 471, a second extension section 473, a third extension section 475, a fourth extension section 477, and a fifth extension section 479, connected in that order.
The first extension section 471 is substantially rectangular. The first extension section 471 is perpendicularly connected to one side of the second radiating section 432 adjacent to the first radiating section 431 and extends along a direction parallel to the first radiating section 431 towards the fifth surface 406.
The second extension section 473 is substantially rectangular. One end of the second extension section 473 is perpendicularly connected to one end of the first extension section 471 away from the second radiating section 432. Another end of the second extension section 473 extends along a direction parallel to the second radiating section 432 and towards the first radiating section 431. The third extension section 475 is substantially rectangular. One end of the third extension section 475 is perpendicularly connected to one end of the second extension section 473 away from the first extension section 471. Another end of the third extension section 475 extends along a direction parallel to the first extension section 471 and towards the second radiating section 432.
The fourth extension section 477 is substantially rectangular. The fourth extension section 477 is perpendicularly connected to one end of the third extension section 475 away from the second extension section 473 and extends along a direction parallel to the second extension section 473 and towards the first radiating section 431. The fifth extension section 479 is substantially rectangular. The fifth extension section 479 is perpendicularly connected to one end of the fourth extension section 477 away from the third extension section 475 and extends along a direction parallel to the first radiating section 431 and away from the second radiating section 432 until a point where the fifth extension section 479 is connected to the second ground portion 42.
In this exemplary embodiment, the first extension section 471 is longer than the first radiating section 431. The third extension section 475 is shorter than the first extension section 471. The fourth extension section 477 is shorter than the second extension section 473. The fifth extension section 479 is shorter than the third extension section 475.
In other exemplary embodiments, the antenna structure 400 can include a switching circuit 19 (as in
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of the antenna structure and the wireless communication device. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the details, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 1114590 | Dec 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20070200771 | Schack et al. | Aug 2007 | A1 |
20100134358 | Su et al. | Jun 2010 | A1 |
20140118195 | Chen et al. | May 2014 | A1 |
20140354506 | Lai et al. | Dec 2014 | A1 |
20140375522 | Lin | Dec 2014 | A1 |
20160156101 | Tsai et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
20100258544 | Nov 2010 | JP |
20120227579 | Nov 2012 | JP |
20140087050 | May 2014 | JP |
20140236517 | Dec 2014 | JP |
200905987 | Feb 2009 | TW |
201244252 | Nov 2012 | TW |
Number | Date | Country | |
---|---|---|---|
20180159221 A1 | Jun 2018 | US |