This application claims priority to Taiwan Application Serial Number 105111887, filed Apr. 15, 2016, which is herein incorporated by reference.
The present disclosure relates to an antenna system. More particularly, the present disclosure relates to a smart antenna, system which can change phase.
Modern communication technology is flourishing and has become an indispensable part of modern life. As quality of life improves, faster transmission rates and better signal receiving quality of communication for electronic devices is in demand,
Most traditional wireless area network or bridge antennas using 802:11at/gin protocol have an exposed dipole antenna structure such as multi-input multi-output (MIMO) antenna module having multiple loops, which has Wi-Fi 2.4G antennas and Wi-Fi 5G antennas disposed alternately. One of the common antenna radiation patterns is omnidirectional. When multiple antennas are disposed in array, the radiation patterns of them may interfere with each other.
The present disclosure discloses an antenna system which can be a bridge device, a wireless broadband router, a wireless hub, a satellite radar, or other antenna systems with higher directivity. The antenna system includes a control module, which can control the phase parameters needed by different antenna radiation patterns and detect the position and strength of transmitted signals of terminal equipment, so as to choose the phase parameter combination having maximal data transmission capacity and optimal quality to transmit data.
An aspect of the present disclosure is an antenna system. The antenna system includes an antenna array, a wireless transceiver module and a control module. The antenna array includes a first antenna and a second antenna coupled respectively to the wireless transceiver module The wireless transceiver module sends and receives signals via the first antenna based on a first phase and sends and receives signals via the second antenna based on a second phase. The control module is coupled to the wireless transceiver module, and controls the phase difference between the first phase and the second phase. The radiation pattern of the antenna array deviates towards one pointing direction based on the phase difference.
Another aspect of the present disclosure is a control method. The control method is used for an antenna system, wherein the antenna system comprises an antenna array. The antenna array comprises a first antenna and a second antenna. The control method comprises: sending and receiving signals via the first antenna based on a first phase; sending and receiving signals via the second antenna based on a second phase; and controlling a phase difference between the first phase and the second phase, wherein a radiation pattern of the antenna array deviates towards one pointing direction based on the phase difference.
According to the technology disclosed here, the antenna system can have the function of selectively adjusting the pointing direction of antenna radiation pattern and have more accurate locating mechanism, so an optimal data transmission rate can be achieved. Accordingly, a user can have an improved user experience.
Specific embodiments of the present invention are further described in detail below with reference to the accompanying drawings, however, the embodiments described are not intended to limit the present invention and it is not intended for the description of operation to limit the order of implementation. Moreover, any device with equivalent functions that is produced from a structure formed by a recombination of elements shall fall within the scope of the present invention. Additionally, the drawings are only illustrative and are not drawn to actual size. In accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
Reference is made first to
The control module 110 can control the wireless transceiver module 120 to generate transmitting signals with different phases, or control the wireless transceiver module 120 to receive signals with different phases, so as to achieve desired phase difference. The control module 110 can be, for example, a central processing unit (CPU) or a system on chop (SoC), and achieve the mechanism to control the phase difference by a program algorithm or a software writing program.
Reference is made to
Two of the antenna A1, A2, A3 and A4 of the antenna array 130 receive and send signals based on a first phase, and another two of the antenna A1, A2, A3 and A4 receive and send signals based on a second phase. For example, set the center of the antennas A1, A2, A3 and A4 as the origin of coordinate, and the antennas A1 and A2 receive and send signals based on the first phase while the antennas A3 and A4 receive and send signals based on the second phase. When the first phase is leading the second phase, a radiation pattern of the antenna array 130 deviates towards the antennas A1 and A2. That is, the radiation pattern of the antenna array 130 deviates towards the Y-axis direction (reference is also made to
In another embodiment, the antennas A2 and A3 can receive and send signals based on the first phase and the antennas A1and A4 can receive and send signals based on the second phase. In this embodiment, when the first phase is leading the second phase, the radiation pattern of the antenna array 130 deviates towards the antennas A2 and A3. That is, the radiation pattern of the antenna array 130 deviates towards the X-axis direction (reference is also made to
Referring to
For example, the relation between the signal feeding phases of the antennas A1, A2, A3 and A4 and the pointing direction variation of the antenna array radiation patterns is illustrated in table 1 below:
The φ1, φ2, φ3, φ4 listed in left column of table 1 represent the feeding phases of the antennas A1, A2, A3 and A4 of
Take the radiation patterns R1-R4 in table 1 as an example, in the radiation pattern R1 both the phases φ2 and φ3 are leading the phases φ1 and φ4 by 45 degrees. In the radiation pattern R2, both the phases φ2 and φ3 are leading the phases φ1 and φ4 by 90 degrees. In the radiation pattern R3, both the phases φ2 and φ3 are leading the phases φ1 and φ4 by 135 degrees. In the radiation pattern R4, both the phases φ2 and φ3 are leading the phases φ1 and φ4 by 180 degrees.
When the angle the phases φ2 and φ3 leading the phases φ1 and φ4 gradually becomes larger, the radiation pattern of the antenna array 130 gradually converts into the radiation pattern R4 from the radiation pattern R1, and the pointing direction gradually deviates towards X-axis direction from the original point O (as shown in
Take the radiation patterns U1-U4 of table 1 a an example, in the radiation pattern U1, both the phases φ1 and φ2 are leading the phases φ3 and φ4 by 45 degrees,. In the radiation pattern U2 both the phases φ1 and φ2 are leading the phases φ3 and φ4 by 90 degrees. In the radiation pattern U3 both the phases φ1 and φ2 are leading the phases φ3 and φ4 by 135 degrees. In the radiation pattern U4, both the phases φ1 and φ2 are leading the phases φ3 and φ4 by 180 degrees.
When the angle the phases φ1 and φ2 leading the phases φ3 and φ4 gradually becomes larger, the radiation pattern of the antenna array 130 gradually converts into the radiation pattern U4 from the radiation pattern U1, and the pointing direction gradually deviates towards Y-axis direction from the original point O (as shown in
Because the radiation patterns D1-D4 and the radiation patterns L1-L4 are respectively symmetrical with the radiation patterns U1-U4 and the radiation patterns R1-R4 relative to original point O, the three-dimensional simulation of the radiation patterns D1-D4 and the radiation patterns L1-L4 will not be show in figures.
In one embodiment, the antenna A1 and the antenna A2 receive and, send signals based on the first phase while the antenna A3 and the antenna A4 receive and send signals based on the second phase, as the radiation patterns U1-U4 and D1-D4 shorn in
For further explanation, the characteristic of angle rotation of the pointing directions and peek gains of the radiation patterns generated by the antenna array 130 according to different feeding phases and different phase differences are shown in table 2 below:
It should be appreciated that when the phase difference between two feeding phases is larger, the deviated angle of the radiation pattern is larger, i.e., more deviated from the perpendicular direction (no phase difference) of the original point O.
For example, when the antennas A1 and A2 are fed signals with the first phase of 90 degrees and the antennas A3 and A4 are fed signals with the second phase of 0 degree (“U2” column of table 1), because the first phase is leading the second phase by 90 degrees, the radiation patterns will deviate towards the direction of the antennas A1 and A2 (i.e., the Y-axis direction), as the 3D simulation of U2 shown in
The aforementioned
In one embodiment of the present disclosure, the phase difference between feeding phases of antennas can be controlled by, for example, changing the path length of the physical circuit. Reference is made to
In this embodiment, the wireless transceiver module 720 includes a transceiver circuit 720a and a phase switching circuit 720b. The phase switching circuit 720b includes switching units SW1-SW4. The switching units SW1, SW2, SW3 and SW4 are respectively coupled to antennas A1, A2, A3 and A4. The switching unit SW1 includes electric current paths P11, P12 and P13. The switching unit SW2 includes electric current paths P21, P22 and P23. The switching unit SW3 includes electric current paths P31, P32 and P33. The switching unit SW4 includes electric current paths P41, P42 and P43. The lengths of the electric current paths P11, P21, P31 and P41 are equal. The lengths of the electric current path P12, P22, P32 and P42 are one quarter-wavelength longer than the lengths of the electric current path P11, P21, P31 and P41. The lengths of the electric current path P13, P23, P33 and P43 are one quarter-wavelength longer than the lengths of the electric current paths P12, P22, P32 and P42.
The control module 710 directly or indirectly controls the path switching of each switching unit within the phase switching circuit 720b. Specifically, each quarter-wavelength path provides a phase difference change of 90 degrees. For example, when the switching units SW1 and SW2 respectively switch to the paths and P11and P21, the signal feeding phase is 0 degree. When the switching units SW3 and SW4 respectively switch to the paths P32 and P42 which have one quarter-wavelength longer than the paths P11 and P21, the signal feeding phase is 90 degrees. Accordingly, the antennas A3 and A4 are leading the antennas A1 and A2 by a phase difference of 90 degrees, so the pointing direction of the radiation pattern will deviate towards the antennas A3 and A4. In summary, with the phase switching circuit 720b, the transceiver circuit 720a can send or receive signals of radiation patterns of different pointing directions.
It should be noted that, the aforementioned embodiment is just one aspect of the present disclosure, and the switching units can also have more than three electric current paths of different lengths, wherein the path length depends on demands to achieve the antenna radiation pattern pointing direction needed.
In another embodiment of the present disclosure, an antenna system 900 can includes a control module 910 a wireless transceiver module 920 and an antenna array 930 including antennas A11, A12, A21, A22, A31, Au32, A41 and A42. The wireless transceiver module 920 includes a transceiver circuit 920a and a polarization switch 920b. The polarization switch 920b comprises polarization switching circuits PS1, PS2, PS3 and PS4, wherein PS1 is coupled to the antennas A11 and A12, PS2 is coupled to the antennas A21 and A22, PS3 is coupled to the antennas A31 and A32, and PS4 is coupled to the antennas and A42. The antennas A11 and A12 are a group of antennas having different polarization directions (e.g., perpendicular to each other), so the antennas A11 and A12 can transmit signals of different polarization directions. The antennas A21 and A22 form a group, A31 and A32 form a group, and A41 and A42 form a group wherein the configuration of each group is the same as that of the group of antennas A11 and A12. The polarization switch 920b can switch each group of antennas to select a polarization direction with better signal quality to transmit signals.
In summary, the present disclosure provides an antenna system which can adjust its radiation pattern. By adjusting the radiation pattern, the antenna system can adjust antenna beam direction intelligently. Especially, the antenna system can use phase control technology to adjust antenna radiation pattern according to a location of a target terminal device, so as to provide optimal transmission rate for the target terminal device. In one embodiment, an antenna system can have a control module to achieve the aforementioned phase control technology.
Number | Date | Country | Kind |
---|---|---|---|
105111887 | Apr 2016 | TW | national |