The subject matter herein generally relates to wireless communications.
Since a millimeter wave microstrip antenna has a short operating wavelength and a large dielectric loss, making the antenna to be a high gain antenna and also capable of radiating electromagnetic waves in multiple polarizations is problematic.
Therefore, there is room for improvement within the art.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one.”
Several definitions that apply throughout this disclosure will now be presented.
The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently connected or releasably connected.
The main body 201 includes a first side wall 11, an upper surface 12, and a lower surface 13 opposite to the upper surface 12. The first side wall 11 connects with the upper surface 12 and the lower surface 13. The first side wall 11, the upper surface 12, and the lower surface 13 can be seen as forming a receiving space (not shown). The receiving space is configured for receiving the antenna structure 100.
The antenna structure 100 includes a motherboard 10, an antenna array 30, and a lens array 40.
The motherboard 10 can be a printed circuit board (PCB). The motherboard 10 can be made of dielectric material, for example, epoxy resin glass fiber (FR4), or the like. The motherboard 10 is positioned in the main body 201 adjacent to the upper surface 12 or the lower surface 13.
The motherboard 10 includes a second side wall 21, a first surface 22, and a second surface 23 opposite to the first surface 22. The second side wall 21 can electrically connected to the first surface 22 and the second surface 23. In this embodiment, the second side wall 21 is substantially perpendicularly connected between the first surface 22 and the second surface 23.
The antenna array 30 is positioned on the first surface 22 or the second surface 23 of the motherboard 10. For example, in this embodiment, the antenna array 30 can be positioned on the first surface 22 of the motherboard 10. In other embodiments, the antenna array 30 can be positioned on the second side wall 21 of the motherboard 10. The antenna array 30 can be made of metal material, for example, the antenna array 30 can be made of a copper foil.
In this embodiment, the antenna array 30 includes N*M antenna units 31. N and M are positive integers greater than 1. The N rows of the antenna units 31 are arranged in a first direction, for example, an X-axis direction. The M rows of the antenna units 31 are arranged in a second direction, for example, a Y-axis direction. Each antenna unit 31 is positioned on an X-Y plane. The antenna array 30 is an array of half wavelength antennas. Shape and size of each of the N*M antenna units 31 are the same. Each antenna unit 31 is circular, and a diameter of each antenna unit 31 is a half wavelength.
A gap distance between each antenna unit 31 is also a half wavelength. That is, the gap distance between center point of each of the antenna units 31 is one wavelength. The one “Wavelength” is the wavelength of a radio wave transmitted or received by the antenna structure 100, such wavelengths are fixed and stable in frequency and magnitude.
In this embodiment, referring to
Referring to
One end of the second feeding portion 312 is electrically connected to the antenna unit 31. Another end of the second feeding portion 312 is electrically connected to a second feeding source (not shown) of the motherboard 10. The first feeding portion 311 and the second feeding portion 312 are both positioned on the first surface 22. The first feeding source and the second feeding source are positioned on the second surface 23. In other embodiments, the first feeding portion 311 and the second feeding portion 312 can be positioned on the first surface 22 and/or the second surface 23. The first feeding portion 311 and the second feeding portion 312 feed current and signals to each antenna unit 31.
When each first feeding portion 311 supplies current and signals, the current flows through each antenna unit 31 and activates each antenna unit 31 to radiate in a first polarization. When current and signals flow from each second feeding portion 312, the current flows to each antenna unit 31 and activates each antenna unit 31 to radiate in a second polarization. In this embodiment, the first polarization is a horizontal polarization. The second polarization is a vertical polarization. The horizontal polarization can be an X-Y plane polarization, and the vertical polarization can be a Z-direction polarization. In other embodiments, the first polarization direction and the second polarization direction can be other orientations.
In this embodiment, the lens array 40 includes N*M lens units 41. The N and M are positive integers greater than 1. The N rows of the lens units 41 are arranged in the first direction, for example, the X-axis direction. The M rows of the lens units 41 are arranged in the second direction, for example, the Y-axis direction. The lens array 40 is spaced apart from and parallel to the antenna array 30. Shape and size of each of the N*M lens units 41 are the same. Shape of each lens unit 41 is a circular, and a diameter of each lens unit 41 is one wavelength. No gap distance exists between each lens unit 41. That is, the gap distance between each center point of the lens units 41 is one wavelength.
In this embodiment, the whole lens array 40 can be made of high dielectric constant material, for example, ceramic or glass. The lens array 40 is integrally formed.
In this embodiment, each lens unit 41 is positioned above each antenna unit 31. That is, a center point of each lens unit 41 is positioned directly above the center point of each antenna unit 31. That is, each lens unit 41 is concentric to and covers an antenna unit 31. Each lens unit 41 increases a gain of an antenna unit 31 and concentrates a radiation orientation or a polarity of the antenna unit 31. Radiation of the antenna structure 100 is concentrated in a signal transmission direction.
In this embodiment, referring to
In this embodiment, referring to
In another embodiment, referring to
The antenna structure 100 includes a lens array 40 positioned above the antenna array 30, which can increase the gain of the antenna structure 100 and concentrate the radiation orientation or a polarity of the antenna structure 100.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of the antenna structure and the wireless communication device. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the details, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4990926 | Otsuka | Feb 1991 | A |
6094174 | Knop | Jul 2000 | A |
6985132 | Nomura | Jan 2006 | B2 |
8213757 | Harrysson | Jul 2012 | B2 |
9419249 | Yamaguchi | Aug 2016 | B2 |
20040108963 | Clymer et al. | Jun 2004 | A1 |
20060139215 | Heiniger | Jun 2006 | A1 |
20100260460 | Harrysson | Oct 2010 | A1 |
20110215976 | Clymer et al. | Sep 2011 | A1 |
20120019423 | Schultheiss | Jan 2012 | A1 |
20150357718 | Singh | Dec 2015 | A1 |
20170062944 | Zimmerman et al. | Mar 2017 | A1 |
20190089052 | Yong | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
1682402 | Oct 2005 | CN |
104979637 | Mar 2018 | CN |
107949955 | Apr 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20190363456 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62674634 | May 2018 | US |