Antenna structure with antenna radome and method for rising gain thereof

Information

  • Patent Application
  • 20080001843
  • Publication Number
    20080001843
  • Date Filed
    December 01, 2006
    18 years ago
  • Date Published
    January 03, 2008
    17 years ago
Abstract
An antenna structure includes a radiating element and an antenna radome. The antenna radome has at least one dielectric layer, which has an upper surface having many S-shaped metal patterns and a lower surface having many inverse S-shaped metal patterns corresponding to the S-shaped metal patterns. The S-shaped metal patterns are respectively coupled to the corresponding inverse S-shaped metal patterns to converge radiating beams outputted from the radiating element.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration showing an antenna structure according to a preferred embodiment of the invention.



FIG. 2A is a schematic illustration showing a metal pattern on a face side of a single array element of the antenna structure according to the preferred embodiment of the invention.



FIG. 2B is a schematic illustration showing a metal pattern on a backside of a single array element of the antenna structure according to the preferred embodiment of the invention.



FIG. 3A is a top view showing the antenna structure according to the preferred embodiment of the invention.



FIG. 3B is a schematic illustration showing an upper surface and a lower surface of a single layer of array element of the antenna structure according to the preferred embodiment of the invention.



FIG. 4 shows a gain frequency response curve of the antenna structure according to the preferred embodiment of the invention.



FIG. 5 shows a radiating pattern chart of the antenna structure according to the preferred embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention provides an antenna structure with an antenna radome and a method of raising a gain thereof. A dielectric layer formed with metal patterns is utilized such that the antenna radome can be placed in a near-field of a radiating field of the antenna structure. Thus, the beamwidth of the radiating beams of the antenna structure can be converged to increase the gain of the antenna structure.



FIG. 1 is a schematic illustration showing an antenna structure 100 according to a preferred embodiment of the invention. Referring to FIG. 1, the antenna structure 100 includes a radiating element 110 and an antenna radome 120. The radiating element 110 includes a radiating main body 111, a medium element 112 and an antenna feeding end 113. The radiating main body 111 is disposed on the medium element 112, and the antenna feeding end 113 feeds signals. The radiating element 110 may be any type of antenna and is not restricted to a specific type of antenna.


The antenna radome 120 is made of a metamaterial, and has at least one dielectric layer. In this embodiment, the antenna radome 120 has, without limitation to, three dielectric layers including a dielectric material layer 121, a dielectric material layer 122 and a dielectric material layer 123. The upper surfaces of the dielectric material layers 121 to 123 are formed with multiple S-shaped metal patterns 212 to 218, and the lower surfaces of the dielectric material layers 121 to 123 are formed with multiple inverse S-shaped metal patterns 222 to 228 respectively corresponding to the S-shaped metal patterns 212 to 218. The antenna radome 120 may also be regarded as being composed of multiple array elements 130. FIG. 2A is a schematic illustration showing a metal pattern on a face side of a single array element of the antenna structure according to the preferred embodiment of the invention. Referring to FIG. 2A, the array element 130 includes the dielectric material layer 121 and has an upper surface 131 formed with the S-shaped metal pattern 212. FIG. 2B is a schematic illustration showing a metal pattern on a backside of a single array element of the antenna structure according to the preferred embodiment of the invention. Referring to FIG. 2B, the array element 130 includes the dielectric material layer 121 and has a lower surface 133 having the inverse S-shaped metal pattern 222.


In the antenna radome 120, a gap between the S-shaped metal patterns 212 to 218 ranges from 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element 110. A gap between the inverse S-shaped metal patterns 222 to 228 ranges from 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element 110. The S-shaped metal patterns 212 to 218 and the inverse S-shaped metal patterns 222 to 228, which are formed on the dielectric material layer 121 by way of printing or etching, have simple structures and may be manufactured using the current printed circuit board (PCB) process. So, the manufacturing cost thereof may be reduced greatly.



FIG. 3A is a top view showing the antenna structure according to the preferred embodiment of the invention. As shown in FIG. 3A, the antenna structure 100 of this embodiment has, without limitation to, 10×10 array elements. In this embodiment, the frequency is about 6.5 GHz. In this case, the size of the radiating element 110 is about 13 mm×10 mm (about 0.2 times of the wavelength), and the antenna feeding end 113 is disposed on the radiating element 110. In addition, the size of the array element 130 is about 5.5 mm (about 0.11 times of the wavelength)×3 mm (about 0.06 times of the wavelength). So, when the antenna structure 100 has 10×10 array elements, the size of a ground 114 is about 55 mm (about 1.1 times of the wavelength)×30 mm (about 0.5 times of the wavelength). FIG. 3B is a schematic illustration showing an upper surface and a lower surface of a single layer of array element of the antenna structure according to the preferred embodiment of the invention. As shown in FIG. 3B, the single layer of array element of the antenna structure 100 has an upper surface formed with multiple S-shaped metal patterns, and a lower surface formed with multiple inverse S-shaped metal patterns.


The method of the invention for raising a gain of the antenna structure is to attach the antenna radome 120 to the radiating element 110 to converge the radiating beams emitted by the radiating element 110. The antenna radome 120 is placed at a near-field position of an electromagnetic field created by the radiating element 110. The S-shaped metal patterns 212 to 218 are respectively coupled to the corresponding inverse S-shaped metal patterns 222 to 228 to converge the radiating beams outputted from the radiating element 110, so that the beamwidth of the radiating beams is decreased, and the gain of the antenna structure 100 is increased. FIG. 4 shows a gain frequency response curve of the antenna structure according to the preferred embodiment of the invention. As shown in FIG. 4, the radiating element 110 is a microstrip antenna, the symbol 42 denotes the gain frequency response curve of the single microstrip antenna, and the symbol 44 denotes the gain frequency response curve of the antenna radome of the invention plus the microstrip antenna. As shown in FIG. 4, the single microstrip antenna has the maximum gain of 5.07 dBi at 6.4 GHz, and the antenna radome of the invention plus the microstrip antenna have the maximum gain of 8.61 dBi at 5.8 GHz. So, the gain of about 3.54 dBi is increased. FIG. 5 shows a radiating pattern chart of the antenna structure according to the preferred embodiment of the invention. The radiation pattern of FIG. 5 is measured based on the antenna structure 100 of the FIG. 1. The symbol 51 denotes the radiation property of the single microstrip antenna, and the symbol 52 denotes the radiation property of the antenna radome of the invention plus the microstrip antenna. As shown in FIG. 5, after the metal antenna radome is added, the embodiment generates the field type of converged radiation on the x-z plane, and is thus very suitable for the actual application of the directional antenna.


The metal patterns on the dielectric material layers 121 to 123 are not restricted to the S-shaped metal patterns and the inverse S-shaped metal patterns in the antenna structure 100 mentioned hereinabove. Any metal pattern having the gap ranging between 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element 110 can be used in the antenna structure 100 of this invention as long as the metal patterns formed on the upper and lower surfaces can be coupled to each other. In addition, the dielectric constants and the magnetic coefficients of the dielectric material layers 121 to 123 may be the same as or different from one another in the antenna structure 100. For example, the magnetic coefficients of the dielectric material layer 121 and the dielectric material layer 123 are the same, but are unequal to the magnetic coefficient of the dielectric material layer 122. Alternatively, the magnetic coefficients of the dielectric material layers 121 to 123 may be different from one another. The relationships between the dielectric constants of the dielectric material layers 121 to 123 may also be similar to those of the magnetic coefficients. When the dielectric constants and the magnetic coefficients of the dielectric material layers 121 to 123 are different from one another, the gap between the S-shaped metal patterns and the gap between the inverse S-shaped metal patterns have to be adjusted slightly but still range from 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element 110.


According to the antenna structure, the antenna radome and the method of raising the gain of the antenna structure according to the embodiment of the invention, the metal patterns coupled to each other are formed on the dielectric material layer by way of printing or etching, and the antenna radome is placed in the near-field of the radiating field of the antenna structure to converge the beamwidth of the radiating beams outputted from the antenna structure and thus to increase the gain of the antenna structure. The metal patterns have the feature of the simple structure, and can be manufactured using the current PCB manufacturing process so that the manufacturing cost can be greatly reduced. In addition, because the antenna radome is placed in the near-field of the antenna structure, the size of the overall antenna structure can be further minimized, and the utility can be enhanced.


While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.

Claims
  • 1. An antenna structure, comprising: a radiating element; andan antenna radome having at least one dielectric layer, which has an upper surface formed with a plurality of S-shaped metal patterns, and a lower surface formed with a plurality of inverse S-shaped metal patterns corresponding to the S-shaped metal patterns,wherein the S-shaped metal patterns are respectively coupled to the corresponding inverse S-shaped metal patterns to converge radiating beams outputted from the radiating element.
  • 2. The antenna structure according to claim 1, wherein a gap between the S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 3. The antenna structure according to claim 1, wherein a gap between the inverse S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 4. The antenna structure according to claim 1, wherein the S-shaped metal patterns and the inverse S-shaped metal patterns are formed on the at least one dielectric layer by way of printing or etching.
  • 5. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same magnetic coefficient.
  • 6. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers having different magnetic coefficients.
  • 7. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same magnetic coefficient, and the other portion of which has different magnetic coefficients.
  • 8. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same dielectric constant.
  • 9. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers having different dielectric constants.
  • 10. The antenna structure according to claim 4, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same dielectric constant, and the other portion of which has different dielectric constants.
  • 11. The antenna structure according to claim 1, wherein the antenna radome is made of a metamaterial.
  • 12. The antenna structure according to claim 1, wherein the radiating element is an antenna.
  • 13. An antenna structure, comprising: a radiating element; andan antenna radome having at least one dielectric layer, which has an upper surface formed with a plurality of metal patterns, and a lower surface formed with a plurality of inverse metal patterns corresponding to the metal patterns, wherein:a gap between the metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element, and a gap between the inverse metal patterns ranges from 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element; andthe metal patterns are respectively coupled to the corresponding inverse metal patterns to converge radiating beams outputted from the radiating element.
  • 14. The antenna structure according to claim 13, wherein the metal patterns and the inverse metal patterns are formed on the at least one dielectric layer by way of printing or etching.
  • 15. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same magnetic coefficient.
  • 16. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers having different magnetic coefficients.
  • 17. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same magnetic coefficient, and the other portion of which has different magnetic coefficients.
  • 18. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same dielectric constant.
  • 19. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers having different dielectric constants.
  • 20. The antenna structure according to claim 14, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same dielectric constant, and the other portion of which has different dielectric constants.
  • 21. The antenna structure according to claim 13, wherein, the antenna radome is made of a metamaterial.
  • 22. The antenna structure according to claim 13, wherein the radiating element is an antenna.
  • 23. An antenna radome, comprising: at least one dielectric layer;a plurality of S-shaped metal patterns formed on an upper surface of the at least one dielectric layer by way of printing or etching; anda plurality of inverse S-shaped metal patterns respectively corresponding to the S-shaped metal patterns and formed on a lower surface of the at least one dielectric layer by way of printing or etching,wherein the S-shaped metal patterns are respectively coupled to the corresponding inverse S-shaped metal patterns to converge radiating beams outputted from a radiating element.
  • 24. The antenna radome according to claim 23, wherein the antenna radome is made of a metamaterial.
  • 25. The antenna radome according to claim 23, wherein a gap between the S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 26. The antenna radome according to claim 23, wherein a gap between the inverse S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 27. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same magnetic coefficient.
  • 28. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers having different magnetic coefficients.
  • 29. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same magnetic coefficient, and the other portion of which has different magnetic coefficients.
  • 30. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same dielectric constant.
  • 31. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers having different dielectric constants.
  • 32. The antenna radome according to claim 23, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same dielectric constant, and the other portion of which has different dielectric constants.
  • 33. The antenna radome according to claim 23, wherein the radiating element is an antenna.
  • 34. An antenna radome, comprising: at least one dielectric layer;a plurality of metal patterns formed on an upper surface of the at least one dielectric layer by way of printing or etching; anda plurality of inverse metal patterns respectively corresponding to the metal patterns and formed on a lower surface of the at least one dielectric layer by way of printing or etching, wherein:a gap between the metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of a radiating element, and a gap between the inverse metal patterns ranges from 0.002 to 0.2 times of the wavelength of the resonance frequency of the radiating element; andthe metal patterns are respectively coupled to the corresponding inverse metal patterns to converge radiating beams outputted from the radiating element.
  • 35. The antenna radome according to claim 34, wherein the antenna radome is made of a metamaterial.
  • 36. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same magnetic coefficient.
  • 37. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers having different magnetic coefficients.
  • 38. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same magnetic coefficient, and the other portion of which has different magnetic coefficients.
  • 39. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same dielectric constant.
  • 40. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers having different dielectric constants.
  • 41. The antenna radome according to claim 34, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same dielectric constant, and the other portion of which has different dielectric constants.
  • 42. The antenna radome according to claim 34, wherein the radiating element is an antenna.
  • 43. A method of raising a gain of an antenna structure, the method comprising the steps of: providing a radiating element; andplacing an antenna radome above the radiating element to converge radiating beams outputted from the radiating element, wherein:the antenna radome has at least one dielectric layer, which has an upper surface formed with a plurality of S-shaped metal patterns by way of printing or etching, and a lower surface formed, by way of printing or etching, with a plurality of inverse S-shaped metal patterns respectively corresponding to the S-shaped metal patterns; andthe S-shaped metal patterns are respectively coupled to the corresponding inverse S-shaped metal patterns to converge the radiating beams outputted from the radiating element.
  • 44. The method according to claim 43, wherein the antenna radome is made of a metamaterial.
  • 45. The method according to claim 43, wherein a gap between the S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 46. The method according to claim 43, wherein a gap between the inverse S-shaped metal patterns ranges from 0.002 to 0.2 times of a wavelength of a resonance frequency of the radiating element.
  • 47. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same magnetic coefficient.
  • 48. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers having different magnetic coefficients.
  • 49. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same magnetic coefficient, and the other portion of which has different magnetic coefficients.
  • 50. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers having the same dielectric constant.
  • 51. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers having different dielectric constants.
  • 52. The method according to claim 43, wherein the at least one dielectric layer comprises more than two dielectric material layers, one portion of which has the same dielectric constant, and the other portion of which has different dielectric constants.
  • 53. The method according to claim 43, wherein the radiating element is an antenna.
Priority Claims (1)
Number Date Country Kind
95123928 Jun 2006 TW national