This application claims priority of Taiwan Patent Application No. 109115965 filed on May 14, 2020, the entirety of which is incorporated by reference herein.
The disclosure generally relates to an antenna structure, and more particularly, to a wideband antenna structure.
With the advancements being made in mobile communication technology, mobile devices such as portable computers, mobile phones, multimedia players, and other hybrid functional portable electronic devices have become more common. To satisfy user demand, mobile devices can usually perform wireless communication functions. Some devices cover a large wireless communication area; these include mobile phones using 2G, 3G, and LTE (Long Term Evolution) systems and using frequency bands of 700 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, 2100 MHz, 2300 MHz, and 2500 MHz. Some devices cover a small wireless communication area; these include mobile phones using Wi-Fi and Bluetooth systems and using frequency bands of 2.4 GHz, 5.2 GHz, and 5.8 GHz.
Antennas are indispensable elements for wireless communication. If an antenna for signal reception and transmission has insufficient bandwidth, it will degrade the communication quality of the relative mobile device. Accordingly, it has become a critical challenge for antenna designers to design a small-size, wideband antenna element.
In an exemplary embodiment, the invention is directed to An antenna structure includes a ground element, a feeding radiation element, a first radiation element, a second radiation element, a third radiation element, and a switch circuit. The ground element provides a ground voltage. The feeding radiation element has a feeding point. The feeding radiation element is coupled through the first radiation element to the second radiation element. The third radiation element is coupled to the feeding radiation element. The feeding radiation element is disposed between the first radiation element and the third radiation element. The switch circuit selectively couples the second radiation element to the ground voltage according to a control voltage. A slot is formed and surrounded by the ground element, the feeding radiation element, the first radiation element, and the second radiation element.
In some embodiments, the antenna structure further includes a dielectric substrate. The ground element, the feeding radiation element, the first radiation element, the second radiation element, and the third radiation element are disposed on the dielectric substrate.
In some embodiments, the first radiation element and the second radiation element are positioned at the same side of the feeding radiation element. The third radiation element is positioned at the opposite side of the feeding radiation element.
In some embodiments, the feeding radiation element substantially has a straight-line shape.
In some embodiments, the first radiation element substantially has an L-shape.
In some embodiments, the first radiation element includes a narrow portion and a wide portion which are coupled to each other.
In some embodiments, the second radiation element substantially has a straight-line shape.
In some embodiments, the second radiation element further includes a corner widening portion.
In some embodiments, the third radiation element substantially has a rectangular shape.
In some embodiments, the slot substantially has an L-shape.
In some embodiments, if the switch element does not couple the second radiation element to the ground voltage, the antenna structure will cover a first frequency band. If the switch element couples the second radiation element to the ground voltage, the antenna structure will cover a second frequency band.
In some embodiments, the first frequency band is around 1575 MHz, and the second frequency band is from 2400 MHz to 2500 MHz.
In some embodiments, the antenna structure further covers a third frequency band and a fourth frequency band. The third frequency band is from 3300 MHz to 5000 MHz. The fourth frequency band is from 5150 MHz to 5850 MHz.
In some embodiments, the total length of the feeding radiation element, the first radiation element, and the second radiation element is shorter than or equal to 0.25 wavelength of the first frequency band.
In some embodiments, the length of the slot is shorter than or equal to 0.25 wavelength of the third frequency band.
In some embodiments, the width of the slot is from 0.5 mm to 3.5 mm.
In some embodiments, the total length of the feeding radiation element and the third radiation element is shorter than or equal to 0.25 wavelength of the fourth frequency band.
In some embodiments, the wide portion of the first radiation element further has an opening.
In some embodiments, the opening of the first radiation element substantially has a rectangular shape.
In some embodiments, the slot further extends into an interior of the wide portion of the first radiation element, such that the slot and the opening of the first radiation element are connected to each other.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In order to illustrate the foregoing and other purposes, features and advantages of the invention, the embodiments and figures of the invention will be described in detail as follows.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. The term “substantially” means the value is within an acceptable error range. One skilled in the art can solve the technical problem within a predetermined error range and achieve the proposed technical performance. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The ground element 110 may be a ground copper foil, which is configured to provide a ground voltage VSS. In some embodiments, the antenna structure 100 further includes a dielectric substrate 180. For example, the dielectric substrate 180 may be an FR4 (Flame Retardant 4) substrate, a PCB (Printed Circuit Board), or a FCB (Flexible Circuit Board). The ground element 110, the feeding radiation element 120, the first radiation element 130, the second radiation element 140, and the third radiation element 150 may form a planar structure, which may be disposed on the same surface of the dielectric substrate 180, but they are not limited thereto. In alternative embodiments, the ground element 110, the feeding radiation element 120, the first radiation element 130, the second radiation element 140, and the third radiation element 150 may be formed on a surface of a housing of a mobile device, and they are classified as a 3D (Three Dimensional) structure.
The feeding radiation element 120 may substantially have an equal-width straight-line shape. Specifically, the feeding radiation element 120 has a first end 121 and a second end 122. A feeding point FP is positioned at the first end 121 of the feeding radiation element 120. The feeding point FP may be further coupled to a signal source 190. For example, the signal source 190 may be an RF (Radio Frequency) module for exciting the antenna structure 100. The feeding radiation element 120 is disposed between the first radiation element 130 and the third radiation element 150. In some embodiments, the first radiation element 130 and the second radiation element 140 are positioned at the same side (e.g., the left side) of the feeding radiation element 120, and the third radiation element 150 is positioned at the opposite side (e.g., the right side) of the feeding radiation element 120, but they are not limited thereto.
The first radiation element 130 may substantially have a variable-width L-shape. Specifically, the first radiation element 130 has a first end 131 and a second end 132. The first end 131 of the first radiation element 130 is coupled to the second end 122 of the feeding radiation element 120. In some embodiments, the first radiation element 130 includes a narrow portion 134 and a wide portion 135 which are coupled to each other. The narrow portion 134 is adjacent to the first end 131 of the first radiation element 130. The wide portion 135 is adjacent to the second end 132 of the first radiation element 130. It should be noted that the term “adjacent” or “close” over the disclosure means that the distance (spacing) between two corresponding elements is smaller than a predetermined distance (e.g., 5 mm or shorter), or means that the two corresponding elements directly touch each other (i.e., the aforementioned distance/spacing therebetween is reduced to 0).
The second radiation element 140 may substantially have a variable-width straight-line shape. Specifically, the second radiation element 140 has a first end 141 and a second end 142. The first end 141 of the second radiation element 140 is coupled to the second end 132 of the first radiation element 130. A switch node NP is positioned at the second end 142 of the second radiation element 140. The feeding radiation element 120 is coupled through the first radiation element 130 to the second radiation element 140. In some embodiments, the second radiation element 140 further includes a corner widening portion 146, which is adjacent to its first end 141. The corner widening portion 146 of the second radiation element 140 may substantially have a rectangular shape or a square shape. However, the invention is not limited thereto. In alternative embodiments, the corner widening portion 146 is removable from the second radiation element 140, such that the second radiation element 140 substantially has an equal-width straight-line shape.
The third radiation element 150 may substantially have a rectangular shape or a square shape. Specifically, the third radiation element 150 has a first end 151 and a second end 152. The first end 151 of the third radiation element 150 is coupled to the second end 122 of the feeding radiation element 120. The second end 152 of the third radiation element 150 is an open end, which extends away from the feeding radiation element 120. The third radiation element 150 may be substantially perpendicular to the feeding radiation element 120. In some embodiments, the combination of the feeding radiation element 120 and the third radiation element 150 substantially has an L-shape.
The switch circuit 160 may be an SPDT (Single Port Double Throw) switch, which is switchable between a grounded path 161 and an open-circuited path 162. Specifically, the switch circuit 160 selectively couples the switch node NP (or the second radiation element 140) to the ground voltage VSS according to a control voltage VC. For example, if the control voltage VC has a high logic level (or a logic “1”), the switch circuit 160 may couple the switch node NP of the second radiation element 140 to the ground voltage VSS of the ground element 110 (i.e., the switch circuit 160 may select the aforementioned grounded path 161). Conversely, if the control voltage VC has a low logic level (or a logic “0”), the switch circuit 160 may not couple the switch node NP of the second radiation element 140 to the ground voltage VSS of the ground element 110 (i.e., the switch circuit 160 may select the aforementioned open-circuited path 162).
It should be noted that a non-metal slot 170 is formed and surrounded by the ground element 110, the feeding radiation element 120, the first radiation element 130, and the second radiation element 140. The slot 170 may substantially have an equal-width or variable-width L-shape. In some embodiments, the slot 170 has a closed end 171, which may be adjacent to the first end 141 of the second radiation element 140, and may also be adjacent to the junction point between the narrow portion 134 and the wide portion 135 of the first radiation element 130.
For example, the first frequency band FB1 may be around 1575 MHz, the second frequency band FB2 may be from 2400 MHz to 2500 MHz, the third frequency band FB3 may be from 3300 MHz to 5000 MHz, and the fourth frequency band FB4 may be from 5150 MHz to 5850 MHz. Therefore, by appropriately controlling the switch circuit 160, the antenna structure 100 can support at least the wideband operations of GPS (Global Positioning System), WLAN (Wireless Local Area Networks) 2.4 GHz/5 GHz, and sub-6 GHz frequency intervals of the next-generation 5G communications.
In some embodiments, the operation principles of the antenna structure 100 are described as follows. If the switch node NP of the second radiation element 140 is not coupled to the ground voltage VSS, the combination of the feeding radiation element 120, the first radiation element 130, and the second radiation element 140 will be considered as a monopole antenna, which can be excited to generate the first frequency band FB1. Conversely, if the switch node NP of the second radiation element 140 is coupled to the ground voltage VSS, the combination of the ground element 110, the feeding radiation element 120, the first radiation element 130, and the second radiation element 140 will be considered as a loop antenna, which can be excited to generate the second frequency band FB2. Furthermore, the slot 170 can be additionally excited to generate the third frequency band FB3. The feeding radiation element 120 and the third radiation element 150 can be excited to generate the fourth frequency band FB4. The corner widening portion 146 of the second radiation element 140 can increase the radiation efficiency of the antenna structure 100 in the fourth frequency band FB4.
In some embodiments, the element sizes of the antenna structure 100 are described as follows. The total length L1 of the feeding radiation element 120, the first radiation element 130, and the second radiation element 140 may be shorter than or equal to 0.25 wavelength (λ/4) of the first frequency band FB1 of the antenna structure 100. For example, the total length L1 may be from 0.15 to 0.17 wavelength (0.15λ0.17λ) of the first frequency band FB1 of the antenna structure 100. The length L2 of the slot 170 may be shorter than or equal to 0.25 wavelength (λ/4) of the third frequency band FB3 of the antenna structure 100. For example, the length L2 may be from 0.15 to 0.17 wavelength (0.15λ˜0.17λ) of the third frequency band FB3 of the antenna structure 100. The width W2 of the slot 170 may be from 0.5 mm to 3.5 mm. The total length L3 of the feeding radiation element 120 and the third radiation element 150 may be shorter than or equal to 0.25 wavelength (λ/4) of the fourth frequency band FB4 of the antenna structure 100. For example, the total length L3 may be from 0.15 to 0.17 wavelength (0.15λ˜0.17λ) of the fourth frequency band FB4 of the antenna structure 100. In the first radiation element 130, the width W3 of the wide portion 135 may be at least 3 times the width W1 of the narrow portion 134. The above ranges of element sizes are calculated and obtained according to many experiment results, and they help to optimize the operation bandwidth and impedance matching of the antenna structure 100.
The invention proposes a novel antenna structure. In comparison to the conventional design, the invention has at least the advantages of small size, wide bandwidth, simple structure, and low manufacturing cost, and therefore it is suitable for application in a variety of mobile communication devices.
Note that the above element sizes, element shapes, and frequency ranges are not limitations of the invention. An antenna designer can fine-tune these settings or values according to different requirements. It should be understood that the antenna structure of the invention is not limited to the configurations of
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term) to distinguish the claim elements.
It will be apparent to those skilled in the art that various modifications and variations can be made in the invention. It is intended that the standard and examples be considered as exemplary only, with the true scope of the disclosed embodiments being indicated by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
109115965 | May 2020 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
10069196 | Yen et al. | Sep 2018 | B1 |
20090135071 | Huang | May 2009 | A1 |
20120194390 | Endo et al. | Aug 2012 | A1 |
20130154888 | Lin et al. | Jun 2013 | A1 |
20140253398 | Hsieh et al. | Sep 2014 | A1 |
20160156101 | Tsai et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2 942 834 | Nov 2015 | EP |
201715791 | May 2017 | TW |
Entry |
---|
European Search Report dated Jan. 21, 2021, issued in application No. EP 20188176.0. |
Chinese language office action dated Dec. 18, 2020, issued in application No. TW 109115965. |