The subject matter herein generally relates to wireless communications, to an antenna structure, and a wireless communication device using the antenna structure.
Multiple antennas improve transmission efficiencies and reliabilities of wireless communications. For example, a multiple input multiple output (MIMO) system transmits signals of different frequency bands through multiple antennas in its transmitter architecture, and receives signals of different frequency bands through multiple antennas of its receiver. However, signals transmitted or received by the multiple antennas can interfere with each other, and the multiple antennas may also occupy a large space.
Therefore, there is room for improvement within the art.
Implementations of the present disclosure will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better show details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected. The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
The present disclosure is described in relation to an antenna structure and wireless communication device using same.
The antenna structure 100 includes a substrate 10, a plurality of radiation units 20, and a reflection portion 30. The antenna structure 100 can be glued to a shell of the wireless communication device 200. The plurality of radiation units 20 is arranged on a surface of the substrate 10. The reflection portion 30 is spaced apart from the substrate 10.
The substrate 10 is a sheet of material. The substrate 10 includes a first surface 101 and a second surface 102. The substrate 10 may be a metal substrate, a ceramic substrate, or an organic substrate. In one embodiment, the substrate 10 is a sheet roughly square in shape. A material of the substrate 10 is a glass fiber (FR-4) board.
As illustrated in
In this embodiment, the four radiation units 20 includes a first radiation unit 21, a second radiation unit 22, a third radiation unit 23, and a fourth radiation unit 24. Then, the antenna structure 100 forms a MIMO antenna. The first radiation unit 21 is positioned at an upper right corner of the substrate 10. The second radiation unit 22 is positioned at a lower right corner of the substrate 10. The third radiation unit 23 is positioned at a lower left corner of the substrate 10. The fourth radiation unit 23 is positioned at an upper left corner of the substrate 10. The first radiation unit 21 and the third radiation unit 23 are mutually symmetrical about the center point of the substrate 10 in a first diagonal direction of the substrate 10. The second radiation unit 22 and the fourth radiation unit 24 are mutually symmetrical about the center point of the dielectric substrate 10 in a second diagonal direction of the substrate 10.
In this embodiment, structure of the first radiation unit 21, the second radiation unit 22, the third radiation unit 23, and the fourth radiation unit 24 is the same. In this embodiment, taking the first radiation unit 21 as an example, the structure of each radiation unit 20 will be described below.
As illustrated in
The first radiator 211 includes a first radiation portion 213, a feed portion 214, and a plurality of first isolation portions 215.
In this embodiment, the first radiation unit 213 includes four resonance arms 216. Each of the resonant arms 216 includes a first resonance section 217 and a second resonance section 218. One end of the second resonance section 218 is vertically connected to one end of the first resonance section 217. In this way, the resonance arm 216 is approximately the shape of an inverted L. Other ends of each second resonance section 218 away from the first resonance section 217 are connected with each other. Each of the second resonance sections 218 is perpendicular to the other two adjacent second resonance sections 218. Further, two second resonance sections 218 of the first radiation unit 213 are positioned in a diagonal direction of the substrate 10. Thus, the four second resonance sections 218 are connected with each other and appear approximately in a form of an X. One end of each of the first resonance sections 217 away from the end of the second resonance section 218 faces the same side in a counterclockwise direction or a clockwise direction. Thus, any one of the four resonance arms 216 can be rotated 90 degrees, either all in the counterclockwise direction or all in the clockwise direction, to obtain the adjacent resonance arm 216, that is, the first radiation portion 213 is roughly in the form of a left-facing sauwastika (“”).
In one embodiment, a length H1 of the first resonance section 217 is less than a length H2 of the second resonance section 218. A width L1 of the first resonance section 217 is greater than a width L2 of the second resonance section 218. For example, in one embodiment, the length of the first resonance section 217 is about 7.5 mm. The width of the first resonance section 217 is about 3 mm. The length of the second resonance section 218 is about 10 mm. The width of the second resonance section 218 is 1.5 mm.
The feed point 214 is electrically connected to the first radiation unit 213 for feeding current and signals to the first radiation unit 213. In detail, the feed point 214 is positioned at a center of the first radiation portion 213, that is, a junction of the four second resonance sections 218. The feed point 214 can be electrically connected to a feed source through a feed line (not shown) to feed current and signals to the first radiation unit 21.
In this embodiment, the first radiator 211 includes four first isolation units 215. The first isolation units 215 are spaced apart from the first radiation unit 213. The first isolation units 215 are positioned around a periphery of the first radiation unit 213 to improve the isolation of the antenna structure 100. Each of the four first isolation units 215 is approximately elliptical in shape. A length H3 of the first isolation portion 215 is approximately equal to the length H1 of the first resonance section 217. The four first isolation portions 215 are positioned at the side of the first resonance section 217 away from the second resonance section 218, and are parallel to the first resonance section 217.
As illustrated in
In one embodiment, the first radiator 211 can be obtained by laying metal materials on the first surface 101 of the substrate 10. The second radiator 212 can be obtained by laying metal materials on the second surface 102 of the dielectric substrate 10. For example, the first surface 101 and the second surface 102 of the substrate 10 can both be coated with copper to obtain the first radiator 211 and the second radiator 212.
In this embodiment, the substrate 10 can define a via (not shown) corresponding to the feed point 214 and the ground portion 27. The feed point 214 can be electrically connected with the ground portion 27 through the via.
As described above, structures of the second radiation unit 22, the third radiation unit 23, and the fourth radiation unit 24 are the same or similar to that of the first radiation unit 21. For example, they can be obtained by movement, rotation, or symmetrical mapping of the first radiation unit 21. That is to say, the second radiation unit 22, the third radiation unit 23, and the fourth radiation unit 24 also include the first and second radiators as previously described.
In this embodiment, the reflection unit 30 is spaced in parallel with the substrate 10. In one embodiment, the reflection unit 30 is made of metal material and is substantially rectangular. The reflection unit 30 is spaced apart from the second surface 102 of the substrate 10. In one embodiment, a distance H4 between the reflection unit 30 and the substrate 10 is greater than or equal to 11 mm.
In this embodiment, the substrate 10 and the reflection unit 30 can be connected through a connecting member (not shown). For example, in one embodiment, the substrate 10 defines a through hole 11 (see
When current is fed into the feed point 214 of each of the first radiators 211, the current flows through the first radiation portion 213, then flows through the radiation portion of the second radiator 212 through the ground portion 27, being grounded through the ground portion 27. Thereby, a working mode and radiated signal in a working frequency band are excited.
In this embodiment, the working mode includes a WIFI 5 GHz working mode, a WIFI 6 GHz working mode, a sub-6G working mode, and a 7.1-7.25 GHz working mode. The working frequency bands include 5.15-5.85 GHz, 6.1-6.8 GHz, and 7.1-7.25 GHz broadcasting frequencies.
When the antenna structure 100 works in the working frequency band, a standing wave ratio is less than 2.5 dB, and a radiation efficiency can reach 80%. That is, the antenna structure 100 has better radiation efficiency.
As illustrated in
As shown in
As illustrated in
As shown in
By setting the first radiator 211 and the second radiator 212 on the substrate 10, the antenna structure 100 effectively expands the bandwidth without increasing a volume or overall size of the antenna structure 100. The first radiator 211 and the second radiator 212 are symmetrical about the substrate 10, not only effectively extending the bandwidth of the antenna structure 100, but also giving good omnidirectionality and symmetry to the antenna structure 100. Furthermore, the first radiator 211 and the second radiator 212 both include the first isolation portion 215 and the second isolation portion 26 to improve isolation within the antenna structure 100.
Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202010998162.4 | Sep 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20070052611 | Lee | Mar 2007 | A1 |
20160141765 | Moon | May 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20220094077 A1 | Mar 2022 | US |