This application claims priority to Chinese Patent Application No. CN202010884837.2, filed with the China National Intellectual Property Administration on Aug. 28, 2020 and entitled “ANTENNA SYSTEM AND ELECTRONIC DEVICE”, which is incorporated herein by reference in its entirety.
This application relates to the field of antennas, and in particular, to an antenna system and an electronic device.
As a communication requirement of a terminal device continuously increases, a communication specification is increasingly high, for example, in 5G communication, and 4*4 MiMo (multiple input multiple output, English full name: “Multiple Input Multiple Output”) of a Wi-Fi (wireless local area network, English full name: “Wireless Fidelity”) antenna, and a quantity of antennas also continuously increases. However, due to a size limitation of the terminal device, it is difficult to lay out an antenna. In addition, the Wi-Fi antenna is prone to a result of a high directivity coefficient and a high 0 mm body SAR value, and consequently transmit power of the Wi-Fi antenna is limited and user experience is affected.
A SAR (specific absorption rate, English full name: “Specific Absorption Rate”) refers to electromagnetic radiation energy absorbed by a substance of a unit mass in a unit time. Generally, a SAR value is internationally used to measure a thermal effect of radiation of the terminal device. The SAR value, as a most direct test value, indicates impact of radiation on a human body, such as the entire body, a body part, and limbs. The smaller the SAR value is, the less the radiation is absorbed. The 0 mm body SAR value indicates an average specific absorption rate of a user body when the Wi-Fi antenna directly touches the user body. At present, a technical standard for measuring electromagnetic radiation of the terminal device is formulated internationally, that is, to ensure safety of the terminal device, the SAR value of the terminal device needs to meet a requirement of a technical standard value. In this case, when the SAR value of the terminal device is relatively large, the transmit power of the Wi-Fi antenna of the terminal device needs to be greatly reduced to meet a requirement of the technical standard value. To ensure the transmit power of the Wi-Fi antenna of the terminal device, the SAR value of the Wi-Fi antenna of the terminal device needs to be reduced.
In addition, a technical standard for measuring a power spectral density (“PSD” for short, English full name: “Power Spectral Density”) of the terminal device is further formulated internationally. To be specific, to ensure safety of the terminal device, a power spectral density value of the terminal device needs to meet a requirement of a technical standard value, that is, a power spectral density value of radiation of the Wi-Fi antenna of the terminal device needs to meet the requirement of the technical standard value. When a power spectral density of a wave is multiplied by an appropriate coefficient, power carried by each unit frequency wave is obtained, which is referred to as a power spectral density of a signal. The power spectral density is usually expressed in watts per hertz (W/Hz). A value of the power spectral density is related to the transmit power of the Wi-Fi antenna, and a value of radiation power of the Wi-Fi antenna in a direction. Therefore, a directivity coefficient of the Wi-Fi antenna needs to be reduced, to ensure the transmit power of the Wi-Fi antenna while ensuring that the power spectral density of radiation of the Wi-Fi antenna of the terminal device meets the technical standard value requirement.
In an existing terminal device, a first Wi-Fi antenna, a low-frequency antenna, and a second Wi-Fi antenna are sequentially disposed and spaced from each other in a circumferential direction of the terminal device. In other words, the low-frequency antenna, the first Wi-Fi antenna, and the second Wi-Fi antenna are disposed independently of each other. The first Wi-Fi antenna and the second Wi-Fi antenna each include a Wi-Fi antenna radiator, and the Wi-Fi antenna radiator has a Wi-Fi antenna teed point and a Wi-Fi antenna ground point. The Wi-Fi antenna feed point of the first Wi-Fi antenna is connected to a first Wi-Fi antenna radio frequency source, and the Wi-Fi antenna ground point of the first Wi-Fi antenna is connected to the ground. The Wi-Fi antenna feed point of the second Wi-Fi antenna is connected to a second Wi-Fi antenna radio frequency source, and the Wi-Fi antenna ground point of the second Wi-Fi antenna is connected to the ground. An operating frequency band of the low-frequency antenna is 0.7 GHz to 0.96 GHz, and an operating frequency band of the first Wi-Fi antenna and the second Wi-Fi antenna is 2.4 GHz to 2.5 GHz. In addition, operating frequencies of the first Wi-Fi antenna and the second Wi-Fi antenna are the same. It can be learned that, in this structure, the low-frequency antenna, the first Wi-Fi antenna, and the second Wi-Fi antenna are disposed independently of each other, and occupy relatively large space. This is not conducive to a miniaturization design of the terminal device.
Further, the following uses the first Wi-Fi antenna as an example to verify directional performance and SAR value performance of the first Wi-Fi antenna, and simulation analysis is performed by using full-wave electromagnetic simulation software HFSS, to obtain a radiation pattern of the first Wi-Fi antenna shown in
Refer to
Refer to
In conclusion, in the existing terminal device, the low-frequency antenna and the Wi-Fi antenna are disposed independently of each other, and occupy relatively large space. This is not conducive to the miniaturization design of the terminal device. In addition, the directivity coefficient and the SAR value of the Wi-Fi antenna are both very large, and the transmit power of the Wi-Fi antenna is limited when the requirement of the internationally formulated technical standard is met. This affects user experience.
An objective of this application is to resolve a problem in the conventional technology that a low-frequency antenna and a Wi-Fi antenna of a terminal device are disposed independently of each other, occupy relatively large space, and both a directivity coefficient and a SAR value of the Wi-Fi antenna are very high. Therefore, embodiments of this application provide an antenna system and an electronic device. A first antenna and a second antenna share a radiator, so that occupied space is reduced, and miniaturization of the electronic device is facilitated. In addition, a directivity coefficient and a SAR value of the second antenna are reduced, so that transmit power limitation of the second antenna is reduced and user experience is improved.
An embodiment of this application provides an antenna system, including a first antenna. The first antenna includes a strip-shaped antenna radiator, and the antenna radiator has an antenna feed point and an antenna ground point that are spaced in a length direction of the antenna radiator. The antenna feed point is connected to a first antenna radio frequency source, to receive a radio frequency signal output by the first antenna radio frequency source, and the antenna ground point is connected to a ground.
The antenna radiator has a first end and a second end, a first radiator section in which the first end is located and/or a second radiator section in which the second end is located each are/is used as a radiator of a second antenna, and a radio frequency signal whose frequency is higher than a frequency of the first antenna radio frequency source and that is output by a second antenna radio frequency source may be received by using the first radiator section and/or the second radiator section, so that the second antenna performs transmission outward, and the first radiator section and/or the second radiator section being connected to the ground.
A first filter is connected between the first antenna radio frequency source and the antenna feed point, and a first filter is connected between the ground and the antenna ground point, and the first filter is used to allow a signal of the first antenna to pass through, and prevent a signal of the second antenna from passing through. A second filter is connected between the second antenna radio frequency source and the first radiator section and/or the second radiator section, and a second filter is connected between the ground and the first radiator section and/or the second radiator section, and the second filter is used to allow the signal of the second antenna to pass through, and prevent the signal of the first antenna from passing through.
In this solution, the first antenna and the second antenna share a radiator, so that occupied space is reduced, antenna layout space is saved, and miniaturization of an electronic device is facilitated. In addition, the first filter that is used to allow the signal of the first antenna to pass through, and prevent the signal of the second antenna from passing through is separately connected between the first antenna radio frequency source and the antenna feed point of the first antenna, and between the ground and the antenna ground point of the first antenna, and the second filter that is used to allow the signal of the second antenna to pass through and prevent the signal of the first antenna from passing through is separately connected between the second antenna radio frequency source and the first radiator section and/or the second radiator section, and between the ground and the first radiator section/or the second radiator section. In this way, isolation between the first antenna and the second antenna can be ensured, so that the first antenna and the second antenna with high isolation are implemented in compact space.
In addition, the first radiator section in which the first end of the antenna radiator is located and/or the second radiator section in which the second end of the antenna radiator is located is used as the radiator of the second antenna, and the first radiator section and/or the second radiator section may receive the radio frequency signal output by the second antenna radio frequency source, so that the second antenna performs transmission outward. In this way, a directivity coefficient of the second antenna can be reduced, so that transmit power limitation of the second antenna is reduced and user experience is improved.
In some embodiments, the first antenna is a low-frequency antenna, the first antenna. radio frequency source is a low-frequency antenna radio frequency source, and the first filter is a low-pass filter; and/or
In some possible embodiments, a frequency of the radio frequency signal output by the second antenna radio frequency source is higher than a frequency of a radio frequency signal output by the first antenna radio frequency source.
In some embodiments, the high-frequency antenna is a Wi-Fi antenna.
The first radiator section has a high-frequency antenna feed point, and the high-frequency antenna feed point is connected to the high-frequency antenna radio frequency source by using the high-pass filter. The second radiator section has a high-frequency antenna ground point, and the high-frequency antenna ground point is connected to the ground by using the high-pass filter.
In this solution, by using the foregoing structure, the radio frequency signal output by the high-frequency antenna radio frequency source can be directly fed to the first radiator section by using the high-frequency antenna feed point, and the second radiator section can be fed by using an antenna radiator located between the high-frequency antenna feed point and the high-frequency antenna ground point via the high-frequency antenna feed point, that is, distributed feeding is performed on the first radiator section and the first radiator section, so that the Wi-Fi antenna performs transmission outward. In this way, a directivity coefficient of the Wi-Fi antenna is further reduced, and the directivity coefficient of the Wi-Fi antenna can be reduced to 4.749 dBi, so that transmit power limitation of the Wi-Fi antenna is reduced and user experience is improved.
In some embodiments, the high-frequency antenna feed point is located at an end that is of the first radiator section and that is far away from the first end, and the high-frequency antenna ground point is located at an end that is of the second radiator section and that is far away from the second end.
In some embodiments, the high-frequency antenna ground point freely selects, by using a switch component, a branch of the high-pass filter connected to the ground and a branch of a high-pass filter connected to an output of another high-frequency antenna radio frequency source. In this way, based on a usage scenario of the antenna system, the second radiator section can be used as different antennas at different times. Specifically, when the switch component is switched to the branch of the high-pass filter connected to the ground, the second radiator section is used as a part of a radiator of a Wi-Fi antenna. In this way, a directivity coefficient of the Wi-Fi antenna can be reduced. When the switch component is switched to the branch of the high-pass filter connected to the output of the another high-frequency antenna radio frequency source, the second radiator section is used as a radiator of another Wi-Fi antenna. In this case, the two Wi-Fi antennas: The Wi-Fi antenna and the another Wi-Fi antenna may operate simultaneously.
In some embodiments, the switch component is a single-pole double-throw switch.
In some embodiments, the high-frequency antenna is a Wi-Fi antenna.
The first radiator section has a first high-frequency antenna feed point and a first high-frequency antenna ground point, the first high-frequency antenna feed point is located between the first high-frequency antenna around point and the first end, the first high-frequency antenna feed point is connected to an output of the high-frequency antenna radio frequency source by using the corresponding high-pass filter, and the first high-frequency antenna ground point is connected to the ground by using the corresponding high-pass filter.
The second radiator section has a second high-frequency antenna feed point and a second high-frequency antenna ground point, the second high-frequency antenna feed point is located between the second high-frequency antenna ground point and the second end, the second high-frequency antenna feed point is connected to a phase shifter by using the corresponding high-pass filter and then connected to the output of the high-frequency antenna radio frequency source, and the second high-frequency antenna ground point is connected to the ground by using the corresponding high-pass filter.
In this solution, by using the foregoing structure, a radio frequency signal output by the high-frequency antenna radio frequency source can be directly fed to the first radiator section by using the first high-frequency antenna feed point, and be directly fed to the second radiator section by using the second high-frequency antenna feed point, that is, distributed feeding is performed on the first radiator section and the first radiator section. In addition, the phase shifter can adjust a phase difference between signals fed to the first high-frequency antenna feed point and the second high-frequency antenna feed point to a required phase difference by using the phase shifter. In this way, a directivity coefficient of the Wi-Fi antenna can be reduced to a greater extent, and the directivity coefficient of the Wi-Fi antenna can be reduced to 4.359 dBi, so that transmit power limitation of the Wi-Fi antenna is further reduced and user experience is improved. In addition, an average SAR value of a whole body of the user when the Wi-Fi antenna directly touches the user body can be reduced, and the SAR value can be reduced to 1 W/kg.
In some embodiments, the first high-frequency antenna ground point is located at an end that is of the first radiator section and that is away from the first end, and the second high-frequency antenna ground point is located at an end that is of the second radiator section and that is away from the second end.
In some embodiments, the antenna system further includes a differential circuit and another high-frequency antenna radio frequency source, two input ends of the differential circuit are respectively connected to the output of the high-frequency antenna radio frequency source and an output of another high-frequency antenna radio frequency source, and an output end of the differential circuit is connected to the high-pass filter of the first high-frequency antenna feed point. The output of the high-frequency antenna radio frequency source and the output of the another high-frequency antenna radio frequency source are both connected to the phase shifter.
In this solution, the first radiator section and the second radiator section not only serve as radiators of a Wi-Fi antenna, but also serve as radiators of another Wi-Fi antenna. In this case, the two Wi-Fi antennas: The Wi-Fi antenna and the another Wi-Fi antenna may operate simultaneously. In addition, when performance of the Wi-Fi antenna is not affected, a directivity coefficient of the another newly added Wi-Fi antenna is relatively low; and the directivity coefficient is reduced to 3.998 dBi. In addition, a SAR value of the another Wi-Fi antenna is also relatively low, and the SAR value can be reduced to 2 W/kg. In this way, transmit power limitation of the another Wi-Fi antenna can be reduced, and user experience can be improved.
In some embodiments, the first high-frequency antenna feed point and the high-frequency antenna radio frequency source are connected by using a transmission line, and the second high-frequency antenna feed point and the high-frequency antenna radio frequency source are connected by using a transmission line.
In some embodiments, the antenna radiator is straight strip-shaped.
In some embodiments, lengths of the first radiator section and the second radiator section are both a quarter of an operating wavelength of the second antenna.
In some embodiments, an operating frequency range of the first antenna does not overlap an operating frequency range of the second antenna.
In some embodiments, when the first antenna is the low-frequency antenna, an operating frequency band of the low-frequency antenna is 0.7 GHz to 0.96 GHz.
When the second antenna is the high-frequency antenna, an operating frequency band of the high-frequency antenna is 2.4 GHz to 2.5 GHz.
In some embodiments, in the length direction of the antenna radiator, the antenna feed point is located between the antenna ground point and the end that is of the first radiator section and that is away from the first end.
In some embodiments, the antenna feed point and the antenna ground point are located in a middle part of the antenna radiator, and both the first radiator section and the second radiator section are located outside the middle part.
In some embodiments, in the length direction of the antenna radiator, the antenna feed point and the antenna ground point are respectively located on two sides of a center line of the antenna radiator.
An embodiment of this application further provides an electronic device, including a ground, and the electronic device further includes the antenna system provided in any one of the foregoing embodiments or the possible embodiments.
In some embodiments, the antenna radiator includes an outer bezel of the electronic device.
Alternatively, the antenna radiator uses a strip-shaped patch structure, and the strip-shaped patch structure is attached to a surface of an outer bezel of the electronic device and is made of a conductive material.
The following describes implementations of this application by using specific embodiments. A person skilled in the art may readily understand other advantages and functions of this application from the content disclosed in this specification. Although this application is described with reference to some embodiments, it does not mean that a characteristic of this application is limited only to this implementation. On the contrary, a purpose of describing this application with reference to an implementation is to cover another option or modification that may be derived based on claims of this application. To provide an in-depth understanding of this application, the following descriptions include a plurality of specific details. This application may be alternatively implemented without using these details. In addition, to avoid confusion or blurring a focus of this application, some specific details are omitted from the description. It should be noted that embodiments in this application and the features in embodiments may be mutually combined in the case of no conflict.
It should be noted that, in this specification, reference numerals and letters in the following accompanying drawings represent similar items. Therefore, once an item is defined in an accompanying drawing, the item does not need to be further defined or interpreted in subsequent accompanying drawings.
In descriptions of this application, it should be noted that orientation or location relationships indicated by terms “center”, “above”, “below”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, and the like are orientation or location relationships based on the accompanying drawings, and are merely intended for conveniently describing this application and simplifying descriptions, rather than indicating or implying that an apparatus or an element in question needs to have a specific orientation or needs to be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation on this application. In addition, terms “first” and “second” are merely intended for a descriptive purpose, and cannot be understood as indicating or implying relative importance.
In descriptions of this application, it should be noted that unless otherwise expressly specified and limited, terms “mount”, “interconnect”, and “connect” should be understood in a broad sense. For example, the terms may indicate a fixed connection, a detachable connection, or an integral connection; may be a mechanical connection or an electrical connection; or may be direct interconnection, indirect interconnection through an intermediate medium, or communication between the interiors of two elements. An ordinary technician in the art may understand specific meanings of the foregoing terms in this application based on a specific situation.
To make the objectives, technical solutions, and advantages of this application clearer, the following further describes implementations of this application in detail with reference to the accompanying drawings.
Refer to
An operating frequency of the low-frequency antenna 300 is lower than an operating frequency of the high-frequency antenna, and an operating frequency band range of the low-frequency antenna 300 is lower than an operating frequency band range of the high-frequency antenna. In this implementation, the high-frequency antenna is a Wi-Fi antenna 400. Certainly, a person skilled in the art may understand that, in another alternative implementation, the high-frequency antenna may alternatively be a high-frequency antenna of another type. The low-frequency antenna 300 is used for communication between the electronic device and a base station.
In this implementation, an operating frequency band of the low-frequency antenna 300 is 0.7 GHz to 0.96 GHz, and an operating frequency band of the Wi-Fi antenna 400 is 2.4 GHz to 2.5 GHz. Certainly, a person skilled in the art may understand that in another alternative implementation, the operating frequency band of the low-frequency antenna 300 and the operating frequency band of the Wi-Fi antenna 400 may alternatively use other suitable operating frequency bands.
As shown in
The low-frequency antenna radiator 310 includes an outer bezel of the electronic device 100. Certainly, a person skilled in the art may understand that in another alternative implementation, the low-frequency antenna radiator 310 may alternatively be a metal sheet (for example, a steel sheet), or may be a flexible printed circuit (Flexible Printed Circuit, FPC for short), or may be formed in a form of LDS (Laser Direct Structuring, laser direct structuring), or may be a strip-shaped patch structure, where the strip-shaped patch structure is attached to a surface of the outer bezel of the electronic device and is made of a conductive material.
In addition, a middle part 320 (in this implementation, the middle part 320 is a part shown by a dashed box in
In this implementation, in the length direction L of the low-frequency antenna radiator, the low-frequency antenna feed point 340 and the low-frequency antenna ground point 342 are respectively located on two sides of a center line O of the low-frequency antenna radiator 310. Certainly, a person skilled in the art may understand that, in another alternative implementation, the low-frequency antenna feed point 340 and the low-frequency antenna ground point 342 may alternatively be located on a same side (for example, a left side or a right side of the center line O in
In this implementation, the ground 200 may be formed by a rear cover of the electronic device 100. A person skilled in the art may understand that, in another alternative implementation, the ground 200 may alternatively be formed by other metal parts, for example, a printed circuit board and a bottom plate of a middle frame.
Refer to
The first radiator section 350 and/or the second radiator section 352 may receive a radio frequency signal output by the high-frequency antenna radio frequency source 510 whose frequency is higher than a frequency of the low-frequency antenna radio frequency source 500, so that the Wi-Fi antenna 400 performs transmission outward, and the first radiator section 350 and/or the second radiator section 352 is separately connected to the ground 200. In other words, a frequency of a radio frequency signal output by the high-frequency antenna radio frequency source 510 is higher than a frequency of a radio frequency signal output by the low-frequency antenna radio frequency source 500. In this implementation, lengths of the first radiator section 350 and the second radiator section 352 are both a quarter of an operating wavelength of the Wi-Fi antenna 400. An operating wavelength of the Wi-Fi antenna 400 is λ2.
In addition, a low-pass filter 600 is separately connected between the low-frequency antenna radio frequency source 500 and the low-frequency antenna feed point 340, and between the ground 200 and the low-frequency antenna ground point 342. The low-pass filter 600 allows a signal of the low-frequency antenna 300 to pass through, and prevents a signal of the Wi-Fi antenna 400 from passing through. A high-pass filter 610 is connected between the high-frequency antenna radio frequency source 510 and the first radiator section 350 and/or the second radiator section 352, and between the ground 200 and the first radiator section 350 and/or the second radiator section 352. The high-pass filter 610 allows the signal of the Wi-Fi antenna 400 to pass through, and prevents the signal of the low-frequency antenna 300 from passing through.
In this implementation, an existing low-pass filter in the conventional technology may be used as a low-pass filter, and an existing high-pass filter in the conventional technology may be used as a high-pass filter, which is not described herein again.
Certainly, it can be understood in this field that, the low-pass filter is an electronic filter apparatus that allows a signal whose frequency is lower than a cut-off frequency to pass through, but does not allow a signal whose frequency is higher than the cut-off frequency to pass through. A high-pass filter, also called a low-cut filter or low-impedance filter, allows a frequency higher than a cut-off frequency to pass through, and greatly attenuates a lower frequency.
In this embodiment, the low-frequency antenna 300 and the Wi-Fi antenna 400 share a radiator, so that occupied space is reduced, antenna layout space is saved, and miniaturization of the electronic device 100 is facilitated. In addition, the low-pass filter 600 is separately connected between the low-frequency antenna radio frequency source 500 and the low-frequency antenna feed point 340, and between the ground 200 and the low-frequency antenna ground point 342 to allow the signal of the low-frequency antenna 300 to pass through and prevent the signal of the Wi-Fi antenna 400 from passing through. The high-pass filter 610 is separately connected between the high-frequency antenna radio frequency source 510 and the first radiator section 350 and/or the second radiator section 352, and between the ground 200 and the first radiator section 350 and/or the second radiator section 352 to allow the signal of the Wi-Fi antenna 400 to pass through and prevent the signal of the low-frequency antenna 300 from passing through. In this way, isolation between the low-frequency antenna 300 and the Wi-Fi antenna 400 is ensured, to implement the low-frequency antenna 300 and the Wi-Fi antenna 400 with high isolation in compact space.
In addition, the first radiator section 350 outside the middle part 320 in which the first end 330 of the low-frequency antenna radiator 310 is located and/or the second radiator section 352 outside the middle part 320 in which the second end 332 is located is used as a radiator of the Wi-Fi antenna 400, and the first radiator section 350 and/or the second radiator section 352 may receive a radio frequency signal output by the high-frequency antenna radio frequency source 510 whose frequency is higher than a frequency of the low-frequency antenna radio frequency source 500, so that the Wi-Fi antenna 400 performs transmission outward. In this way, a directivity coefficient of the Wi-Fi antenna 400 can be reduced, so that transmit power limitation of the Wi-Fi antenna 400 is reduced, and user experience is improved.
Specifically, the first radiator section 350 has a high-frequency antenna feed point 410, and the high-frequency antenna teed point 410 may he connected to the high-frequency antenna radio frequency source 510 by using the high-pass filter 610. The second radiator section 352 has a high-frequency antenna ground point 420, and the high-frequency antenna ground point 420 may be connected to the ground 200 by using the high-pass filter 610. In this way, the radio frequency signal output by the high-frequency antenna radio frequency source 510 can be directly fed to the first radiator section 350 by using the high-frequency antenna feed point 410, and the second radiator section 352 can be fed by using the low-frequency antenna radiator 310 located between the high-frequency antenna feed point 410 and the high-frequency antenna ground point 420 via the high-frequency antenna feed point 410 that is, distributed feeding is performed on the first radiator section 350 and the second radiator section 352, so that the Wi-Fi antenna 400 performs transmission outward. In this way, a directivity coefficient of the Wi-Fi antenna 400 is further reduced, and the directivity coefficient of the Wi-Fi antenna 400 can be reduced to 4.749 dBi, so that transmit power limitation of the Wi-Fi antenna 400 is reduced and user experience is improved.
Further, the high-frequency antenna feed point 410 is located at an end that is of the first radiator section 350 and that is away from the first end 330, and the high-frequency antenna ground point 420 is located at an end that is of the second radiator section 352 and that is away from the second end 332. In the length L direction of the low-frequency antenna radiator, the low-frequency antenna feed point 340 and the low-frequency antenna ground point 342 are located between the high-frequency antenna feed point 410 and the high-frequency antenna ground point 420.
The following specifically describes performance of a Wi-Fi antenna in an electronic device with reference to
To verify directional performance of the Wi-Fi antenna in this embodiment of this application, full-wave electromagnetic simulation software HFSS is used to perform simulation analysis, so that simulation effect diagrams in
A simulation condition for obtaining the simulation effect diagrams shown in
In
It can be learned from
It can also be learned from
By disposing the switch component 700A, based on a usage scenario of an antenna system, a second radiator section 352A can be used as different antennas at different times.
Specifically, when the switch component 700A is switched to the branch of the high-pass filter 610A connected to the ground 200A, the second radiator section 352A is used as a part of a radiator of a Wi-Fi antenna, and the first radiator section 350A is used as another part of the radiator of the Wi-Fi antenna. In this way, a directivity coefficient of the Wi-Fi antenna can be reduced.
When the switch component 700A is switched to the branch of another high-pass filter 620A connected to the output of the another high-frequency antenna radio frequency source 520A, the second radiator section 352A is used as a radiator of another Wi-Fi antenna, and the first radiator section 350A is used as a radiator of a Wi-Fi antenna. In this case, the two Wi-Fi antennas: The Wi-Fi antenna and the another Wi-Fi antenna may operate simultaneously.
In this implementation, a frequency of a radio frequency signal output by the another high-frequency antenna radio frequency source 520A is the same as a frequency of a radio frequency signal output by the high-frequency antenna radio frequency source 510A. In addition, an operating frequency band of the another newly added Wi-Fi antenna is the same as an operating frequency band of the Wi-Fi antenna.
A second radiator section 352B has a second high-frequency antenna feed point 430B and a second high-frequency antenna ground point 440B, and the second high-frequency antenna feed point 430B is located between the second high-frequency antenna ground point 440B and a second end 332B. The second high-frequency antenna feed point 430B is connected to a phase shifter 700B by using a corresponding high-pass filter 610B. and then is connected to an output of the high-frequency antenna radio frequency source 510B. The second high-frequency antenna ground point 440B is connected to the ground 200B by using the corresponding high-pass fitter 610B. A person skilled in the art may understand that a phase shifter is an apparatus that can adjust a phase of a wave. In this implementation, the phase shifter may be an existing known phase shifter, and details are not described herein.
In this application, a radio frequency signal output by the high-frequency antenna radio frequency source 510B can be directly fed to the first radiator section 350B by using the first high-frequency antenna feed point 410B, and directly fed to the second radiator section 352B by using the second high-frequency antenna feed point 430B, that is, distributed feeding is performed on the first radiator section 350B and the second radiator section 352B. In addition, the phase shifter 700B can adjust a phase difference of signals fed to the first high-frequency antenna feed point 410B and the second high-frequency antenna feed point 430B to a required phase difference, so that a directivity coefficient of the Wi-Fi antenna 400B can be reduced to a greater extent. The directivity coefficient of the Wi-Fi antenna 400B can be reduced to 4.359 dBi, so that transmit power limitation of the Wi-Fi antenna 400B is further reduced and user experience is improved. In addition, an average SAR value of a whole body of the user when the Wi-Fi antenna 400B directly touches the user body can be reduced, and the SAR value can be reduced to 1 W/kg.
In this implementation, the first high-frequency antenna ground point 420B is located at an end that is of the first radiator section 350B and that is away from the first end 330B, and the second high-frequency antenna ground point 440B is located at an end that is of the second radiator section 352B and that is away from the second end 332B.
Further, the first high-frequency antenna feed point 410B and the high-frequency antenna radio frequency source 510B, and the second high-frequency antenna feed point 430B and the high-frequency antenna radio frequency source 510B are respectively connected by using a transmission line 800B. In this implementation, the transmission line may be a microstrip. Certainly, a person skilled in the art may understand that, in another alternative implementation, the transmission line may alternatively be a transmission line of another type.
The following specifically describes performance of a Wi-Fi antenna in an electronic device with reference to
To verify directional performance and a SAR value characteristic of the Wi-Fi antenna in this embodiment of this application, full-wave electromagnetic simulation software HFSS is used to perform simulation analysis, so that simulation effect diagrams in
A simulation condition for obtaining the simulation effect diagrams shown in
Refer to
One part of energy output by the high-frequency antenna radio frequency source 510C is fed to the second radiator section 352C by using the phase shifter 700C, the high-pass filter 610C, and the second high-frequency antenna feed point 430C, and the other part of energy is fed to the first radiator section 350C from one input end of the differential circuit 900C by using the high-pass filter 610C and the first high-frequency antenna feed point 410C through the differential circuit 900C. One part of energy output by the another high-frequency antenna radio frequency source 520C is fed to the second radiator section 352C by using the phase shifter 700C, the high-pass filter 610C, and the second high-frequency antenna feed point 430C, and the other part of energy is fed to the first radiator section 350C from the other input end of the differential circuit 900C by using the high-pass filter 610C and the first high-frequency antenna feed point 410C through the differential circuit 900C. The first radiator section 350C and the second radiator section 352C not only serve as radiators of a Wi-Fi antenna 400C, but also serve as radiators of another Wi-Fi antenna 450C. In this case, the two Wi-Fi antennas: The Wi-Fi antenna 400C and the another Wi-Fi antenna 450C may operate simultaneously. In addition, when performance of the Wi-Fi antenna 400C is not affected, a directivity coefficient of the another newly added Wi-Fi antenna 450C is relatively low, and the directivity coefficient is reduced to 3.998 dBi. In addition, a SAR value of the another Wi-Fi antenna 450C is also relatively low, and the SAR value can be reduced to 2 W/kg. In this way, transmit power limitation of the another Wi-Fi antenna 450C can be reduced, and user experience can be improved. The SAR value is an average SAR value of the whole body. When the high-frequency antenna radio frequency source 510C is in a non-working state, and the another high-frequency antenna radio frequency source 520C is in a working state, the directivity coefficient and the SAR value of the another antenna 450C may be separately tested. In addition, the high-frequency antenna radio frequency source 510C may excite the first radiator section 350C and the second radiator section 352C in a common mode signal mode, and the another high-frequency antenna radio frequency source 520C may excite the first radiator section 350C and the second radiator section 352C in a differential mode signal mode. Because isolation between a common mode signal and a differential mode signal is very high, isolation between the two Wi-Fi antennas is also very high.
In this implementation, a frequency of the radio frequency signal output by the another high-frequency antenna radio frequency source 520C is the same as a frequency of the radio frequency signal output by the high-frequency antenna radio frequency source 510C. In addition, an operating frequency band of the another newly added Wi-Fi antenna 450C is the same as an operating frequency band of the Wi-Fi antenna 400C.
Performance of a low-frequency antenna, a antenna, and another Wi-Fi antenna in an electronic device is specifically described below with reference to
To verify directional performance and a SAR value characteristic of the low-frequency antenna, the Wi-Fi antenna, and the another Wi-Fi antenna in this embodiment of this application, full-wave electromagnetic simulation software HFSS is used to perform simulation analysis, so that simulation effect diagrams in
A simulation condition for obtaining the simulation effect diagrams shown in
It can be learned from
Obviously, a person skilled in the art can make various modifications and variations to this application without departing from the spirit and scope of this application. In this way, this application is intended to cover these modifications and variations provided that they fall within the scope of the following claims and their equivalent technologies.
Number | Date | Country | Kind |
---|---|---|---|
202010884837.2 | Aug 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/110098 | 8/2/2021 | WO |