The disclosure relates generally to an antenna system, and more particularly, to an antenna system with high radiation efficiency.
With advancements in mobile communication technology, mobile devices such as signal trackers, GPS (Global Positioning System) trackers, portable computers, mobile phones, multimedia players, and other hybrid functional portable electronic devices have become more common. To satisfy consumer demand, mobile devices can usually perform wireless communication functions. Some devices cover a large wireless communication area; these include mobile communication devices using 2G, 3G, and LTE (Long Term Evolution) systems and using frequency bands of 700 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, 2100 MHz, 2300 MHz, and 2500 MHz. Some devices cover a small wireless communication area; these include mobile communication devices using Wi-Fi and Bluetooth systems and using frequency bands of 2.4 GHz, 5.2 GHz, and 5.8 GHz.
Antennas are indispensable elements for wireless communication. If an antenna for signal reception and transmission has poor radiation efficiency, it will degrade the communication quality of the mobile device. Accordingly, it has become a critical challenge for antenna designers to design an antenna system with wide bandwidth and high radiation efficiency.
In an exemplary embodiment, the disclosure is directed to an antenna system including a ground element, a switch element, a first antenna, and a second antenna. The switch element is selectively closed or opened according to a control signal. The first antenna has a first feeding terminal. The first feeding terminal of the first antenna is coupled to a first signal source. The second antenna has a second feeding terminal and a grounding terminal. The second feeding terminal of the second antenna is coupled through the switch element to a second signal source. The grounding terminal of the second antenna is coupled to the ground element.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In order to illustrate the purposes, features and advantages of the invention, the embodiments and figures of the invention are shown in detail as follows.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. The term “substantially” means the value is within an acceptable error range. One skilled in the art can solve the technical problem within a predetermined error range and achieve the proposed technical performance. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
The following embodiments and figures will describe the detailed structures and radiation branches of the antenna system 100. It should be understood that these embodiments and figures are merely exemplary, rather than restricted limitations of the invention.
The first antenna 230 includes a first radiation branch 240, a second radiation branch 250, and a third radiation branch 260. The first radiation branch 240 is coupled to the first signal source 191 and the ground element 220. The third radiation branch 260 is coupled through the second radiation branch 250 to the first radiation branch 240. The first radiation branch 240 and the second radiation branch 250 are disposed on the first surface E1 of the dielectric substrate 210, and the third radiation branch 260 is disposed on the second surface E2 of the dielectric substrate 210. The first radiation branch 240 may have a first meandering structure, such as a W-shape, and it may be positioned between the second radiation branch 250 and the ground element 220. The first radiation branch 240 has a first end 241 and a second end 242. The first end 241 of the first radiation branch 240 has a first feeding terminal 231 and a first grounding terminal 232. The first feeding terminal 231 of the first end 241 of the first radiation branch 240 is coupled to the first signal source 191. The first grounding terminal 232 of the first end 241 of the first radiation branch 240 is coupled to the ground element 220. The second end 242 of the first radiation branch 240 is open. The second radiation branch 250 may have a second meandering structure, such as a U-shape. The second radiation branch 250 has a first end 251 and a second end 252. The first end 251 of the second radiation branch 250 is coupled to a connection point CP of the first radiation branch 240. The second end 252 of the second radiation branch 250 extends from the connection point CP and the second radiation branch 250 at least partially surrounds the first radiation branch 240. The third radiation branch 260 may have a third meandering structure, such as an L-shape. The third radiation branch 260 has a first end 261 and a second end 262. The first end 261 of the third radiation branch 260 is coupled through a via element 255 to the second end 252 of the second radiation branch 250. The second end 262 of the third radiation branch 260 is open. The via element 255 may be penetrated through the dielectric substrate 210. The third radiation branch 260 has a vertical projection at least partially overlapping the first radiation branch 240. Such a design can enhance the coupling effect between the first radiation branch 240 and the third radiation branch 260, so as to increase the high-frequency bandwidth of the first antenna 230.
In some embodiments, the first antenna 230 further includes a first inductor L1 and a second inductor L2, which may be chip inductors. The first inductor L1 is coupled between the first grounding terminal 232 of the first end 241 of the first radiation branch 240 and the ground element 220. The first inductor L1 is configured to adjust the high-frequency impedance matching of the first antenna 230. The inductance of the first inductor L1 may be from about 6 nH to about 9 nH. The second inductor L2 is coupled between the first end 251 of the second radiation branch 250 and the connection point CP on the first radiation branch 240. The second inductor L2 is configured to reject the high-frequency currents, thereby separating the high-frequency resonant path from the low-frequency resonant path of the first antenna 230. The inductance of the second inductor L2 may be from about 6 nH to about 9 nH. The above inductance ranges are based on many experiment results, and they can be used to fine-tune the operation frequency of the first antenna 230. It should be noted that the first inductor L1 and the second inductor L2 are optional elements. In alternative embodiments, the first inductor L1 and the second inductor L2 are removed, such that the first end 241 of the first radiation branch 240 is directly connected to the ground element 220, and the first end 251 of the second radiation branch 250 is directly connected to the connection point CP on the first radiation branch 240.
In some embodiments, the first antenna 230 further includes a supporting plate 258. The supporting plate 258 is made of a nonconductive material, such as a plastic material, and it may have a substantially rectangular shape and cover about a quarter of the second surface E2 of the dielectric substrate 210. The supporting plate 258 is disposed between the third radiation branch 260 and the second surface E2 of the dielectric substrate 210. The third radiation branch 260 is disposed on the supporting plate 258. The via element 255 may be formed through the supporting plate 258 and the dielectric substrate 210. The supporting plate 258 is configured to support and fix the third radiation branch 260, and adjust the coupling gap between the first radiation branch 240 and the third radiation branch 260. It should be noted that the supporting plate 258 is an optional element. In alternative embodiments, the supporting plate 258 can be removed, such that the third radiation branch 260 can be disposed directly on the second surface E2 of the dielectric substrate 210.
The second antenna 270 includes a fourth radiation branch 280 and a fifth radiation branch 290. The fourth radiation branch 280 is coupled to the switch element 120 and the ground element 220. The fifth radiation branch 290 is coupled to the fourth radiation branch 280. The fourth radiation branch 280 has a fourth meandering structure, such as a C-shape. The fourth radiation branch 280 has a first end 281 and a second end 282. The first end 281 of the fourth radiation branch 280 has a second feeding terminal 271 and a second grounding terminal 272. The second feeding terminal 271 of the first end 281 of the fourth radiation branch 280 is coupled through the switch element 120 to the second signal source 192. The second grounding terminal 272 of the first end 281 of the fourth radiation branch 280 is coupled to the ground element 220. The fifth radiation branch 290 has a fifth meandering structure, such as a J-shape. The fifth radiation branch 290 has a first end 291 and a second end 292. The first end 291 of the fifth radiation branch 290 is coupled to the second end 282 of the fourth radiation branch 280. The second end 292 of the fifth radiation branch 290 is open. Specifically, the fourth radiation branch 280 and the fifth radiation branch 290 together define a notch 285, and the second end 292 of the fifth radiation branch 290 extends into an interior of the notch 285 to form a substantial spiral shape, so as to minimize the total size of the second antenna 270.
According to an embodiment of the present invention, the second antenna 270 further includes a third inductor L3 and a fourth inductor L4, which may be chip inductors. The third inductor L3 is coupled between the second grounding terminal 272 of the first end 281 of the fourth radiation branch 280 and the ground element 220. The third inductor L3 is configured to adjust the high-frequency impedance matching of the second antenna 270. The inductance of the third inductor L3 may be from about 6 nH to about 9 nH. The fourth inductor L4 is coupled between the second end 282 of the fourth radiation branch 280 and the first end 291 of the fifth radiation branch 290. The fourth inductor L4 is configured to reject the high-frequency currents, thereby separating the high-frequency resonant path from the low-frequency resonant path of the second antenna 270. The inductance of the fourth inductor IA may be from about 10 nH to about 18 nH. The above ranges of inductances are determined based on many experiment results, and they can fine-tune the operation frequency of the second antenna 270. It should be noted that the third inductor L3 and the fourth inductor L4 are optional elements. In alternative embodiments, the third inductor L3 and the fourth inductor IA are removed, such that the second grounding terminal 272 of the first end 281 of the fourth radiation branch 280 is directly connected to the ground element 220, and the first end 291 of the fifth radiation branch 290 is directly connected to the second end 282 of the fourth radiation branch 280.
The embodiments of the invention propose a novel antenna system. In comparison to the conventional antenna design, the proposed antenna system has at least the advantages of: (1) being a planar antenna design, (2) being easy to manufacture a large amount of identical products, (3) covering the wideband operation of the LTE frequency bands, and (4) enhancing either the diversity gain or the radiation efficiency. Therefore, the proposed antenna system is suitable for application in a variety of small-size mobile communication devices.
Note that the above element sizes, element parameters, element shapes, and frequency ranges are not limitations of the invention. An antenna designer can fine-tune these settings or values according to different requirements. It should be understood that the antenna system of the invention is not limited to the configurations of
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term) to distinguish the claim elements.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Name | Date | Kind |
---|---|---|---|
20080007468 | Sato | Jan 2008 | A1 |
20090251381 | Chou | Oct 2009 | A1 |
20100214175 | Hui | Aug 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20180159226 A1 | Jun 2018 | US |