Antenna systems and devices, and methods of manufacture thereof

Information

  • Patent Grant
  • 11539125
  • Patent Number
    11,539,125
  • Date Filed
    Friday, July 23, 2021
    3 years ago
  • Date Issued
    Tuesday, December 27, 2022
    a year ago
Abstract
Embodiments of the present disclosure provide methods, apparatuses, devices and systems related to the implementation of a multi-layer printed circuit board (PCB) radio-frequency antenna featuring, a printed radiating element coupled to an absorbing element embedded in the PCB. The embedded element is configured within the PCB layers to prevent out-of-phase reflections to the bore-sight direction.
Description
BACKGROUND

The bore-sight direction of an antenna corresponds to an axis of maximum gain (maximum radiated power). In many cases there is a requirement for thin, directional, wideband or even Ultra-Wideband antennas to have suitable bore-sight performance. One such example is used in medical devices, where the bore-sight direction can be configured for use in/on human tissue, either attached against skin for a non-invasive application, or against muscle or any internal tissue/organ for invasive applications.


In prior art directional antennas, the antenna is designed so that a substantial percentage of the antenna's power is typically radiated in the bore-sight direction. However, in such prior art antennas, some residual power (in some cases, up to about 20%) typically radiates in an opposite direction, which is known as “back-lobe” radiation. These prior art antennas typically include a reflector at a distance of λ/4 that allow the energy radiated backwards to be properly reflected towards the main lobe. However, in some instances, upon antenna dimensions or the radiated bandwidth do not allow for such structure, other alternatives must be sought to avoid, for example, out-of-phase interference with the main lobe direction propagating waves, and/or avoid back lobe radiation.


SUMMARY OF SOME OF THE EMBODIMENTS

Embodiments of the present disclosure provide methods, apparatuses, devices and systems related to a broadband transceiver slot antenna configured to radiate and receive in the UHF frequency band. Such antenna embodiments may include several slot-shapes configured to optimize one and/or other antenna parameters, such as, for example, bandwidth, gain, beam width. Such embodiments may also be implemented using, for example, a number of different, printed radiating elements such, for example, a spiral and/or dipole.


In some embodiments, antenna systems and devices are provided to achieve reasonable performance with thin directional RF antennas, and in particular, those used in medical devices (for example).


In some embodiments, a system, method and/or device are presented which implements back-lobe, dissipation and/or reflection functionality. Accordingly, in the case of back reflection, some embodiments of the disclosure present a PCB based antenna which includes an absorbing material which helps to eliminate non-in phase reflection. In some embodiments, this may be accomplished by minimizing the thickness dimension of the antenna, typically parallel to the bore-sight. In some embodiments, the noted functionality may be incorporated in internal printed-circuit-board (PCB) layers of an antenna. In some embodiments, the thickness of the antenna is less than λ/4, and in some embodiments, much less (e.g., is <<λ/4). To that end, absorbing material included in some embodiments includes a thickness less than λ/4 (and in some embodiments is <<λ/4).


In some embodiments, a printed circuit board (PCB) is configured with radio-frequency functionality. The PCB board may comprise a plurality of layers (the PCB structure may also be a separate component in addition to the plurality of layers). In some embodiments, at least one layer (which may be an internal and/or centralized layer) may comprise one or more printed radio-frequency (RF) components and at least one embedded element comprising at least one of a magnetic material and an absorbing material.


In some embodiments, the PCB further comprises an antenna, which may comprise a wideband bi-directional antenna. The PCB may additionally or alternatively include a delay line.


In some embodiments, the PCB can further include a temperature resistant absorbing material, e.g., which may be resistant to temperatures fluctuations between 150° C. and 300° C., for example.


In some embodiments, the absorbing material may be covered with a conductive material comprising, for example, at least one of a row of conductive vias, a coated PCB layer(s), and other structure(s). Additionally, the absorbing material may be placed above the radiator layer of at least one antenna, embedded (for example) in the plurality of layers comprised by the PCB. In some further embodiments, the absorbing material can be surrounded by a conductive hedge structure.


In some embodiments, the PCB (e.g., one or more, or all of the layers thereof) may be made of at least one of a ceramic, silicon based polymer (i.e., a high temp polymer), and ferrite material.


In some embodiments, the PCB structure includes a plurality of electronic components. Such components may comprise radio-frequency generating components, data storage components (for storing data corresponding to reflected radio waves), and processing components (for analyzing collected data and/or other data).


In some embodiments, the PCB can include a directional antenna with a radiating element backed by a metallic reflector. The distance between the radiating element and the metallic reflector can configured, for example, to be less than about a quarter of the wavelength of a received or transmitted RF signal, and in some embodiments, substantially less (e.g., in some embodiments between greater than 0 and about 15% the wavelength, and in some embodiments, between greater than 0 and about 10% the wavelength).


In some embodiments, the PCB may further comprise a cavity resonator, a radiating element, and a plurality of rows of conducting vias. The resonator may be arranged behind the radiating element—being separated by at least one of the plurality of rows of conducting vias. The radiating element may include internal edges having a coating of conductive material.


In some embodiments, the PCB may include one or more openings configured to release gas pressure during a lamination process to produce the PCB. The one or more openings may comprise vias, channels and/or slots. The vias may be configured as through-hole vias, blind vias and/or buried vias, for example. The one or more openings may be filled with a conducting or a non-conductive material.


In some embodiments, the RF structures may comprise delay lines, circulators, filters and the like.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a representation of an antenna front layer, including transmitting and receiving antenna, according to some embodiments;



FIG. 2 shows a representation of a directional antenna with a radiating element backed metallic reflector, according to some embodiments;



FIG. 3 shows a representation of an antenna layers structure, according to some embodiments;



FIG. 4 shows a representation of an antenna layers structure, via to copper contact, according to some embodiments;



FIG. 5 shows a representation of a dissipating material, insight structure, top view, according to some embodiments;



FIG. 6 shows a representation of a component side to antenna transmission line, according to some embodiments;



FIG. 7 shows a representation of a gas release mechanism, according to some embodiments;



FIG. 8 shows a representation of the laminating process stages, according to some embodiments;



FIG. 9 illustrates a representation of a metallic wall or hedge surrounding an absorbing material, according to some embodiments; and



FIG. 10 shows an example of a delay line implemented with embedded dielectric material, according to some embodiments.





DETAILED DESCRIPTION OF SOME OF THE EMBODIMENTS


FIG. 1 illustrates a representation of an antenna front layer of a PCB structure, including a transmitting and receiving antenna(s), according to some embodiments. The antenna may be a planar antenna comprising a radiator printed on the external layer of the PCB. The antenna (as well as other components included with and/or part of the PCB) may be manufactured from a variety of materials including at least one of, for example, ceramic, polymers (e.g., silicon based or other high temperature resistant polymer), and ferrite. In some embodiments, the shape of the PCB and/or antenna(s) may be optimized so as to enhance at least one of characteristic of the apparatus, including, for example, antenna gain (e.g., at different frequencies in the bandwidth).


In some embodiments, the antenna may comprise an antenna array 100 which includes a plurality of antennas 102 (e.g., two or more antennas), and one or more of antennas 102 may comprise at least one of a wideband directional antenna(s) and an omnidirectional antenna(s). In the embodiments illustrated in FIG. 1, the antenna array may include at least one transmitting antenna (Tx) for radar pulse transmission, and at least one receiving antenna (Rx). In some embodiments, excitation of an antenna may be achieved via an internal feed line arranged within one of the PCB's layers (as shown in FIG. 6), without use of, for example, any radio-frequency (RF) connectors.


Accordingly, by implementing the antenna and electronics on a single printed circuit board (PCB) structure, a reduction in cost and size can be realized, as well as an elimination of the need for RF connectors.



FIG. 2 illustrates a representation of a directional antenna with a radiating element backed by a metallic reflector according to some embodiments of the disclosure. The directional antenna with a main lobe direction 204 comprises a radiating element 212, which may be positioned at a λ/4 distance 202 from a backed metallic reflector 214 wherein λ represents the wavelength of the RF signal 206. The directional antenna can be configured such that a phase inversion occurs when an RF signal/electromagnetic wave 206 reflects on the reflector 214. In some embodiments, the reflector 214 can comprise a metallic material including at least one of, for example, copper, aluminum, a plated conductive element and/or the like.


In some embodiments, arranging radiating element 212 at a distance λ/4 from the reflector 214, the in-phase reflected waves 210 are coherently summed to signals/waves 208 transmitted from the radiating element 212 and propagated in the opposite direction to that of the reflector 214 direction. In such cases, a maximum efficiency may be achieved by configuring the distance 202 between the radiating element 212 and the reflector 214.


Accordingly, when the reflector 214 is arranged at a distance equivalent to d<<λ/4 (i.e., a distance that is much less than the transmitted RF wavelength's divided by four) such that, the reflected waves 210 are summed out-of-phase with the signals 208 propagated from the radiating element 212, which can substantially degrade the antenna's performance, up to, for example, a full main lobe cancelation.


In some embodiments, where the distance d is <<λ/4, an absorptive material may be arranged between the radiating element 212 and the reflector 214, enabling proper gain performance at the main lobe direction of some embodiments in the ultra-wide band bandwidth, and moreover, may substantially reduce the antenna's thickness. In some embodiments, depending on the required performance, the thickness of an antenna may be reduced up to a factor of ten or more.



FIG. 3 illustrates a via to conductive layer contact, intended to create a conductive enclosure covering an absorbing material. In some embodiments, a via conductive layer includes an embedded temperature resistant absorbing material 302, for example, which may comprise magnetically loaded silicon rubber. Such a material can comply with thermal requirements imposed by PCB production processes and assembly of electronic components. For example, the material 302 can be configured to endure the exposure to high temperatures during the production processes; such temperatures can fluctuate between 150° C. and 300° C. depending on the process. In some embodiments, the via conductive layer connection point 306 can be an extension of the conductive cover placed over the embedded absorbing material 302. In some embodiments, a blind via 304, can be part of the conductive cover placed over the embedded absorbing material. Item 301 also comprises a blind via.


The absorbing material 302 can be used to dissipate back-lobe radiation, can be placed above the antenna radiator layer embedded in the internal layers of the PCB structure. In some embodiments, the shape and thickness of this absorbing material is optimized for example larger dimensions may improve performance for lower frequencies. For example a thicker absorbing material improves performance but increases the antenna's dimensions. The absorbing material may comprise and/or be based on a dissipater made of a ferrite material and/or flexible, magnetically loaded silicone rubber non-conductive materials material such as Eccosorb, MCS, and/or absorbent materials, and/or electrodeposited thin films for planar resistive materials such as Ohmega resistive sheets.



FIG. 4 provides a detailed zoomed-in view of details from FIG. 3, illustrating a representation of an antenna and layered PCB structure according to some embodiments of the disclosure. As shown, the PCB structure may include one or more layers having an embedded absorbing material 402 (or the one or more layers may comprise adsorbing material, with the one more layers being internal to the PCB), and a plurality of additional layers. In some embodiments, the layers can be configured to be substantially flat with little to no bulges. The via holes 404 (e.g., blind vias) may be electrically connected to their target location, via to conductive layer connection point 406 (for example), and may be configured in a plurality of ways including, for example, through-hole vias, blind vias, buried vias and the like. In some embodiments, the absorbing material 404 can be configured to come into contact with the antenna's PCB however this configuration is not essential for the antennas operation.



FIG. 5 illustrates a representation of the internal structure/top-view of a dissipating material according to some embodiments. Specifically, the internal structure of the antenna PCB may comprise an embedded absorbing material 502 positioned over one or more printed radiating elements (and in some embodiments, two or more), for example, a spiral and/or dipole.



FIG. 6 illustrates a representation of the signal transmission from an electronic circuit to an antenna PCB, according to some embodiments. In some embodiments, a signal can be fed from the electronic components layer 602 in to a blind via 601. Thereafter, the signal can be transmitted through the transmission line 605 (which may comprise of a plurality of layers of the PCB structure), to the blind via 606, and further to transmission line 605 and blind via 601 which feeds a radiating element and/or antenna 604. Additionally, an absorbing layer 603 may be included.



FIG. 7 illustrates a representation of a gas release mechanism, according to some embodiments. For example, the structure may comprise one or more of openings including, for example, a gas pressure release vent or opening 702, another gas pressure release aperture is depicted as 706 configured to release gas pressure during, for example, a lamination process needed to produce the final PCB structure (see description of FIG. 8 below (The lamination process is standard. Embedding materials inside the PCB is rare and we are not aware of venting anywhere. In some embodiments, the one or more openings 702 and 706 may comprise vias, channels and/or slots. In some embodiments, the one or more openings can be filled with a material after the lamination or assembly process, for example with a conducting or a non-conducting material for example: epoxy, conductive or not. Absorbing layer 704 may also be included.



FIG. 8 illustrates a lamination process according to some embodiments of the present disclosure. In such embodiments, a plurality of layers may be laminated. For example, the layers (e.g., groups of layers) represented in FIG. 8 may be laminated in the following order (for example): 802, 806, 804, 808, and 810. One or more, and preferably all, of stacks (items 1-9, i.e., layer 804 and items 10-14, i.e., layer 808) which may include an absorbing material (e.g., in a middle layer), may be laminated together. In the figure, lamination 808, which includes layers 11 and 12, may include an absorbing material. In some embodiments, a last lamination 810 of previous laminations may be performed, and several steps may be implemented in succession to perform this lamination, such as, for example, temperature reduction, and configuring gas flow channels/tunnels (e.g., gas pressure release openings 702, and/or grass pressure release aperture 706 in FIG. 7).



FIG. 9 illustrates a representation of a metallic wall or hedge surrounding an absorbing material, according to some embodiments. As shown, the absorbing material 901 can be surrounded by a metal boundary or hedge 902, configured either as a metallic wall immediately surrounding the absorbing material and/or in direct contact with a plurality of conductive materials (e.g., such as a metallic coating of PCB or rows of conducting vias). In some embodiments, the conductive material can be any conductive material including but not limited to copper, gold plated metal and the like. Such a conductive material can generate a reflection coefficient and/or loss which improves antenna's match to a transmission line via holes placed around the circumference of the buried absorber/dissipater. In some embodiments, a metallic conductive covering layer of (for example) copper and/or gold plated material may be provided above the absorbing material to create a closed electromagnetic cavity structure.



FIG. 10 illustrates an exemplary implementation of a delay line 1006 of a PCB structure 1000, the delay line configured to produce a specific desired delay in the transmission signal between two RF transmission lines 1004 and 1008, implemented with an embedded dielectric material 1010. In some embodiments, basic RF components including, but not limited to, a delay line a circulator and/or a coupler and the like RF components, can be implemented as one or more printed layers within a PCB structure 1000. In some embodiments, this may be accomplished in combination with at least one of a dielectric, magnetic, and absorbing materials embedded in the PCB. Such embedded devices may include, for example, delay lines, circulators, filters and the like. For example, by using high Dk material above delay line, its length can be minimized Unwanted coupling and/or unwanted radiation reduction can also be achieved by using PCB embedded absorbing or termination material.


Example embodiments of the devices, systems and methods have been described herein. As may be noted elsewhere, these embodiments have been described for illustrative purposes only and are not limiting. Other embodiments are possible and are covered by the disclosure, which will be apparent from the teachings contained herein. Thus, the breadth and scope of the disclosure should not be limited by any of the above-described embodiments but should be defined only in accordance with features and claims supported by the present disclosure and their equivalents. Moreover, embodiments of the subject disclosure may include methods, systems and devices which may further include any and all elements/features from any other disclosed methods, systems, and devices, including any and all features corresponding to antennas, including the manufacture and use thereof. In other words, features from one and/or another disclosed embodiment may be interchangeable with features from other disclosed embodiments, which, in turn, correspond to yet other embodiments. One or more features/elements of disclosed embodiments may be removed and still result in patentable subject matter (and thus, resulting in yet more embodiments of the subject disclosure). Furthermore, some embodiments of the present disclosure may be distinguishable from the prior art by specifically lacking one and/or another feature, functionality or structure which is included in the prior art (i.e., claims directed to such embodiments may include “negative limitations”).


Any and all references to publications or other documents, including but not limited to, patents, patent applications, articles, webpages, books, etc., presented anywhere in the present application, are herein incorporated by reference in their entirety.

Claims
  • 1. A medical device radio-frequency (RF) antenna comprising: a metallic reflector;andan absorbing material,wherein, the metallic wall or hedge surrounds at least a portion the absorbing material, is in direct contact with one or more conductive portions,andthe absorbing material is configured to absorb back-lobe radiation of the RF antenna.
  • 2. The RF antenna of claim 1, wherein the one or more conductive portions are selected from the group consisting of copper, a gold plated metal.
  • 3. The RF antenna of claim 1, wherein the one or more conductive portions are configured to generate a reflection coefficient and/or loss so as to match a transmission line via holes placed around the circumference of the absorbing material.
  • 4. The RF antenna of claim 1, wherein the metallic reflector surrounds a majority of the absorbing material.
  • 5. The RF antenna of claim 1, comprises a printed circuit board (PCB).
  • 6. The RF antenna of claim 5, wherein the absorbing material is disposed within one or more internal layers of the PCB.
  • 7. The RF antenna of claim 6, wherein the absorbing material is arranged between a radiating element and a metallic reflector.
  • 8. The RF antenna of claim 5, further comprising one or more openings configured to release gas pressure during a lamination process in producing the PCB.
  • 9. The RF antenna of claim 8, wherein the one or more openings comprise vias, channels and/or slots.
  • 10. The RF antenna of claim 9, wherein the vias comprises at least one of through-hole vias, and blind vias.
  • 11. The RF antenna of claim 10, wherein the one or more openings are filled with a material after gas release.
  • 12. The RF antenna of claim 5, wherein the PCB comprises a plurality of layers, and wherein at least one of the layers comprises at least one of ceramic, high temperature polymer impregnated with an RF absorbing material, and ferrite.
  • 13. The RF antenna of claim 1, comprising at least one radiating element.
  • 14. The RF antenna of claim 13, wherein the metallic reflector backs the at least one radiating element.
  • 15. The RF antenna of claim 1, further comprising an electronic circuit.
  • 16. The RF antenna of claim 15, wherein the electrical circuit comprises an RF transceiver.
  • 17. The RF antenna of claim 15, wherein the electrical circuit comprises impedance matching circuitry.
  • 18. The RF antenna of claim 1, comprises a printed circuit board (PCB) and at least one radiating element.
  • 19. The RF antenna of claim 18, further comprising an electronic circuit, wherein the electronic circuit is in electrical communication with the radiating element through one or more of a via and a transmission line in a layer of the PCB.
  • 20. The RF antenna of claim 19, wherein the electrical circuit comprises RF front-end circuitry.
  • 21. The RF antenna of claim 18, wherein the radiating element is disposed within at least one external layer of the PCB.
  • 22. The RF antenna of claim 1, wherein the absorbing material comprises an embedded magnetic material within a PCB.
  • 23. The RF antenna of claim 1, wherein the one or more conductive portions comprise arranged to substantially surround the embedded absorbing material.
  • 24. The RF antenna of claim 23, wherein the one or more conductive portions comprise a row of conductive vias connected to a conductive layer.
  • 25. The RF antenna of claim 1, wherein the distance between the radiating element and the metallic reflector is configured to be less than a fourth of the distance of the wavelength of a received RF signal.
  • 26. The RF antenna of claim 1, wherein the absorbing material comprises a heat resistant absorbing material.
RELATED APPLICATIONS

This application claims priority under 35 USC § 119 to U.S. provisional patent application No. 61/897,036 filed Oct. 29, 2013, entitled “ANTENNA SYSTEMS FOR USE IN MEDICAL DEVICES AND METHODS OF MANUFACTURE THEREOF,” the entire contents of which are herein incorporated by reference. This application may contain material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office file/records, but otherwise reserve all rights.

US Referenced Citations (244)
Number Name Date Kind
4240445 Iskander et al. Dec 1980 A
4344440 Aaby et al. Aug 1982 A
4557272 Carr Dec 1985 A
4632128 Paglione et al. Dec 1986 A
4640280 Sterzer Feb 1987 A
4641659 Sepponen Feb 1987 A
4774961 Carr Oct 1988 A
4777718 Henderson et al. Oct 1988 A
4825880 Stauffer et al. May 1989 A
4926868 Larsen May 1990 A
4945914 Allen Aug 1990 A
4958638 Sharpe Sep 1990 A
4986870 Frohlich Jan 1991 A
5003622 Ma et al. Mar 1991 A
5109855 Guner May 1992 A
5394882 Mawhinney Mar 1995 A
5404877 Nolan Apr 1995 A
5474574 Payne et al. Dec 1995 A
5540727 Tockman et al. Jul 1996 A
5549650 Bornzin et al. Aug 1996 A
5668555 Starr Sep 1997 A
5704355 Bridges Jan 1998 A
5766208 McEwan Jun 1998 A
5807257 Bridges Sep 1998 A
5829437 Bridges Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5865177 Segawa Feb 1999 A
5967986 Cimochowski et al. Oct 1999 A
6019724 Gronningsaeter et al. Feb 2000 A
6025803 Bergen et al. Feb 2000 A
6061589 Bridges et al. May 2000 A
6064903 Riechers et al. May 2000 A
6093141 Mosseri et al. Jul 2000 A
6144344 Kim Nov 2000 A
6161036 Matsumara et al. Dec 2000 A
6193669 Degany et al. Feb 2001 B1
6208286 Rostislavovich et al. Mar 2001 B1
6233479 Haddad et al. May 2001 B1
6267723 Matsumura et al. Jul 2001 B1
6320547 Fathy et al. Nov 2001 B1
6330479 Stauffer Dec 2001 B1
6409662 Lloyd et al. Jun 2002 B1
6454711 Haddad et al. Sep 2002 B1
6471655 Baura Oct 2002 B1
6480733 Turcott Nov 2002 B1
6526318 Ansarinia Feb 2003 B1
6592518 Denker et al. Jul 2003 B2
6604404 Paltieli et al. Aug 2003 B2
6729336 Da Silva et al. May 2004 B2
6730033 Yao et al. May 2004 B2
6755856 Fierens et al. Jun 2004 B2
6933811 Enokihara et al. Aug 2005 B2
6940457 Lee et al. Sep 2005 B2
7020508 Stivoric et al. Mar 2006 B2
7045440 Huff et al. May 2006 B2
7122012 Bouton et al. Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7184824 Hashimshony Feb 2007 B2
7191000 Zhu et al. Mar 2007 B2
7197356 Carr Mar 2007 B2
7266407 Li et al. Sep 2007 B2
7267651 Nelson Sep 2007 B2
7272431 McGrath Sep 2007 B2
7280863 Shachar Oct 2007 B2
7454242 Fear et al. Nov 2008 B2
7474918 Frants et al. Jan 2009 B2
7479790 Choi Jan 2009 B2
7493154 Bonner et al. Feb 2009 B2
7529398 Zwirn et al. May 2009 B2
7570063 Van Veen et al. Aug 2009 B2
7591792 Bouton Sep 2009 B2
7697972 Verard et al. Apr 2010 B2
7719280 Lagae et al. May 2010 B2
7747302 Milledge et al. Jun 2010 B2
7868627 Turkovskyi Jan 2011 B2
8032211 Hashimshony et al. Oct 2011 B2
8211040 Kojima et al. Jul 2012 B2
8217839 Paulsen Jul 2012 B1
8295920 Bouton et al. Oct 2012 B2
8352015 Bernstein et al. Jan 2013 B2
8384596 Rofougaran et al. Feb 2013 B2
8473054 Pillai et al. Jun 2013 B2
8682399 Rabu Mar 2014 B2
8882759 Manley et al. Nov 2014 B2
8938292 Hettrick et al. Jan 2015 B2
8983592 Belalcazar Mar 2015 B2
8989837 Weinstein et al. Mar 2015 B2
9220420 Weinstein et al. Dec 2015 B2
9265438 Weinstein et al. Feb 2016 B2
9572512 Weinstein et al. Feb 2017 B2
9629561 Weinstein et al. Apr 2017 B2
9788752 Weinstein et al. Oct 2017 B2
10136833 Weinstein et al. Nov 2018 B2
10548485 Arditi et al. Feb 2020 B2
10561336 Rappaport et al. Feb 2020 B2
10588599 Weinstein et al. Mar 2020 B2
10660609 Weinstein et al. May 2020 B2
10680324 Weinstein et al. Jun 2020 B2
11013420 Ravid et al. May 2021 B2
11020002 Weinstein et al. Jun 2021 B2
11108153 Weinstein et al. Aug 2021 B2
20020032386 Sackner et al. Mar 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020049394 Roy et al. Apr 2002 A1
20020050954 Jeong-Kun et al. May 2002 A1
20020147405 Denker et al. Oct 2002 A1
20020151816 Rich et al. Oct 2002 A1
20030036674 Bouton Feb 2003 A1
20030036713 Bouton et al. Feb 2003 A1
20030088180 Van Veen et al. May 2003 A1
20030100815 Da Silva et al. May 2003 A1
20030199770 Chen et al. Oct 2003 A1
20030219598 Sakurai Nov 2003 A1
20040015087 Boric-Lubecke et al. Jan 2004 A1
20040073081 Schramm Apr 2004 A1
20040077943 Meaney et al. Apr 2004 A1
20040077952 Rafter et al. Apr 2004 A1
20040249257 Tupin et al. Dec 2004 A1
20040254457 van der Weide Dec 2004 A1
20040261721 Steger Dec 2004 A1
20050038503 Greenhalgh et al. Feb 2005 A1
20050107693 Fear et al. May 2005 A1
20050151234 Yoshimura Jul 2005 A1
20050192488 Bryenton Sep 2005 A1
20050245816 Candidas et al. Nov 2005 A1
20060004269 Caduff et al. Jan 2006 A9
20060009813 Taylor et al. Jan 2006 A1
20060025661 Sweeney et al. Feb 2006 A1
20060101917 Merkel May 2006 A1
20060237223 Chen et al. Oct 2006 A1
20060265034 Aknine et al. Nov 2006 A1
20070016032 Aknine Jan 2007 A1
20070016050 Moehring et al. Jan 2007 A1
20070055123 Takiguchi Mar 2007 A1
20070100385 Rawat May 2007 A1
20070123770 Bouton et al. May 2007 A1
20070123778 Kantorovich May 2007 A1
20070135721 Zdeblick Jun 2007 A1
20070152812 Wong et al. Jul 2007 A1
20070156057 Cho et al. Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070191733 Gianchandani et al. Aug 2007 A1
20070263907 McMakin et al. Nov 2007 A1
20080027313 Shachar Jan 2008 A1
20080030284 Tanaka et al. Feb 2008 A1
20080036668 White et al. Feb 2008 A1
20080097199 Mullen Apr 2008 A1
20080129511 Yuen et al. Jun 2008 A1
20080139934 McMorrow et al. Jun 2008 A1
20080167566 Kamil et al. Jul 2008 A1
20080169961 Steinway et al. Jul 2008 A1
20080183247 Harding Jul 2008 A1
20080200802 Bahavaraju et al. Aug 2008 A1
20080224688 Rubinsky et al. Sep 2008 A1
20080269589 Thijs et al. Oct 2008 A1
20080283282 Kawasaki et al. Nov 2008 A1
20080294036 Hoi et al. Nov 2008 A1
20080316124 Hook Dec 2008 A1
20080319301 Busse Dec 2008 A1
20090021720 Hecker Jan 2009 A1
20090048500 Corn Feb 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090153412 Chiang et al. Jun 2009 A1
20090153433 Nagai Jun 2009 A1
20090187109 Hashimshony Jul 2009 A1
20090203972 Heneghan et al. Aug 2009 A1
20090227882 Foo Sep 2009 A1
20090240132 Friedman Sep 2009 A1
20090240133 Friedman Sep 2009 A1
20090248450 Fernandez Oct 2009 A1
20090262028 Mumbru et al. Oct 2009 A1
20090281412 Boyden et al. Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090312615 Caduff et al. Dec 2009 A1
20090322636 Brigham et al. Dec 2009 A1
20100004517 Bryenton Jan 2010 A1
20100013318 Iguchi et al. Jan 2010 A1
20100052992 Okamura et al. Mar 2010 A1
20100056907 Rappaport et al. Mar 2010 A1
20100076315 Erkamp et al. Mar 2010 A1
20100081895 Zand Apr 2010 A1
20100106223 Grevious Apr 2010 A1
20100152600 Droitcour et al. Jun 2010 A1
20100256462 Rappaport et al. Oct 2010 A1
20100265159 Ando et al. Oct 2010 A1
20100305460 Pinter et al. Dec 2010 A1
20100312301 Stahmann Dec 2010 A1
20100321253 Ayala Vazquez et al. Dec 2010 A1
20100332173 Watson et al. Dec 2010 A1
20110004076 Janna et al. Jan 2011 A1
20110009754 Wenzel et al. Jan 2011 A1
20110022325 Craddock et al. Jan 2011 A1
20110040176 Razansky et al. Feb 2011 A1
20110060215 Tupin et al. Mar 2011 A1
20110068995 Baliarda et al. Mar 2011 A1
20110125207 Nabutovsky et al. May 2011 A1
20110130800 Weinstein et al. Jun 2011 A1
20110257555 Banet et al. Oct 2011 A1
20120029323 Zhao Feb 2012 A1
20120065514 Naghavi et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120098706 Lin et al. Apr 2012 A1
20120104103 Manzi May 2012 A1
20120330151 Weinstein et al. Dec 2012 A1
20130041268 Rimoldi et al. Feb 2013 A1
20130053671 Farra Feb 2013 A1
20130069780 Tran et al. Mar 2013 A1
20130090566 Muhlsteff et al. Apr 2013 A1
20130123614 Bernstein et al. May 2013 A1
20130184573 Pahlevan et al. Jul 2013 A1
20130190646 Weinstein et al. Jul 2013 A1
20130225989 Saroka et al. Aug 2013 A1
20130231550 Weinstein et al. Sep 2013 A1
20130281800 Saroka et al. Oct 2013 A1
20130297344 Cosentino et al. Nov 2013 A1
20130310700 Wiard et al. Nov 2013 A1
20140046690 Gunderson et al. Feb 2014 A1
20140081159 Tao et al. Mar 2014 A1
20140128032 Muthukumar May 2014 A1
20140163425 Tran Jun 2014 A1
20140251659 Asano et al. Sep 2014 A1
20140288436 Venkatraman et al. Sep 2014 A1
20150025333 Weinstein et al. Jan 2015 A1
20150150477 Weinstein et al. Jun 2015 A1
20150164349 Gopalakrishnan et al. Jun 2015 A1
20150335310 Bernstein et al. Nov 2015 A1
20160073924 Weinstein et al. Mar 2016 A1
20160095534 Thakur Apr 2016 A1
20160198957 Arditi et al. Jul 2016 A1
20160198976 Weinstein et al. Jul 2016 A1
20160213321 Weinstein et al. Jul 2016 A1
20160317054 Weinstein et al. Nov 2016 A1
20160345845 Ravid et al. Dec 2016 A1
20170035327 Yuen et al. Feb 2017 A1
20170135598 Weinstein et al. May 2017 A1
20170238966 Weinstein et al. Aug 2017 A1
20170296093 Weinstein et al. Oct 2017 A1
20190046038 Weinstein et al. Feb 2019 A1
20190298208 Weinstein et al. Oct 2019 A1
20200113447 Arditi et al. Apr 2020 A1
20200297309 Weinstein et al. Sep 2020 A1
20200381819 Weinstein et al. Dec 2020 A1
20210244282 Weinstein et al. Aug 2021 A1
20210251507 Ravid et al. Aug 2021 A1
Foreign Referenced Citations (56)
Number Date Country
101032400 Sep 2007 CN
101516437 Aug 2009 CN
10008886 Sep 2001 DE
1834588 Sep 2007 EP
2506917 Oct 2012 EP
2 602 870 Jun 2013 EP
05-038957 May 1993 JP
10-137193 May 1998 JP
2000-235006 Aug 2000 JP
2001-525925 Dec 2001 JP
2002-094321 Mar 2002 JP
2003-141466 May 2003 JP
2004-526488 Sep 2004 JP
2006-208070 Aug 2006 JP
2006-319767 Nov 2006 JP
2007-061359 Mar 2007 JP
2007-149959 Jun 2007 JP
2008-515548 May 2008 JP
2008-148141 Jun 2008 JP
2008-518706 Jun 2008 JP
2008-530546 Jul 2008 JP
2008-542759 Nov 2008 JP
2008-545471 Dec 2008 JP
2009-514619 Apr 2009 JP
2009-522034 Jun 2009 JP
2010-507929 Mar 2010 JP
2010-072957 Apr 2010 JP
2010-512190 Apr 2010 JP
2010-530769 Sep 2010 JP
2010-537766 Dec 2010 JP
2011-507583 Mar 2011 JP
2011-524213 Sep 2011 JP
2012-090257 May 2012 JP
WO 0203499 Jan 2002 WO
WO 2003009752 Feb 2003 WO
WO 2006127719 Nov 2006 WO
WO 2006130798 Dec 2006 WO
WO 2007017861 Feb 2007 WO
WO 2007023426 Mar 2007 WO
WO 2008070856 Jun 2008 WO
WO 2008148040 Dec 2008 WO
WO 2009031149 Mar 2009 WO
WO 2009031150 Mar 2009 WO
WO 2009060182 May 2009 WO
WO 2009081331 Jul 2009 WO
WO 2009152625 Dec 2009 WO
WO 2011067623 Jun 2011 WO
WO 2011067685 Jun 2011 WO
WO 2011141915 Nov 2011 WO
WO 2012011065 Jan 2012 WO
WO 2012011066 Jan 2012 WO
WO-2013005720 Jan 2013 WO
WO 2013118121 Aug 2013 WO
WO 2013121290 Aug 2013 WO
WO 2015118544 Aug 2015 WO
WO 2016040337 Mar 2016 WO
Non-Patent Literature Citations (31)
Entry
Alekseev, S. I., et al. “Human Skin permittivity determined by millimeter wave reflection measurements”, Bioelectromagnetics, vol. 28, No. 5, Jul. 1, 2007, pp. 331-339.
Ascension Technology Corporation, “TrakSTAR Adds Versatility to Ascension's New Product Line: Desktop Model Joins driveBAY Tracker for Fast Guidance of Miniaturized Sensor”, USA, Apr. 7, 2008.
Bell et al., “A Low-Profile Achimedean Spiral Antenna Using an EBG Ground Plane”, IEEE Antennas and Wireless Propagation Letters 3, pp. 223-226 (2004).
Beyer-Enke et al., Intra-arterial Doppler flowmetry in the superficial femoral artery following angioplasty., 2000, European Radiology, vol. 10, No. 4, p. 642-649.
Claron Technology Inc., “MicronTracker 3:A New Generation of Optical Trackers”, Canada, 2009.
Czum et al., “The Vascular Diagnostic Laboratory”, The Heart & Vascular Institute Newsletter, vol. 1, USA, Winter, 2001.
Extended Search Report for European Application No. 14858165.5, dated Jun. 8, 2017.
Ghosh, et al., Immediate Evaluation of Angioplasty and Stenting Results in Supra-Aortic Arteries by Use of a Doppler-Tipped Guidewire, Aug. 2004, American Journal of Neuroradiology, vol. 25, p. 1172-1176.
Gentili et al., “A Versatile Microwave Plethysmograph for the Monitoring of Physiological Parameters”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Pitscataway, NJ, US, vol. 49, No. 10, Oct. 1, 2002.
Haude et al., Intracoronary Doppler-and Quantitative Coronary Angiography-Derived Predictors of Major Adverse Cardiac Events After Stent Implantation, Mar. 6, 2001, Circulation, vol. 103(9), p. 1212-1217.
Immersion Corporation, “Immersion Introduces New 3D Digitizing Product-MicroScribe G2; Faster Data Transfer, USB Compatibility, New Industrial Design”, Press Release, San Jose, USA, Jul. 1, 2002.
International Search Report and Written Opinion, dated Feb. 26, 2015, for International Application No. PCT/IL2014/050937.
Kantarci et al., Follow-Up of Extracranial Vertebral Artery Stents with Doppler Sonography., Sep. 2006, American Journal of Roentgenology, vol. 187, p. 779-787.
Lal et al., “Duplex ultrasound velocity criteria for the stented carotid artery”, Journal of Vascular Surgery, vol. 47, No. 1, pp. 63-73, Jan. 2008.
Larsson et al., “State Diagrams of the Heart—a New Approach to Describing Cardiac Mechanics”, Cardiovascular Ultrasound 7:22 (2009).
Liang, Jing et al., Microstrip Patch Antennas on Tunable Electromagnetic Band-Gap Substrates, IEEE Transactions on Antennas and Propagation, vol. 57, No. 6, Jun. 2009.
Lin, J.C. et al., “Microwave Imaging of Cerebral Edema”, Proceedings of the IEEE, IEEE, NY, US, vol. 70, No. 5; May 1, 1982, pp. 523-524.
Lin et al., “Enhanced performances of a compact conical pattern annular-ring patch antenna using a slotted ground plane,” Microwave Conference, 2001. APMC 2001.2001 Asia-Pacific Dec. 3-6, 201, IEEE, vol. 3, Dec. 3, 2001, pp. 1036-1039.
Lin et al., “Using dual-antenna nanosecond pulse near field sensing technology for non-contact and continuous blood pressure measurement”, Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, IEEE, Aug. 28, 2012 (Aug. 28, 2012), pp. 219-222.
Matsugatani et al., “Surface Wave Distribution Over Electromagnetic Bandgap (EBG) and EBG Reflective Shield for Patch Antenna,” IEICE Transactions on Electronics, vol. E88-C, No. 12, Dec. 1, 2005, pp. 2341-2349.
Miura et al. “Time Domain Reflectometry: Measurement of Free Water in Normal Lung and Pulmonary Edema,” American Journal of Physiology—Lung Physiology 276:1 (1999), pp. L207-L212.
Office Action dated Apr. 5, 2017, for Japanese Patent Application No. 2016-527222, 10 pages.
Paulson, Christine N., et al. “Ultra-wideband radar methods and techniques of medical sensing and imaging” Proceedings of Spie, vol. 6007, Nov. 9, 2005, p. 60070L.
Pedersen, P.C., et al., “Microwave Reflection and Transmission Measurements for Pulmonary Diagnosis and Monitoring”, IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, US, vol. BME-19, No. 1, Jan. 1, 1978; pp. 40-48.
Polhemus, “Fastrak: The Fast and Easy Digital Tracker”, USA, 2008.
Ringer et al., Follow-up of Stented Carotid Arteries by Doppler Ultrasound, Sep. 2002, Neurosurgery, vol. 51, No. 3, p. 639-643.
Solberg et al: “A feasibility study on aortic pressure estimation using UWB radar”, Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on, IEEE, Piscataway, NJ, USA, Sep. 9, 2009 (Sep. 9, 2009), pp. 464-468.
Yang et al., “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Transactions on Antennas and Propagation, vol. 51, No. 10, Oct. 1, 2003, pp. 2691-2703.
Yang, F. et al. “Enhancement of Printed Dipole Antennas Characteristics Using Semi-EBG Ground Plane”, Journal of Electromagnetic Waves and Application, U.S., Taylor & Francis, Apr. 3, 2006, vol. 8, pp. 993-1006.
Zhang et al., “Planar artificial magnetic conductors and patch antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, No. 10, Oct. 1, 2003, pp. 2704-2712.
Extended European Search Report for Application No. EP22177410.2, dated Aug. 25, 2022, 13 pages.
Related Publications (1)
Number Date Country
20220013899 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
61897036 Oct 2013 US
Continuations (2)
Number Date Country
Parent 16852252 Apr 2020 US
Child 17384302 US
Parent 15033576 US
Child 16852252 US