The present invention relates to antenna systems for radiocommunication stations.
Most radiocommunication stations use dipoles as antenna elements. The dipole is sensitive to RF electromagnetic waves having the electric field parallel to the direction of the dipole.
It is known to arrange dipoles having two different orientations so that the station can transmit or receive radio waves having different polarizations of the electric field E. In the “cross-polarization” arrangement two dipoles are disposed at right angles in a common plane. This makes the antenna sensitive to both the horizontal and the vertical polarization of the electric field E, or to a circular polarization if used with suitable RF couplers (see WO 97/37440).
Another common type of antenna element consists of a slot cut in a metallic plane and fed across the two lateral edges of the slot. The slot antenna has a radiation diagram dual of the dipole, i.e. it is sensitive to RF electromagnetic waves having the magnetic field H parallel to the direction of the slot. A radiocommunication base station equipped with a slot antenna is disclosed in WO 99/60657. A radiocommunication handset equipped with a slot antenna is disclosed in U.S. Pat. No. 6,462,714.
In the fixed stations deployed by cellular operators, the antenna typically consists of an array of antenna elements such as dipoles or cross-polarization elements. The arrayed elements are fed with suitable phase shifts to provide directivity, for example for the station to serve a sector-shaped cell.
Antenna systems having different polarizations are used to improve the characteristics of the transmission system. Polarization diversity can be used on the transmitting side and/or on the receiving side. By transmitting a signal on two polarization states, the probability that it is correctly received increases. Likewise, the receiver obtains a gain by listening to more than one polarization and combining the signals received on the different polarization states.
Another field in which antennas having multiple polarities become popular is that of multiple input - multiple output (MIMO) systems. In the MIMO scheme, signal components carrying different information are transmitted along different paths. The paths can be distinguished spatially or by the polarization state of the signals. The receiver also has a multiple antenna and performs an estimation of the transfer matrix from the antenna system of the transmitter to that of the receiver. If the antennas are sufficiently decorrelated, which is usually the case when perpendicularly polarized antennas are considered, the transfer matrix can be inverted to recover the different signal components. This MIMO scheme increases the system throughput.
In a handheld terminal, it is not easy to ensure spatial decorrelation of the antenna elements because the dimensions are small. Polarization diversity is rather used, with two dipole elements arranged perpendicular to each other and parallel to the front face of the terminal. This makes it possible to achieve second order reception diversity or second order MIMO. However, a limitation is that the waves having their electric field components perpendicular to the dipoles are not sensed.
An object of the present invention is to provide an antenna system which makes it possible to take advantage of as many signal components as possible in a diversity or MIMO scheme.
The invention thus proposes an antenna system for a radiocommunication station, comprising a plurality of antenna elements having different polarizations and arranged for coupling with RF electric field components oriented along three mutually perpendicular directions.
The station is suitable for transmitting and/or receiving RF waves having any polarization direction for the electric field. It is thus possible to avoid insensitivity to certain signal components, which increases the performance of the transmission system either by providing more polarization diversity or by adding potentially interesting MIMO propagation channels.
In an advantageous embodiment, particularly adapted to small-sized stations such as handsets, at least one of the antenna elements comprises a slot antenna element. Such slot antenna element can be arranged with its metal plane parallel to a front face of the station, while providing sensitivity to electric field components perpendicular to that front face. It can also be arranged along a lateral face of the station with the slot oriented perpendicular to the thickness of the station.
A dipole antenna element having the same orientation as the slot antenna element is preferably used for electric field components parallel to the slot.
Another aspect of the present invention relates to a radiocommunication station, comprising transceiver circuits and an antenna system as defined above connected to the transceiver circuits.
In accordance with the invention, additional antenna elements 5 are provided in the aerial array, in order to interact with electromagnetic waves having their electric field perpendicular to the facet 1, i.e. parallel to Oz. In the example of
The presence of this type of antenna sensitive to the radial component (Oz) of the electric field, and not only to the two other components (Ox and Oy), is of particular interest in stations installed in an indoor environment, because many objects scatter or diffract the transmitted or received waves in such environment. Advantageously, WiFi or WiMAX types of stations can be fitted with an antenna system according to the invention. In this application, the antenna system will generally not have to be arrayed along direction Ox as shown in
The layout of the different antenna elements 3, 4, 5 makes it possible to take advantage of all the components of the radiated electric field.
In a handheld station 6, it is not convenient to arrange dipole elements perpendicular to the front face 6b (as the dipole elements 5 of
A radiating slot 10 of the above kind formed in an infinite conductive plate has a radiation diagram that is the dual of that of the electrical dipole. The figure shows the theoretical radiation diagram of a slot surrounded by an infinite metallic plane. However, in practice, such a diagram is obtained as soon as the extension of the metal around the slot is if the order of λ or even λ/2. This means that the component in which the radiating slot is made can have a width (along Oz) of approximately 5 mm for communication frequencies around 2 GHz.
In the direction Oy perpendicular to the plane of the slot 10, the electric field vector E lies in the direction Oz parallel to the plane of the slot and in planes near the plane of the slot xOz the electric field vector E is perpendicular to the plane of the slot (parallel to Oy). Along a semicircle 11 centered on the axis Ox (shown in dashed outline in
Therefore, the slot 10 disposed as shown in
The third element is a radiating slot 18 oriented along Ox, i.e. parallel to dipole 16. From the radiation diagram of the slot, it can be checked that in this configuration too, it is sensitive to RF electric field components parallel to Oz and arriving from the direction Oy. It will be appreciated that the radiating slot 18 can also be disposed in a plane offset with respect to the plane carrying dipoles 16-17.
In the alternative embodiment of
In another alternative embodiment, the handset can have only the dipole 8 or 16 and the radiating slot 10 or 18 parallel thereto. With these two antenna elements, it is sensitive to the electric field components along the three mutually perpendicular directions Ox, Oy and Oz.
Antenna arrangements as discussed above are suitable for both transmission and reception, though for certain applications they can be used in only one direction for which the expected gain is higher. For example, in cellular communications, increasing the order of diversity may be desirable only in the downlink direction, from base stations to mobile stations.
In a transmit diversity scheme, the signal processing unit 23 delivers the same signal to the three RF stages 20-22, or to only two of them. On the transmitter side of a MIMO scheme, the signal processing unit 23 delivers to the three RF stages 20-22, or to only two of them, signals carrying different information.
In a receive diversity scheme, the signal processing unit 23 combines the signals coming from the three RF stages 20-22, or from only two of them, in response to the electromagnetic waves sensed by the three antenna elements. The combination is typically performed using the well-known maximum ratio combining (MRC) method. When the three signal components are exploited, MRC can be applied directly as a weighted summation of the three signal components. Alternatively, second order MRC is applied to the two components received with the highest signal strength. In other words, the processing unit 23 ignores the received component of lowest strength and combines the two other components.
On the receiver side of a MIMO scheme, the signal processing unit 23 receives the signals coming from the three RF stages 20-22, or from only two of them, and analyzes them in a known manner to estimate the transfer matrix of the compound channel and to evaluate the transmitted information.
In the embodiment illustrated by
The embodiment of
The receiver can also probe the signal strength received on the three antenna elements and select those that maximize the signal strength.
Number | Date | Country | Kind |
---|---|---|---|
EP 05292019.6 | Sep 2005 | EP | regional |