The present disclosure relates to a resonant structure, an antenna, a wireless communication module, and a wireless communication device.
Electromagnetic waves emitted from an antenna are reflected by a metal conductor. A 180 degree phase shift occurs in the electromagnetic waves reflected by the metal conductor. The reflected electromagnetic waves combine with the electromagnetic waves emitted from the antenna. The amplitude may decrease as a result of the electromagnetic waves emitted from the antenna combining with the phase-shifted electromagnetic waves. Consequently, the amplitude of the electromagnetic waves emitted from the antenna reduces. The effect of the reflected waves is reduced by the distance between the antenna and the metal conductor being set to ¼ of the wavelength λ of the emitted electromagnetic waves.
To address this, a technique for reducing the effect of reflected waves with an artificial magnetic wall has been proposed. This technique is disclosed in non-patent literature (NPL) 1 and 2, for example.
A resonant structure according to an embodiment of the present disclosure includes a conducting portion, a ground conductor, and a first predetermined number of connecting conductors. The conducting portion extends along a first plane and includes a plurality of first conductors. The ground conductor is located away from the conducting portion and extends along the first plane. The connecting conductors extend from the ground conductor towards the conducting portion. At least two first conductors among the plurality of first conductors are connected to different connecting conductors. Among the first predetermined number of connecting conductors, two connecting conductors form a first connecting pair aligned along a first direction included in the first plane, and two connecting conductors form a second connecting pair aligned along a second direction that is included in the first plane and intersects the first direction. The resonant structure is configured to resonate at a first frequency along a first current path and to resonate at a second frequency along a second current path. The first current path includes the ground conductor, the conducting portion, and the first connecting pair. The second current path includes the ground conductor, the conducting portion, and the second connecting pair.
An antenna according to an embodiment of the present disclosure includes the above-described resonant structure and a first feeder configured to connect electromagnetically to the conducting portion.
A wireless communication module according to an embodiment of the present disclosure includes the above-described antenna and a radio frequency (RF) module configured to be connected electrically to the first feeder.
A wireless communication device according to an embodiment of the present disclosure includes the above-described wireless communication module and a battery configured to supply power to the wireless communication module.
In the accompanying drawings:
With a known technique, it is necessary to line up multiple resonator structures.
The present disclosure relates to providing a new resonant structure, antenna, wireless communication module, and wireless communication device.
The present disclosure can provide a new resonant structure, antenna, wireless communication module, and wireless communication device.
The “resonant structure” in the present disclosure enters a resonant state at a predetermined frequency. The frequency at which the resonant structure enters the resonant state is the “resonance frequency”. Example uses of the “resonant structure” of the present disclosure include an antenna and a filter. The “resonant structure” of the present disclosure may include a member that includes a dielectric material and a member that includes a conductive material.
The “dielectric material” in the present disclosure may include a composition of either a ceramic material or a resin material. Examples of the ceramic material include an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a glass ceramic sintered body, crystallized glass yielded by precipitation of a crystal component in a glass base material, and a microcrystalline sintered body such as mica or aluminum titanate. Examples of the resin material include an epoxy resin, a polyester resin, a polyimide resin, a polyamide-imide resin, a polyetherimide resin, and resin materials yielded by curing an uncured liquid crystal polymer or the like.
The “conductive material” in the present disclosure may include a composition of any of a metal material, an alloy of metal materials, a cured metal paste, and a conductive polymer. Examples of the metal material include copper, silver, palladium, gold, platinum, aluminum, chrome, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, and titanium. The alloy includes a plurality of metal materials. The metal paste includes the result of kneading a powder of a metal material with an organic solvent and a binder. Examples of the binder include an epoxy resin, a polyester resin, a polyimide resin, a polyamide-imide resin, and a polyetherimide resin. Examples of the conductive polymer include a polythiophene polymer, a polyacetylene polymer, a polyaniline polymer, and a polypyrrole polymer.
Embodiments of the present disclosure are described below with reference to the drawings. Constituent elements that are the same from
In an embodiment of the present disclosure, a conducting portion 30 illustrated in
The resonant structure 10 resonates at one or a plurality of resonance frequencies. As illustrated in
The substrate 20 may be configured to include a dielectric material. The relative permittivity of the substrate 20 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 10.
The substrate 20 supports the conducting portion 30 and the ground conductor 40. As illustrated in
The conducting portion 30 illustrated in
The conducting portion 30 illustrated in
As used in the present disclosure, the “artificial magnetic conductor character” refers to characteristics of a surface such that the phase difference between incident waves and reflected waves at one resonance frequency becomes 0 degrees. The resonant structure 10 may have at least one region near at least one resonance frequency as an operating frequency. On the surface having the artificial magnetic conductor character, the phase difference between the incident waves and reflected waves in the operating frequency band is smaller than a range from −90 degrees to +90 degrees.
The conducting portion 30 includes a gap Sx and a gap Sy, as illustrated in
The conducting portion 30 includes first conductors 31-1, 31-2, 31-3, 31-4, as illustrated in
The first conductors 31 illustrated in
As illustrated in
For example, the first conductor 31-1 and the first conductor 31-2 are aligned in the X-direction of the square grid extending in the X-direction and Y-direction. The first conductor 31-3 and the first conductor 31-4 are aligned in the X-direction of the square grid extending in the X-direction and Y-direction. The first conductor 31-1 and the first conductor 31-4 are aligned in the Y-direction of the square grid extending in the X-direction and Y-direction. The first conductor 31-2 and the first conductor 31-3 are aligned in the Y-direction of the square grid extending in the X-direction and Y-direction. The first conductor 31-1 and the first conductor 31-3 are aligned in a first diagonal direction of the square grid extending in the X-direction and Y-direction. The first diagonal direction is a direction inclined 45 degrees in the positive direction of the Y-axis from the positive direction of the X-axis. The first conductor 31-2 and the first conductor 31-4 are aligned in a second diagonal line of the square grid extending in the X-direction and Y-direction. The second diagonal direction is a direction inclined 135 degrees in the positive direction of the Y-axis from the positive direction of the X-axis.
The grid in which the first conductors 31-1 to 31-4 are aligned, however, is not limited to a square grid. The first conductors 31-1 to 31-4 may be aligned in any grid shape. Examples of the grid in which the first conductors 31 are aligned include an oblique grid, a rectangular grid, and a hexagonal grid.
By inclusion of a gap between one first conductor 31 and another first conductor 31, the one first conductor 31 includes a portion configured to connect capacitively to the other first conductor 31. The first conductor 31-1 and the first conductor 31-2, for example, have the gap Sx therebetween and can therefore be configured to connect capacitively. The first conductor 31-3 and the first conductor 31-4, for example, have the gap Sx therebetween and can therefore be configured to connect capacitively. The first conductor 31-1 and the first conductor 31-4, for example, have the gap Sy therebetween and can therefore be configured to connect capacitively. The first conductor 31-2 and the first conductor 31-3, for example, have the gap Sy therebetween and can therefore be configured to connect capacitively. The first conductor 31-1 and the first conductor 31-3, for example, have the gap Sx and the gap Sy therebetween and can therefore be configured to connect capacitively. The first conductor 31-2 and the first conductor 31-4, for example, have the gap Sx and the gap Sy therebetween and can therefore be configured to connect capacitively. The first conductor 31-1 and the first conductor 31-3 can be configured to connect capacitively via the first conductor 31-2 and the first conductor 31-4. The first conductor 31-2 and the first conductor 31-4 can be configured to connect capacitively via the first conductor 31-1 and the first conductor 31-3.
As illustrated in
The ground conductor 40 illustrated in
As illustrated in
The first feeder 51 and the second feeder 52 illustrated in
The first feeder 51 illustrated in
When the resonant structure 10 is used as an antenna, the first feeder 51 is configured to supply power to the conducting portion 30 through the first conductor 31-1. When the resonant structure 10 is used as an antenna or a filter, the first feeder 51 is configured to supply power from the conducting portion 30 through the first conductor 31-1 to an external device or the like.
The second feeder 52 illustrated in
When the resonant structure 10 is used as an antenna, the second feeder 52 is configured to supply power to the conducting portion 30 through the first conductor 31-2. When the resonant structure 10 is used as an antenna or a filter, the second feeder 52 is configured to supply power from the conducting portion 30 through the first conductor 31-2 to an external device or the like.
The connecting conductors 60 illustrated in
The resonant structure 10 illustrated in
The A direction is a direction inclined 45 degrees in the positive direction of the Y-axis from the positive direction of the X-axis. The A direction is a first diagonal direction in which the first conductor 31-1 and the first conductor 31-3 are aligned among the first conductors 31-1 to 31-4 aligned in a square grid extending in the X-direction and the Y-direction.
The B direction is a direction inclined 135 degrees in the positive direction of the Y-axis from the positive direction of the X-axis. The B direction is a second diagonal direction in which the first conductor 31-2 and the first conductor 31-4 are aligned among the first conductors 31-1 to 31-4 aligned in a square grid extending in the X-direction and the Y-direction.
The connecting conductor 60-1 and the connecting conductor 60-2 become a first connecting pair aligned along the X-direction as the first direction. The connecting conductor 60-1 and the connecting conductor 60-2 become the first connecting pair aligned along the X-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The connecting conductor 60-3 and the connecting conductor 60-4 become a first connecting pair aligned along the X-direction as the first direction. The connecting conductor 60-3 and the connecting conductor 60-4 become a different first connecting pair from the first connecting pair constituted by the connecting conductor 60-1 and the connecting conductor 60-2.
The connecting conductor 60-1 and the connecting conductor 60-4 become a second connecting pair aligned along the Y-direction as the second direction. The connecting conductor 60-1 and the connecting conductor 60-4 become the second connecting pair aligned along the Y-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The connecting conductor 60-2 and the connecting conductor 60-3 become a second connecting pair aligned along the Y-direction as the second direction. The connecting conductor 60-2 and the connecting conductor 60-3 become a different second connecting pair from the second connecting pair constituted by the connecting conductor 60-1 and the connecting conductor 60-4.
The resonant structure 10 is configured to resonate at a first frequency f1 along a first path P1. The first path P1 is an apparent current path. The first path P1 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair and a current path traversing the connecting conductors 60-1, 60-4 of the second connecting pair, for example. The current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair includes the ground conductor 40, the first conductors 31-1, 31-2, and the connecting conductors 60-1, 60-2 of the first connecting pair. The current path traversing the connecting conductors 60-1, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 31-1, 31-4, and the connecting conductors 60-1, 60-4 of the first connecting pair. When the resonant structure 10 resonates at the first frequency f1, current can flow in the XY plane, for example, from the connecting conductor 60-1 towards the connecting conductor 60-2 and from the connecting conductor 60-1 towards the connecting conductor 60-4 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the first path P1.
The first path P1 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair and a current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair, for example. The current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair includes the ground conductor 40, the first conductors 31-2, 31-3, and the connecting conductors 60-2, 60-3 of the first connecting pair. The current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 31-3, 31-4, and the connecting conductors 60-3, 60-4 of the first connecting pair. When the resonant structure 10 resonates at the first frequency f1, current can flow in the XY plane, for example, from the connecting conductor 60-3 towards the connecting conductor 60-2 and from the connecting conductor 60-3 towards the connecting conductor 60-4 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the first path P1.
The resonant structure 10 can exhibit an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency f1 and polarized along the first path P1, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
The resonant structure 10 is configured to resonate at a second frequency f2 along a second path P2. The second path P2 is an apparent current path. The second path P2 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair and a current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair, for example. The current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair includes the ground conductor 40, the first conductors 31-1, 31-2, and the connecting conductors 60-1, 60-2 of the first connecting pair. The current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair includes the ground conductor 40, the first conductors 31-2, 31-3, and the connecting conductors 60-2, 60-3 of the second connecting pair. When the resonant structure 10 resonates at the second frequency f2, current can flow in the XY plane, for example, from the connecting conductor 60-2 towards the connecting conductor 60-1 and from the connecting conductor 60-2 towards the connecting conductor 60-3 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the second path P2 as an apparent current path.
The second path P2 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair and a current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair, for example. The current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair includes the ground conductor 40, the first conductors 31-1, 31-4, and the connecting conductors 60-1, 60-4 of the first connecting pair. The current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 31-3, 31-4, and the connecting conductors 60-3, 60-4 of the second connecting pair. When the resonant structure 10 resonates at the second frequency f2, current can flow in the XY plane, for example, from the connecting conductor 60-4 towards the connecting conductor 60-1 and from the connecting conductor 60-4 towards the connecting conductor 60-3 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the second path P2 as an apparent current path.
The resonant structure 10 can exhibit an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency f2 and polarized along the second path P2, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
As illustrated in
The resonant structure 10 can be a filter that removes frequencies other than the first frequency f1. When the resonant structure 10 as a filter includes the first feeder 51 and the second feeder 52, then the resonant structure 10 is configured to supply power corresponding to electromagnetic waves of the first frequency f1 to an external device or the like over the first path P1 and the second path P2 via the first feeder 51 and the second feeder 52.
The first path P1 in the resonant structure 10 extends in the first diagonal direction. The second path P2 extends in the second diagonal direction. The first diagonal direction corresponds to the A direction, and the second diagonal direction corresponds to the B direction. The first path P1 and the second path P2 are therefore orthogonal to each other in the XY plane in the resonant structure 10. By the first path P1 and the second path P2 being orthogonal in the XY plane, the electric field of electromagnetic waves of the first frequency f1 emitted along the first path P1 and the electric field of electromagnetic waves of the second frequency f2 emitted along the second path P2 are orthogonal. When the first frequency f1 and the second frequency f2 are equivalent, and the phase difference between alternating current apparently flowing along the first path P1 and alternating current apparently flowing along the second path P2 becomes 90 degrees, then the resonant structure 10 can emit circularly polarized waves of the first frequency f1. The resonant structure 10 can be an antenna that emits circularly polarized waves of the first frequency f1.
The resonant structure 10 as an antenna is configured to emit circularly polarized waves of the first frequency f1 by (1) to (3) below.
The resonant structure 10 can be configured to resonate along the first path P1 also at a first frequency f01 that is smaller than the first frequency f1. At the first frequency f01, however, the electromagnetic waves induced by current flowing between the connecting conductor 60-1 and the connecting conductor 60-2 of the first connecting pair and the electromagnetic waves induced by current flowing between the connecting conductor 60-1 and the connecting conductor 60-4 of the second connecting pair cancel each other out. Since the electromagnetic waves induced by current flowing between these connecting conductors 60 cancel each other out, the resonant structure 10 resonates, but the emission intensity of electromagnetic waves from the resonant structure 10 may be reduced. The resonant structure 10 is configured to resonate along the second path P2 also at a second frequency f02 that is smaller than the second frequency f2. Although the resonant structure 10 resonates at the second frequency f02, the emission intensity of electromagnetic waves from the resonant structure 10 may be reduced.
The resonant structure 10 illustrated in
The connecting conductor 60-1 and the connecting conductor 60-4 become a first connecting pair aligned along the Y-direction as the first direction. The connecting conductor 60-1 and the connecting conductor 60-4 become the first connecting pair aligned along the Y-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The resonant structure 10 resonates at a first frequency f3 along a first path P3. The first path P3 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair. The current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair includes the ground conductor 40, the first conductors 31-1, 31-4, and the connecting conductors 60-1, 60-4 of the first connecting pair. When the resonant structure 10 resonates at the first frequency f3, current can flow in the XY plane, for example, from the connecting conductor 60-1 towards the connecting conductor 60-4 of the first connecting pair. The current flowing between the connecting conductor 60-1 and the connecting conductor 60-4 induces electromagnetic waves. In other words, electromagnetic waves are induced by high-frequency current flowing along the first path P3. The resonant structure 10 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency f3 and polarized along the first path P3, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
The connecting conductor 60-2 and the connecting conductor 60-3 become a first connecting pair aligned along the Y-direction as the first direction. The connecting conductor 60-2 and the connecting conductor 60-3 become the first connecting pair aligned along the Y-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The resonant structure 10 resonates at a first frequency f3 along a first path P4. The first path P4 is a portion of the current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair. The current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair includes the ground conductor 40, the first conductors 31-2, 31-3, and the connecting conductors 60-2, 60-3 of the first connecting pair. When the resonant structure 10 resonates at the first frequency f3, current can flow in the XY plane, for example, from the connecting conductor 60-3 towards the connecting conductor 60-2 of the first connecting pair. The current flowing between the connecting conductor 60-2 and the connecting conductor 60-3 induces electromagnetic waves. In other words, electromagnetic waves are induced by high-frequency current flowing along the first path P4. The resonant structure 10 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency f4 and polarized along the first path P4, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
The connecting conductor 60-1 and the connecting conductor 60-2 become a second connecting pair aligned along the X-direction as the second direction. The connecting conductor 60-1 and the connecting conductor 60-2 become the first connecting pair aligned along the X-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The resonant structure 10 resonates at a second frequency f4 along a second path P5. The second path P5 is a portion of the current path traversing the connecting conductors 60-1, 60-2 of the second connecting pair. The current path traversing the connecting conductors 60-1, 60-2 of the second connecting pair includes the ground conductor 40, the first conductors 31-1, 31-2, and the connecting conductors 60-1, 60-2 of the second connecting pair. When the resonant structure 10 resonates at the first frequency f3, current can flow in the XY plane, for example, from the connecting conductor 60-2 towards the connecting conductor 60-1 of the second connecting pair. The current flowing between the connecting conductor 60-2 and the connecting conductor 60-1 induces electromagnetic waves. In other words, electromagnetic waves are induced by high-frequency current flowing along the second path P5. The resonant structure 10 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency f4 and polarized along the second path P5, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
The connecting conductor 60-3 and the connecting conductor 60-4 become a second connecting pair aligned along the X-direction as the second direction. The connecting conductor 60-3 and the connecting conductor 60-4 become the second connecting pair aligned along the X-direction of the square grid (extending in the X-direction and the Y-direction) in which the first conductors 31 are aligned.
The resonant structure 10 resonates at a second frequency f4 along a second path P6. The second path P6 is a portion of the current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair. The current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 31-3, 31-4, and the connecting conductors 60-3, 60-4 of the second connecting pair. When the resonant structure 10 resonates at the second frequency f4, current can flow in the XY plane, for example, from the connecting conductor 60-4 towards the connecting conductor 60-3 of the second connecting pair. The current flowing between the connecting conductor 60-4 and the connecting conductor 60-3 induces electromagnetic waves. In other words, electromagnetic waves are induced by high-frequency current flowing along the second path P6. The resonant structure 10 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency f4 and polarized along the second path P6, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
As described above, the resonant structure 10 is symmetrical in the XY plane about a line connecting the center points of two sides, substantially parallel to the X-direction, of the substantially square conducting portion 30. As described above, the resonant structure 10 is also symmetrical in the XY plane about a line connecting the center points of two sides, substantially parallel to the Y-direction, of the substantially square conducting portion 30. In the resonant structure 10 with this symmetrical configuration, the length of the first paths P3, P4 and the length of the second paths P5, P6 can be equivalent. The first frequency f3 and the second frequency f4 can be equivalent when the length of the first paths P3, P4 and the length of the second paths P5, P6 are equivalent.
The resonant structure 10 can be a filter that removes frequencies other than the first frequency f3. When the resonant structure 10 includes the second feeder 52, then the resonant structure 10 can be configured to supply power corresponding to electromagnetic waves of the first frequency f3 to an external device or the like over the first paths P3, P4 via the second feeder 52. The resonant structure 10 can be a filter that removes frequencies other than the first frequency f4. When the resonant structure 10 includes the first feeder 51, then the resonant structure 10 can be configured to supply power corresponding to electromagnetic waves of the second frequency f4 to an external device or the like over the second paths P5, P6 via the first feeder 51.
In the resonant structure 10, the direction of current along the first path P3 and the direction of current along the first path P4 can be opposite. When the direction of current along the first path P3 and the direction of current along the first path P4 are opposite, the emission intensity of electromagnetic waves from the resonant structure 10 can reduce at the first frequency f3.
In the resonant structure 10, the direction of current along the second path P5 and the direction of current along the second path P6 can be opposite. When the direction of current along the first path P5 and the direction of current along the first path P6 are opposite, the emission intensity of electromagnetic waves from the resonant structure 10 can reduce at the second frequency f4.
<Simulation Results>
The solid line in
The resonant structure 10 enters a resonant state at the frequencies where the total emission efficiency in
As illustrated in
As illustrated in
Unlike the resonant structure 10 illustrated in
For example, the capacitance of the capacitance element C1 is set to capacitance c [pF]. The capacitance of the capacitance element C3 is set to twice the capacitance c (2×c [pF]). The capacitance of the capacitance element C4 is set to four times the capacitance c (4×c [pF]). The capacitance of the capacitance element C2 is set to eight times the capacitance c (8×c [pF]).
The resonant structure 10A resonates at a first frequency f5 along a first path P7. The first path P7 appears in the same or similar manner as the first path P3 illustrated in
The resonant structure 10A resonates at a second frequency f6 along a second path P8. The second path P8 appears in the same or similar manner as the second path P6 illustrated in
As described above with reference to
The resonant structure 10A is configured so that the first path P7 along the Y-direction and the second path P8 along the X-direction are orthogonal in the XY plane. By the first path P7 and the second path P8 being orthogonal in the XY plane in the resonant structure 10A, the electric field of electromagnetic waves of the first frequency f5 emitted from the first path P7 and the electric field of electromagnetic waves of the second frequency f6 emitted from the second path P8 are orthogonal.
The resonant structure 10A resonates at a first frequency f7 along a first path P9. The first path P9 appears in the same or similar manner as the second path P2 illustrated in
In the capacitance elements C1, C4 aligned in the B-direction in the resonant structure 10A illustrated in
The resonant structure 10B includes capacitance elements C1 to C4. The capacitance element C1 is located at a position in the Y-direction that is approximately ¼ the length of the gap Sx from the end of the gap Sx on the negative side of the Y-axis. The capacitance element C2 is located at a position in the Y-direction that is approximately ¼ the length of the gap Sx from the end of the gap Sx on the positive side of the Y-axis. The capacitance element C3 is located at a position in the X-direction that is approximately ¼ the length of the gap Sy from the end of the gap Sy on the negative side of the X-axis. The capacitance element C4 is located at a position in the X-direction that is approximately ¼ the length of the gap Sy from the end of the gap Sy on the positive side of the X-axis.
At least a portion of the capacitance elements C1 to C4 have a different capacitance from each other in the resonant structure 10B. The capacitance may increase in the order of the capacitance element C1, the capacitance element C3, the capacitance element C4, and the capacitance element C5.
For example, the capacitance of the capacitance element C1 is set to capacitance c [pF]. The capacitance of the capacitance element C3 is set to twice the capacitance c of the capacitance element C1 (2×c [pF]). The capacitance of the capacitance element C4 is set to four times the capacitance c of the capacitance element C1 (4×c [pF]). The capacitance of the capacitance element C2 is set to eight times the capacitance c of the capacitance element C1 (8×c [pF]).
The resonant structure 10B resonates at a first frequency f8 along a first path P10. The first path P10 appears in the same or similar manner as the first path P1 illustrated in
In the capacitance elements C1, C3 aligned in the A-direction in the resonant structure 10B illustrated in
In the capacitance elements C2, C4 aligned in the A-direction in the resonant structure 10B illustrated in
The resonant structure 110 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 130 illustrated in
The conducting portion 130 includes a gap Sx1, a gap Sy1, and a gap Sy2, as illustrated in
The conducting portion 130 includes first conductors 131-1, 131-2, 131-3, 131-4, as illustrated in
The first conductors 131 may be flat conductors. Each of the first conductors 131-1 to 131-4 may be rectangles with different areas. Among the four first conductors 131, the area increases in the order of the first conductor 131-4, the first conductor 131-1, the first conductor 131-2, and the first conductor 131-3. Each of the first conductors 131-1 to 131-4 is connected to a different one of the connecting conductors 60-1 to 60-4, as illustrated in
As illustrated in
By inclusion of a gap between one first conductor 131 and another first conductor 131, the one first conductor 131 includes a portion configured to connect capacitively to the other first conductor 131. The first conductor 131-1 and the first conductor 131-2, for example, have the gap Sx1 therebetween and can therefore be configured to connect capacitively. The first conductor 131-3 and the first conductor 131-4, for example, have the gap Sx1 therebetween and can therefore be configured to connect capacitively. The first conductor 131-1 and the first conductor 131-4, for example, have the gap Sy1 therebetween and can therefore be configured to connect capacitively. The first conductor 131-2 and the first conductor 131-3, for example, have the gap Sy2 therebetween and can therefore be configured to connect capacitively. The first conductor 131-1 and the first conductor 131-3, for example, have the gap Sx1 therebetween and can therefore be configured to connect capacitively. The first conductor 131-2 and the first conductor 131-4, for example, can be configured to connect capacitively via the gap Sx1 and the gap Sy1 between these conductors and the first conductor 131-1.
The remaining configuration of the first conductors 131 is the same as or similar to that of the first conductors 31 illustrated in
The resonant structure 110 may include the capacitance elements C1, C2 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The resonant structure 110 resonates at a first frequency f9 along a first path P11. The first path P11 is an apparent current path. The first path P11 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-1, 60-2 of a first connecting pair and a current path traversing the connecting conductors 60-1, 60-4 of a second connecting pair, for example. The current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair includes the ground conductor 40, the first conductors 131-1, 131-2, and the connecting conductors 60-1, 60-2 of the first connecting pair. The current path traversing the connecting conductors 60-1, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 131-1, 131-4, and the connecting conductors 60-1, 60-4 of the first connecting pair. When the resonant structure 10 resonates at the first frequency f9, current can flow in the XY plane, for example, from the connecting conductor 60-1 towards the connecting conductor 60-2 and from the connecting conductor 60-1 towards the connecting conductor 60-4 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the first path P11.
The first path P11 that is an apparent current path appears as the result of a current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair and a current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair, for example. The current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair includes the ground conductor 40, the first conductors 131-1, 131-2, and the connecting conductors 60-2, 60-3 of the first connecting pair. The current path traversing the connecting conductors 60-3, 60-4 of the second connecting pair includes the ground conductor 40, the first conductors 131-3, 131-4, and the connecting conductors 60-3, 60-4 of the second connecting pair. When the resonant structure 110 resonates at the first frequency f9, current can flow in the XY plane, for example, from the connecting conductor 60-3 towards the connecting conductor 60-2 and from the connecting conductor 60-3 towards the connecting conductor 60-4 over these current paths. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing along the first path P11.
The resonant structure 110 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency f9 and polarized along the first path P11, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 30 is located.
In the resonant structure 110, the first path P11 cuts across the first conductor 131-3 in the XY plane. The first conductor 131-3 has a greater area than the other first conductors 131-1, 131-2, 131-4. In the resonant structure 110, current concentrates in the first conductor 131-3 with a large area and is excited. By the current concentrating in the first conductor 131-3 with a large area and being excited, the first frequency f9 can belong to a wide frequency band.
The resonant structure 110 can be a filter that removes frequencies other than the wide band to which the first frequency f9 belongs. The resonant structure 110 as a filter supplies power corresponding to electromagnetic waves of the wide band to which the first frequency f9 belongs to an external device or the like over the first path P11 via the first feeder 51 and the second feeder 52.
The resonant structure 110 can be an antenna capable of emitting electromagnetic waves of the wide band to which the first frequency f9 belongs. The resonant structure 110 as an antenna supplies power from the first feeder 51 and the second feeder 52 to the conducting portion 130. The resonant structure 110 as an antenna can emit electromagnetic waves that are polarized along the A-direction.
<Simulation Results>
The solid line in
The resonant structure 110 enters a resonant state at the frequency where the total emission efficiency in
As illustrated in
The resonant structure 210 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 230 illustrated in
As illustrated in
The first conductors 231-1 to 231-4 are collectively indicated as the “first conductors 231” when no particular distinction is made therebetween. The number of first conductors 231 included in the conducting portion 230 is not limited to four. The conducting portion 230 may include any number of first conductors 231. The third conductors 33-1 to 33-4 are collectively indicated as the “third conductors 33” when no particular distinction is made therebetween.
The second conductor 32 illustrated in
The third conductors 33 illustrated in
Each third conductor 33 illustrated in
Among the supports 33b included in different third conductors 33, a gap S1 is located between two supports 33b adjacent in the X-direction. Among the supports 33b included in different third conductors 33, a gap S1 is located between two supports 33b adjacent in the Y-direction. The resonant structure 210 may include capacitance elements in the gaps S1. A gap S2 is located between the supports 33b included in the third conductors 33 and the second conductor 32. The resonant structure 210 may include capacitance elements in the gap S2.
The first conductors 231 illustrated in
The first conductors 231 are located inside the substrate 20, as illustrated in
The square ground conductor 240 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The connecting conductors 60 illustrated in
The connecting conductor 60-1 and the connecting conductor 60-4 can be considered one set. The connecting conductor 60-2 and the connecting conductor 60-3 can be considered one set. The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 become a first connecting pair aligned along the X-direction as the first direction. The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 become the first connecting pair aligned along the X-direction in which a set of the first conductors 231-1, 231-4 and a set of the first conductors 231-2, 231-3 are aligned in a square grid extending in the X-direction and the Y-direction.
The resonant structure 210 resonates at a first frequency g1 along a first path Q1. The first path Q1 is a portion of the current path traversing the set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 of the first connecting pair. This current path includes the ground conductor 240, the set of the first conductors 231-1, 231-4, the set of the first conductors 231-2, 231-3, and the set of the connecting conductors 60-1, 60-4 and set of the connecting conductors 60-2, 60-3 of the first connecting pair. The current path including the first path Q1 is indicated by arrows in
The connecting conductor 60-1 and the connecting conductor 60-2 can be considered one set. The connecting conductor 60-3 and the connecting conductor 60-4 can be considered one set. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 become a second connecting pair aligned along the Y-direction as the second direction. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 become the second connecting pair aligned along the Y-direction, in which a set of the first conductors 231-1, 231-2 and a set of the first conductors 231-3, 231-4 are aligned in a square grid extending in the X-direction and the Y-direction.
The resonant structure 210 resonates at a second frequency g2 along a second path Q2. The second path Q2 is a portion of the current path traversing the set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 of the second connecting pair. This current path includes the ground conductor 240, the set of the first conductors 231-1, 231-2, the set of the first conductors 231-3, 231-4, and the set of the connecting conductors 60-1, 60-2 and set of the connecting conductors 60-3, 60-4 of the second connecting pair. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 are configured to function as a pair of electric walls when the resonant structure 210 resonates at the second frequency g2 along the second path Q2. The set of the connecting conductors 60-2, 60-3 and the set of the connecting conductors 60-1, 60-4 are configured to function as a pair of magnetic walls, from the perspective of current flowing over the current path that includes the second path Q2, when the resonant structure 210 resonates at the second frequency g2 along the second path Q2. By the set of connecting conductors 60-1, 60-2 and the set of connecting conductors 60-3, 60-4 functioning as a pair of electric walls and the set of connecting conductors 60-2, 60-3 and the set of connecting conductors 60-1, 60-4 functioning as a pair of magnetic walls, the resonant structure 210 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency g2 and polarized along the second path Q2, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230 is located.
The resonant structure 210 is symmetrical in the XY plane about a line connecting the center points of two sides, substantially parallel to the X-direction, of the substantially square conducting portion 230, as described above. The resonant structure 210 is symmetrical in the XY plane about a line connecting the center points of two sides, substantially parallel to the Y-direction, of the substantially square conducting portion 230, as described above. In the resonant structure 210 with this symmetrical configuration, the length of the first path Q1 and the length of the second path Q2 can be equivalent. The first frequency g1 and the second frequency g2 can therefore be equivalent.
The resonant structure 210 can be a filter that removes frequencies other than the first frequency g1 (which equals the second frequency g2). When the resonant structure 210 as a filter includes the first feeder 51, then the resonant structure 210 can supply power corresponding to electromagnetic waves of the first frequency g1 to an external device or the like via the first path Q1 and the first feeder 51. When the resonant structure 210 as a filter includes the second feeder 52, then the resonant structure 210 can supply power corresponding to electromagnetic waves of the second frequency g2 to an external device or the like via the second path Q2 and the second feeder 52.
In the resonant structure 210, the first path Q1 along the X-direction and the second path Q2 along the Y-direction are orthogonal in the XY plane. Since the first path Q1 and the second path Q2 are orthogonal in the XY plane in the resonant structure 210, the electric field of electromagnetic waves of the first frequency g1 emitted from the first path Q1 and the electric field of electromagnetic waves of the second frequency g2 emitted from the second path Q2 are orthogonal. Accordingly, the resonant structure 210 can be an antenna capable of emitting two electromagnetic waves with orthogonal electric fields.
The resonant structure 210 as an antenna is configured to supply power from the first feeder 51 to the conducting portion 30 when emitting electromagnetic waves of the first frequency g1. The first feeder 51 is configured to induce current in the first path Q1 along the X-direction as the first direction. The resonant structure 210 as an antenna is configured to supply power from the second feeder 52 to the conducting portion 30 when emitting electromagnetic waves of the second frequency g2. The second feeder 52 is configured to induce current in the second path Q2 along the Y-direction as the second direction.
<Simulation Results>
The solid line in
The resonant structure 210 enters a resonant state at the frequency where the total emission efficiency in
The resonant structure 210A includes capacitance elements C5, C6. The capacitance elements C5, C6 may be chip capacitors or the like. The capacitance of the capacitance elements C5, C6 is the same.
The capacitance element C5 is located near the corner facing the third conductor 33-4 among the four corners of the second conductor 32. The capacitance element C5 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-4, that lies along the Y-direction.
The capacitance element C6 is located near the corner facing the third conductor 33-1 among the four corners of the second conductor 32. The capacitance element C6 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-1, that lies along the Y-direction.
The resonant structure 210A resonates at a first frequency g3 along a first path Q3. The first path Q3 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair. This current path includes the ground conductor 240, the first conductors 231-1, 231-4, and the connecting conductors 60-1, 60-4 of the first connecting pair. In the same or similar manner as the second path Q2 illustrated in
The resonant structure 210A resonates at a second frequency g4 along a second path Q4. The second path Q4 is a portion of the current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair. This current path includes the ground conductor 240, the first conductors 231-2, 231-3, and the connecting conductors 60-2, 60-3 of the second connecting pair. In the same or similar manner as the second path Q2 illustrated in
In the resonant structure 210A, the capacitance element C5 and the capacitance element C6 are located near the first path Q3. The first frequency g3 in the first path Q3 can be lower than the second frequency g4 in the second path Q4. The first frequency g3 and the second frequency g4 differ in the resonant structure 210A. The capacitance of the capacitance elements C5, C6 may be appropriately adjusted so that the first frequency g3 and the second frequency g4 belong to the same frequency band. The capacitance of the capacitance elements C5, C6 may be appropriately adjusted so that the first frequency g3 and the second frequency g4 belong to different frequency bands.
The resonant structure 210A resonates at a first frequency g5 along a first path Q5. The first path Q5 is an apparent current path in the same or similar manner as the second path P2 illustrated in
The resonant structure 210A resonates at a second frequency g6 along a second path Q6. The second path Q6 is an apparent current path in the same or similar manner as the first path P1 illustrated in
The resonant structure 210A is symmetrical about a line connecting the center points of two sides, substantially parallel to the Y-direction, of the substantially square conducting portion 230. In the resonant structure 210A configured symmetrically in such a way, the first path Q5 and the second path Q6 can be configured symmetrically. The first frequency g5 and the second frequency g6 can become equivalent as a result of the symmetrical configuration of the first path Q5 and the second path Q6.
The resonant structure 210B includes capacitance elements C5, C6, C7, C8. The capacitance elements C5 to C8 may be chip capacitors or the like. The capacitance of each capacitance element C5 to C8 is the same.
Of the two sides of the second conductor 32 substantially parallel to the Y-direction, the capacitance elements C5, C6 are located in the central region of the side farther in the positive direction of the X-axis. The capacitance element C5 is located between the second conductor 32 and the support 33b, of the third conductor 33-4, that lies along the Y-direction. The capacitance element C6 is located between the second conductor 32 and the support 33b, of the third conductor 33-1, that lies along the Y-direction.
Of the two sides of the second conductor 32 substantially parallel to the Y-direction, the capacitance elements C7, C8 are located in the central region of the side farther in the negative direction of the X-axis. The capacitance element C7 is located between the second conductor 32 and the support 33b, of the third conductor 33-3, that lies along the Y-direction. The capacitance element C8 is located between the second conductor 32 and the support 33b, of the third conductor 33-2, that lies along the Y-direction.
The resonant structure 210B resonates at a first frequency g7 along a first path Q7. In the same or similar manner as the first path Q1 illustrated in
The resonant structure 210B resonates at a second frequency g8 along a second path Q8. In the same or similar manner as the second path Q2 illustrated in
In the resonant structure 210B, the capacitance elements C5 to C8 are located near the first path Q7. The first frequency g9 in the first path Q7 is lower than the second frequency g8 in the second path Q8. The first frequency g7 and the second frequency g8 differ in the resonant structure 210B. The capacitance of the capacitance elements C5 to C8 may be appropriately adjusted so that the first frequency g7 and the second frequency g8 belong to the same frequency band. The capacitance of the capacitance elements C5 to C8 may be appropriately adjusted so that the first frequency g7 and the second frequency g8 belong to different frequency bands.
The resonant structure 210C includes capacitance elements C5, C6. The capacitance elements C5, C6 may be chip capacitors or the like. The capacitance of the capacitance elements C5, C6 is the same.
The capacitance element C5 is located near the corner facing the third conductor 33-4 among the four corners of the second conductor 32. The capacitance element C5 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-4, that lies along the Y-direction.
The capacitance element C6 is located near the corner facing the third conductor 33-2 among the four corners of the second conductor 32. The capacitance element C6 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-2, that lies along the Y-direction.
The resonant structure 210C resonates at a first frequency g9 along a first path Q9. The first path Q9 is an apparent current path in the same or similar manner as the second path P2 illustrated in
The resonant structure 210C resonates at a second frequency g10 along a second path Q10. The second path Q10 is an apparent current path in the same or similar manner as the first path P1 illustrated in
In the resonant structure 210C, the capacitance elements C5, C6 are located near the first path Q9. The first frequency g9 in the first path Q9 can be lower than the second frequency g10 in the second path Q10. The first frequency g9 and the second frequency g10 differ in the resonant structure 210C. The capacitance of the capacitance elements C5, C6 may be appropriately adjusted so that the first frequency g9 and the second frequency g10 belong to the same frequency band. The capacitance of the capacitance elements C5, C6 may be appropriately adjusted so that the first frequency g9 and the second frequency g10 belong to different frequency bands.
The resonant structure 210D includes capacitance elements C5 to C7. The capacitance elements C5, C6 are located at the same or similar positions as the capacitance elements C5, C6 illustrated in
The capacitance element C7 is located near the corner facing the third conductor 33-3 among the four corners of the second conductor 32. The capacitance element C7 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-3, that lies along the Y-direction.
The resonant structure 210D resonates at a first frequency g11 along a first path Q11. The first path Q11 is an apparent current path in the same or similar manner as the first path P1 illustrated in
The resonant structure 210D resonates at a second frequency g12 along a second path Q12. The second path Q12 is an apparent current path in the same or similar manner as the second path P2 illustrated in
In the resonant structure 210D, only the one capacitance element C5 is located near the second path Q12, whereas the two capacitance elements C6, C7 are located near the first path Q11. The first frequency g11 in the first path Q11 is lower than the second frequency g12 in the second path Q12. The first frequency g11 and the second frequency g12 differ in the resonant structure 210D. The capacitance of the capacitance elements C5 to C7 may be appropriately adjusted so that the first frequency g11 and the second frequency g12 belong to the same frequency band. The capacitance of the capacitance elements C5 to C7 may be appropriately adjusted so that the first frequency g11 and the second frequency g12 belong to different frequency bands.
The resonant structure 210D resonates at a first frequency g13 along a first path Q13. The first path Q13 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair. The resonant structure 210D exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g13 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230 is located.
The resonant structure 210E includes capacitance elements C5 to C8. The capacitance elements C5 to C7 are located at the same or similar positions as the capacitance elements C5 to C7 illustrated in
The capacitance element C8 is located near the corner facing the third conductor 33-2 among the four corners of the second conductor 32. The capacitance element C8 is located between a side of the second conductor 32 substantially parallel to the Y-direction and the support 33b, of the third conductor 33-2, that lies along the Y-direction.
The capacitances of the capacitance elements C5 to C8 differ from each other. The capacitance may increase in the order of the capacitance element C8, the capacitance element C6, the capacitance element C7, and the capacitance element C5.
For example, the capacitance of the capacitance element C8 is set to capacitance c [pF]. The capacitance of the capacitance element C6 is set to twice times the capacitance c (2×c [pF]). The capacitance of the capacitance element C7 is set to five times the capacitance c (5×c [pF]). The capacitance of the capacitance element C5 is set to ten times the capacitance c (10×c [pF]).
The resonant structure 210E resonates at a first frequency g14 along a first path Q14. The first path Q14 is a portion of the current path traversing the connecting conductors 60-3, 60-4 of the first connecting pair. The resonant structure 210E exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency g14 and polarized in the X-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230 is located.
The resonant structure 210E resonates at a second frequency g15 along a second path Q15. The second path Q15 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the second connecting pair. The resonant structure 210E exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g15 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230 is located.
In the resonant structure 210E, the capacitance elements C5, C7 are located near the first path Q14, and the capacitance elements C5, C6 are located near the second path Q15. The total capacitance (15×c [pF]) of the capacitors C5, C7 located near the first path Q14 is greater than the total capacitance (12×c [pF]) of the capacitors C5, C6 located near the second path Q15. The first frequency g14 in the first path Q14 can be lower than the second frequency g15 in the second path Q15. The first frequency g14 and the second frequency g15 differ in the resonant structure 210E. The capacitance of the capacitance elements C5 to C8 may be appropriately adjusted so that the first frequency g14 and the second frequency g15 belong to the same frequency band. The capacitance of the capacitance elements C5 to C8 may be appropriately adjusted so that the first frequency g14 and the second frequency g15 belong to different frequency bands.
The resonant structure 210E resonates at a first frequency g16 along a first path Q16. The first path Q16 is an apparent current path in the same or similar manner as the second path P2 illustrated in
The resonant structure 210F includes a conducting portion 230F. The conducting portion 230F includes a second conductor 32F. The second conductor 32F is substantially rectangular. The second conductor 32F is located near the central region of the conducting portion 230F in the Y-direction. The short sides of the second conductor 32F may be aligned in the Y-direction. The long sides of the second conductor 32F may be aligned in the X-direction. The ratio between the length of the short sides of the second conductor 32F and the length of the long sides of the second conductor 32F may be approximately 2:3. The length of the long sides of the second conductor 32F may be equivalent to the length of one side of the second conductor 32 illustrated in
The resonant structure 210G includes a conducting portion 230G. The conducting portion 230G includes a first conductor 231G-1, a first conductor 231G-2, a first conductor 231G-3, and a first conductor 231G-4. The first conductors 231G-1 to 231G-4 are collectively indicated as the “first conductors 231G” when no particular distinction is made therebetween.
The first conductor 231G is substantially rectangular. The length of the short sides of the first conductors 231G is approximately ⅓ the length of one side of the substantially square conducting portion 230G. The length of the long sides of the first conductors 231G is equivalent to the length of one side of the first conductor 231 illustrated in
In addition to the connecting conductors 60-1 to 60-4, the resonant structure 210H includes a connecting conductor 60-5. The resonant structure 210H includes a conducting portion 230H. The conducting portion 230H includes third conductors 33c-1, 33c-2, 33c-3, 33c-4, 33c-5. The third conductors 33c-1 to 33c-5 are collectively indicated as the “third conductors 33c” when no particular distinction is made therebetween.
The third conductors 33c may be configured in the same or similar manner as the connectors 33a illustrated in
The connecting conductor 60-5 is located between the connecting conductor 60-1 and the connecting conductor 60-4 in the Y-direction. The connector 231a illustrated in
The resonant structure 210H resonates at a first frequency g17 along a first path Q17. The first path Q17 appears in the same or similar manner as the first path Q1 illustrated in
The resonant structure 210H resonates at a second frequency g18 along a second path Q18. The second path Q18 appears in the same or similar manner as the second path Q2 illustrated in
In addition to the connecting conductors 60-1 to 60-4, the resonant structure 210J includes connecting conductors 60-5, 60-6. The resonant structure 210J includes a conducting portion 230J. The conducting portion 230J includes third conductors 33c-1, 33c-2, 33c-3, 33c-4, 33c-5, and 33c-6. The third conductors 33c-1 to 33c-6 can overlap the connecting conductors 60-1 to 60-6 in the Z-direction. The configuration of the third conductors 33-5 and the connecting conductor 60-5 is the same as or similar to the configuration illustrated in
The connecting conductor 60-6 is located between the connecting conductor 60-1 and the connecting conductor 60-2 in the X-direction. The connector 231a illustrated in
The resonant structure 210J resonates at a first frequency g19 along a first path Q19. The first path Q19 appears in the same or similar manner as the first path Q1 illustrated in
The resonant structure 210J resonates at a second frequency g20 along a second path Q20. The second path Q20 appears in the same or similar manner as the second path Q2 illustrated in
The resonant structure 210J is configured symmetrically in the same or similar manner as the resonant structure 210 illustrated in
In addition to the connecting conductors 60-1 to 60-4, the resonant structure 210K includes connecting conductors 60-5, 60-6. The resonant structure 210K includes a conducting portion 230K. The conducting portion 230K includes third conductors 33c-1, 33c-2, 33c-3, 33c-4, 33c-5, and 33c-6.
The third conductors 33c-1 to 33c-6 can overlap the connecting conductors 60-1 to 60-6 in the Z-direction. The configuration of the third conductor 33-5 and the connecting conductor 60-5 is the same as or similar to the configuration illustrated in
The connecting conductor 60-6 is located between the connecting conductor 60-2 and the connecting conductor 60-3 in the Y-direction. The connectors 231a illustrated in
The resonant structure 210K resonates at a first frequency g21 along a first path Q21. The first path Q21 appears in the same or similar manner as the first path P1 illustrated in
Unlike the resonant structure 210 illustrated in
The resonant structure 210L resonates at a first frequency g22 along a first path Q22. The first path Q22 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the first connecting pair. The resonant structure 210L exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g22 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230L is located.
Unlike the resonant structure 210 illustrated in
The resonant structure 210M resonates at a first frequency g23 along a first path Q23. The first path Q23 is a portion of the current path traversing the connecting conductors 60-2, 60-4 of the first connecting pair. The resonant structure 210M exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g23 and polarized in the B-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230M is located.
In addition to the connecting conductors 60-1 to 60-4, the resonant structure 210N includes connecting conductors 60-5, 60-6, 60-7, 60-8. The resonant structure 210N includes a conducting portion 230N. The conducting portion 230N includes third conductors 33c-1, 33c-2, 33c-3, 33c-4, 33c-5, 33c-6, 33c-7, 33c-8. Each of the third conductors 33c-1 to 33c-8 is connected to a different one of the connecting conductors 60-1 to 60-8. The third conductors 33c-1 to 33c-8 can overlap the connecting conductors 60-1 to 60-8 in the Z-direction.
The connecting conductor 60-5 is located between the connecting conductor 60-1 and the connecting conductor 60-2 in the X-direction. The connector 231a illustrated in
The connecting conductor 60-6 is located between the connecting conductor 60-2 and the connecting conductor 60-3 in the Y-direction. The connector 231a illustrated in
The connecting conductor 60-7 is located between the connecting conductor 60-3 and the connecting conductor 60-4 in the X-direction. The connector 231a illustrated in
The connecting conductor 60-8 is located between the connecting conductor 60-1 and the connecting conductor 60-4 in the Y-direction. The connector 231a illustrated in
The resonant structure 210N resonates at a first frequency g24 along a first path Q24. The first path Q24 is an apparent current path in the same or similar manner as the first path P1 illustrated in
The resonant structure 210N resonates at a second frequency g25 along a second path Q25. The second path Q25 is an apparent current path in the same or similar manner as the second path P2 illustrated in
The resonant structure 210N is configured symmetrically in the same or similar manner as the resonant structure 210 illustrated in
The resonant structure 210O includes a conducting portion 230O. The conducting portion 230O includes third conductors 33c-1, 33c-2, 33c-3, and 33c-4. Each of the third conductors 33c-1 to 33c-4 is connected to a different one of the connecting conductors 60-1 to 60-4. The third conductors 33c-1 to 33c-4 can overlap the connecting conductors 60-1 to 60-4 in the Z-direction.
Of the two corners of the first conductor 231-1 that are farther in the positive direction of the Y-axis, the connecting conductor 60-1 is located near the corner that is farther in the negative direction of the X-axis. Of the two corners of the first conductor 231-2 that are farther in the negative direction of the X-axis, the connecting conductor 60-2 is located near the corner that is farther in the negative direction of the Y-axis. Of the two corners of the first conductor 231-3 that are farther in the negative direction of the Y-axis, the connecting conductor 60-3 is located near the corner that is farther in the positive direction of the X-axis. Of the two corners of the first conductor 231-4 that are farther in the positive direction of the X-axis, the connecting conductor 60-4 is located near the corner that is farther in the positive direction of the Y-axis.
The resonant structure 210O resonates at a first frequency g26 along a first path Q26. The resonant structure 210O exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g26 and polarized in the A-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230O is located.
The resonant structure 210O resonates at a second frequency g27 along a second path Q27. The resonant structure 210O exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency g27 and polarized in the B-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230O is located.
The resonant structure 210P includes a conducting portion 230P. The conducting portion 230P includes a first conductor 231P-1, a first conductor 231P-2, a first conductor 231P-3, a first conductor 231P-4, a second conductor 32, and third conductors 33P-1, 33P-1, 33P-1, 33P-4. The first conductor 231P-1 to 231P-4 are collectively indicated as the “first conductors 231P” when no particular distinction is made therebetween. The third conductor 33P-1 to 33P-4 are collectively indicated as the “third conductors 33P” when no particular distinction is made therebetween.
The first conductor 231P is substantially rectangular. The ratio between the length of the sides of the first conductor 231P-1 substantially parallel to the X-direction and the length of the sides of the first conductor 231P-2 substantially parallel to the X-direction is approximately 2:1. The ratio between the length of the sides of the first conductor 231P-2 substantially parallel to the Y-direction and the length of the sides of the first conductor 231P-3 substantially parallel to the Y-direction is approximately 1:6.
A gap Sx3 is located between the first conductor 231P-1 and the first conductor 231P-2. The gap Sx3 extends in the Y-direction. A gap Sy3 is located between the first conductor 231P-2 and the first conductor 231P-3. The gap Sy3 extends in the X-direction.
Each third conductor 33P includes the connector 33a illustrated in
The resonant structure 210P resonates at a first frequency g30 along a first path Q30. The first path Q30 is a portion of the current path traversing the connecting conductors 60-3, 60-4 of the first connecting pair. The resonant structure 210P exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g30 and polarized in the X-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230P is located.
The resonant structure 210P resonates at a second frequency g31 along a second path Q31. The second path Q31 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the second connecting pair. The resonant structure 210P exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency g31 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230P is located.
Each of the first conductors 231P-1 to 231P-4 has a different area in the resonant structure 210P. Since each of the first conductors 231P-1 to 231P-4 has a different area, the first frequency g30 in the first path Q30 and the second frequency g31 in the second path Q31 may differ. The first frequency g30 and the second frequency g31 differ in the resonant structure 210P. The width and position of the gaps Sx3, Sy3 may be appropriately adjusted so that the first frequency g30 and the second frequency g31 belong to the same frequency band. The width and position of the gaps Sx3, Sy3 may be appropriately adjusted so that the first frequency g30 and the second frequency g31 belong to different bands.
The resonant structure 210P resonates at a first frequency g32 along a first path Q32. The first path Q32 is a portion of the current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair. The resonant structure 210P exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency g32 and polarized in the X-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230P is located.
The resonant structure 210P resonates at a second frequency g33 along a second path Q33. The second path Q33 is a portion of the current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair. The resonant structure 210P exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency g33 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 230P is located.
In the resonant structure 210P1, the first feeder 51 overlaps the first conductor 231P-3 in the XY plane. In the resonant structure 210P1, the second feeder 52 overlaps the first conductor 231P-4 in the XY plane. The resonant structure 210P1 can resonate in the same or similar manner as the resonant structure 210P illustrated in
The resonant structure 210Q includes a conducting portion 230Q. The conducting portion 230Q includes first conductors 231Q-1, 231Q-2, second conductors 32Q-1, 32Q-2, a third conductor 33c-1, a third conductor 33c-2, a third conductor 33c-3, and a fourth conductor 33c-4.
The conducting portion 230 includes a gap Sx4 and a gap Sy4. The gap Sx4 extends in the Y-direction. The gap Sx4 is located between the second conductor 32Q-1 and the second conductor 32Q-2. The gap Sy4 extends in the X-direction. The gap Sy4 is located between the first conductor 231Q-1 and the first conductor 231Q-2. The width of the gap Sx4 and the width of the gap Sy4 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 210Q.
The first conductor 231Q-1 is substantially rectangular. The first conductor 231Q-1 is located farther in the positive direction of the Y-axis in the conducting portion 230Q. The first conductor 231Q-1 includes a cutout section at the corner opposite the connecting conductor 60-2. The first conductor 231Q-1 is not connected to the connecting conductor 60-2. The first conductor 231Q-1 is connected to the connecting conductor 60-1.
The first conductor 231Q-2 is substantially rectangular. The first conductor 231Q-2 is located farther in the negative direction of the Y-axis in the conducting portion 230Q. The first conductor 231Q-2 includes a cutout section at the corner opposite the connecting conductor 60-4. The first conductor 231Q-2 is not connected to the connecting conductor 60-4. The first conductor 231Q-2 is connected to the connecting conductor 60-3.
The second conductor 32Q-1 is substantially rectangular. The second conductor 32Q-1 is located farther in the positive direction of the X-axis in the conducting portion 230Q. The second conductor 32Q-1 includes a cutout section at the corner opposite the connecting conductor 60-1. The second conductor 32Q-1 is not connected to the connecting conductor 60-1. The second conductor 32Q-1 is connected to the connecting conductor 60-4 via the third conductor 33c-4.
The second conductor 32Q-2 is substantially rectangular. The second conductor 32Q-2 is located farther in the negative direction of the X-axis in the conducting portion 230Q. The second conductor 32Q-2 includes a cutout section at the corner opposite the connecting conductor 60-3. The second conductor 32Q-2 is not connected to the connecting conductor 60-3. The second conductor 32Q-2 is connected to the connecting conductor 60-2 via the third conductor 33c-2.
The resonant structure 210R includes a conducting portion 230R. The conducting portion 230R includes first conductors 231R-1, 231R-2, 231R-3, a second conductor 32R, and a third conductor 33c-1, third conductor 33c-2, third conductor 33c-3, and third conductor 33c-4.
The first conductor 231R-1 is substantially rectangular. The first conductor 231R-1 includes a cutout section at the corner opposite the connecting conductor 60-4. The first conductor 231R-1 is not connected to the connecting conductor 60-4. The first conductor 231R-1 is connected to the connecting conductor 60-1.
The first conductors 231R-2, 231R-3 are substantially rectangular. The first conductor 231R-2 is connected to the connecting conductor 60-2. The first conductor 231R-3 is connected to the connecting conductor 60-3.
The ratio between the length of the sides of the first conductor 231R-1 substantially parallel to the X-direction and the length of the sides of the first conductor 231R-2 substantially parallel to the X-direction is approximately 3:4. The ratio between the length of the sides of the first conductor 231R-2 substantially parallel to the Y-direction and the length of the sides of the first conductor 231R-3 substantially parallel to the Y-direction is approximately 3:4.
A gap Sx5 separates the first conductor 231R-1 from the first conductor 231R-2 and the first conductor 231R-3. The gap Sx5 extends in the Y-direction. A gap Sy5 is located between the first conductor 231R-2 and the first conductor 231R-3. The gap Sy5 extends in the X-direction. The gap Sy5 extends from the side of the conducting portion 230R farther in the negative direction of the X-axis to the gap Sx5. The width of the gap Sx5 and the width of the gap Sy5 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 210R.
The second conductor 32R is substantially square. The second conductor 32R includes cutout sections at the corners opposite each of the connecting conductors 60-1 to 60-3. The second conductor 32R is connected neither to the third conductors 33c-1 to 33c-3 nor to the connecting conductors 60-1 to 60-3. The second conductor 32R is connected to the connecting conductor 60-4 via the third conductor 33c-4.
The resonant structure 210S includes a conducting portion 230S. The conducting portion 230S includes first conductors 231S-1, 231S-2, 231S-3, a second conductor 32S, and third conductors 33c-1, 33c-2, 33c-3, 33c-4.
The first conductors 231S-1 to 231S-3 are the same as the first conductors 231R-1 to 231R-3 illustrated in
The second conductor 32S is substantially square. The second conductor 32S includes cutout sections at the corners opposite each of the connecting conductors 60-1 to 60-4. The second conductor 32S is connected neither to the third conductors 33c-1 to 33c-4 nor to the connecting conductors 60-1 to 60-4.
The resonant structure 210T includes a conducting portion 320T. The conducting portion 320T includes first conductors 231T-1, 231T-2, a second conductor 32T, and third conductors 33c-1, 33c-2, 33c-3, 33c-4.
The first conductors 231T-1, 231T-2 are substantially rectangular. The ratio between the length of the sides of the first conductor 231T-1 substantially parallel to the X-direction and the length of the sides of the first conductor 231T-2 substantially parallel to the X-direction is approximately 3:4.
The first conductor 231T-1 is connected to the connecting conductors 60-1, 60-4. The first conductor 231T-2 is connected to the connecting conductors 60-2, 60-3.
A gap Sx6 is located between the first conductor 231T-1 and the first conductor 231T-2. The gap Sx6 extends in the Y-direction. The width and position of the gap Sx6 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 210T.
The second conductor 32T is the same as the second conductor 32S illustrated in
The resonant structure 210U includes a conducting portion 230U. The conducting portion 230U includes first conductors 231U-1, 231U-2, a second conductor 32U, and third conductors 33c-1, 33c-2, 33c-3, 33c-4.
The first conductor 231U-1 is L-shaped. The first conductor 231U-2 is rectangular. The ratio between the length of the side of the first conductor 231U-1 farther in the negative direction of the Y-axis and the length of the side of the first conductor 231U-2 farther in the negative direction of the Y-axis is approximately 3:4. The ratio between the length of the side of the first conductor 231U-1 farther in the negative direction of the X-axis and the length of the side of the first conductor 231U-2 farther in the negative direction of the X-axis is approximately 4:3.
A gap Sx7 and a gap Sx8 are located between the first conductor 231U-1 and the first conductor 231U-2. The gap Sx7 extends in the Y-direction. The gap Sx8 extends in the X-direction. The width and position of the gap Sx7 and the width and position of the gap Sx8 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 210U.
The second conductor 32U is the same as the second conductor 32S illustrated in
The resonant structure 310 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 330 illustrated in
As illustrated in
The first conductors 331-1 to 331-4 are collectively indicated as the “first conductors 331” when no particular distinction is made therebetween. The number of first conductors 331 included in the conducting portion 330 is not limited to four. The conducting portion 330 may include any number of first conductors 331. The third conductors 333-1 to 333-4 are collectively indicated as the “third conductors 333” when no particular distinction is made therebetween.
The first conductors 331 illustrated in
The first conductors 331 illustrated in
For example, the first conductor 331-3 and the first conductor 331-4 are aligned in the X-direction of the rectangular grid extending in the X-direction and Y-direction. The first conductor 331-1 and the first conductor 331-4 are aligned in the Y-direction of the rectangular grid extending in the X-direction and Y-direction. The first conductor 331-2 and the first conductor 331-3 are aligned in the Y-direction of the rectangular grid extending in the X-direction and Y-direction. The first conductor 331-1 and the first conductor 331-3 are aligned in a third diagonal direction of the rectangular grid extending in the X-direction and Y-direction. The third diagonal direction is a direction along a diagonal line of the rectangular grid. The first conductor 331-2 and the first conductor 331-4 are aligned in a fourth diagonal direction of the rectangular grid extending in the X-direction and Y-direction. The fourth diagonal direction is a direction along a different diagonal line of the rectangular grid than the diagonal line corresponding to the third diagonal direction. The third diagonal direction and the fourth diagonal direction can depend on the ratio between the long sides and short sides of the rectangular grid.
The second conductor 332 illustrated in
The third conductors 333-1 to 333-4 illustrated in
The ground conductor 340 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The connecting conductors 60 illustrated in
The connecting conductor 60-1 and the connecting conductor 60-4 can become one set. The connecting conductor 60-2 and the connecting conductor 60-3 can become one set. The connecting conductor 60-1 and the connecting conductor 60-2 can become one set. The connecting conductor 60-3 and the connecting conductor 60-4 can become one set.
The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 become a first connecting pair aligned along the X-direction as the first direction. The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 become a first connecting pair aligned along the X-direction of the rectangular grid in which the first conductors 331 are aligned.
The resonant structure 310 resonates at a first frequency h1 along a first path R1. The first path R1 is a portion of the current path traversing the set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 of the first connecting pair. This current path includes the ground conductor 340, the first conductors 331-1, 331-4, the first conductors 331-2, 331-3, and the set of the connecting conductors 60-1, 60-4 and set of the connecting conductors 60-2, 60-3 of the first connecting pair. The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 are configured to function as a pair of electric walls when the resonant structure 310 resonates at the first frequency h1 along the first path R1. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 are configured to function as a pair of magnetic walls, from the perspective of current flowing over the current path that includes the first path R1, when the resonant structure 310 resonates at the first frequency h1 along the first path R1. By the set of connecting conductors 60-1, 60-4 and the set of connecting conductors 60-2, 60-3 functioning as a pair of electric walls and the set of connecting conductors 60-1, 60-2 and the set of connecting conductors 60-3, 60-4 functioning as a pair of magnetic walls, the resonant structure 310 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency h1 and polarized along the first path R1, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 330 is located.
The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 become a second connecting pair aligned along the Y-direction as the second direction. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 become a second connecting pair aligned along the Y-direction of the rectangular grid in which the first conductors 331 are aligned.
The resonant structure 310 resonates at a second frequency h2 along a second path R2. The second path R2 is a portion of the current path traversing the set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 of the second connecting pair. This current path includes the ground conductor 340, the first conductors 331-1, 332-2, the first conductors 331-3, 331-4, and the set of the connecting conductors 60-1, 60-2 and set of the connecting conductors 60-3, 60-4 of the second connecting pair. The set of the connecting conductors 60-1, 60-2 and the set of the connecting conductors 60-3, 60-4 are configured to function as a pair of electric walls when the resonant structure 310 resonates at the second frequency h2 along the second path R2. The set of the connecting conductors 60-1, 60-4 and the set of the connecting conductors 60-2, 60-3 are configured to function as a pair of magnetic walls, from the perspective of current flowing over the current path that includes the second path R2, when the resonant structure 310 resonates at the second frequency h2 along the second path R2. By the set of connecting conductors 60-1, 60-2 and the set of connecting conductors 60-3, 60-4 functioning as a pair of electric walls and the set of connecting conductors 60-1, 60-4 and the set of connecting conductors 60-2, 60-3 functioning as a pair of magnetic walls, the resonant structure 310 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency h2, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 330 is located.
In the resonant structure 310, the length of the rectangular conducting portion 330 along the X-direction as the first direction and the length of the conducting portion 330 along the Y-direction as the second direction differ. Since the length of the conducting portion 330 along the X-direction and the length of the conducting portion 330 along the Y-direction differ, the length of the first path R1 and the length of the second path R2 differ. As a result of the length of the first path R1 and the length of the second path R2 differing, the first frequency h1 and the second frequency h2 differ. For example, when the length of the conducting portion 330 along the X-direction is greater than the length of the conducting portion 330 along the Y-direction, then the length of the first path R1 is greater than the length of the second path R2, as illustrated in
The length of the conducting portion 330 along the X-direction as the first direction and the length of the conducting portion 330 along the Y-direction as the second direction in the resonant structure 310 may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 310.
For example, the length of the conducting portion 330 along the X-direction and the length of the conducting portion 330 along the Y-direction may be appropriately adjusted so that the first frequency h1 and the second frequency h2 belong to the same frequency band. As the difference between the length of the conducting portion 330 along the X-direction and the length of the conducting portion 330 along the Y-direction is smaller, the difference between the first frequency h1 and the second frequency h2 decreases.
For example, the length of the conducting portion 330 along the X-direction and the length of the conducting portion 330 along the Y-direction may be appropriately adjusted so that the first frequency h1 and the second frequency h2 belong to different frequency bands. As the difference between the length of the conducting portion 330 along the X-direction and the length of the conducting portion 330 along the Y-direction is larger, the difference between the first frequency h1 and the second frequency h2 increases.
The resonant structure 310 can be a filter that removes frequencies other than the first frequency h1 and the second frequency h2. The resonant structure 310 can be a filter that removes frequencies other than two different frequencies.
When the resonant structure 310 as a filter includes the first feeder 51, then the resonant structure 310 can supply power corresponding to electromagnetic waves of the first frequency h1 to an external device or the like over the first path R1 via the first feeder 51. When the resonant structure 310 as a filter includes the second feeder 52, then the resonant structure 310 can supply power corresponding to electromagnetic waves of the second frequency h2 to an external device or the like over the second path R2 via the second feeder 52.
The resonant structure 310 can be an antenna that emits electromagnetic waves of the first frequency h1 and the second frequency h2. The resonant structure 310 can be a dual-frequency antenna. A dual-frequency antenna is an antenna that emits electromagnetic waves of two different frequencies.
The resonant structure 310 as a dual-frequency antenna is configured to supply power from the first feeder 51 to the conducting portion 330 when emitting electromagnetic waves of the first frequency h1. The first feeder 51 is configured to induce current in the first path R1 along the X-direction as the first direction. The resonant structure 310 as a dual-frequency antenna is configured to supply power from the second feeder 52 to the conducting portion 330 when emitting electromagnetic waves of the second frequency h2. The second feeder 52 is configured to induce current in the second path R2 along the Y-direction as the second direction.
<Simulation Results>
The solid line in
The resonant structure 310 enters a resonant state at the frequencies where the total emission efficiency in
The solid line in
As illustrated in
As illustrated in
The resonant structure 410 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 430 illustrated in
As illustrated in
The first conductors 431-1, 431-2 are collectively indicated as the “first conductors 431” when no particular distinction is made therebetween. The third conductors 433-1 to 433-3 are collectively indicated as the “third conductors 433” when no particular distinction is made therebetween.
The first conductors 431-1, 431-2 illustrated in
The ratio between the length of the base, substantially parallel to the X-direction, of the first conductor 431-1 to the length of the base, substantially parallel to the X-direction, of the first conductor 431-2 in
The first conductors 431 are located inside the substrate 20. The distance between the first conductors 431 and the second conductor 432 may be approximately the distance d1 illustrated in
The second conductor 432 illustrated in
The third conductors 433 illustrated in
The third conductors 433-1, 433-2 illustrated in
The third conductor 433-3 illustrated in
The ground conductor 440 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The connecting conductors 60 illustrated in
The C direction is a direction inclined 60 degrees in the positive direction of the Y-axis from the positive direction of the X-axis. The C direction is the direction along one side, farther in the positive direction of the X-axis, of the conducting portion 430 that is substantially an equilateral triangle.
The D direction is a direction inclined 120 degrees in the positive direction of the Y-axis from the positive direction of the X-axis. The D direction is the direction along one side, farther in the negative direction of the X-axis, of the conducting portion 430 that is substantially an equilateral triangle.
The connecting conductor 60-2 and the connecting conductor 60-3 become a first connecting pair aligned along the C-direction as the first direction. The connecting conductor 60-1 and the connecting conductor 60-3 become a second connecting pair aligned along the D-direction as the second direction.
The resonant structure 410 resonates at a first frequency k1 along a path substantially parallel to the Y-direction. The path substantially parallel to the Y-direction appears as a result of a first path T1 and a second path T2. The first path T1 is a portion of the current path traversing the connecting conductors 60-2, 60-3 of the first connecting pair. A current path including the first path T1 in a portion thereof includes the ground conductor 440, the first conductor 431-2, the second conductor 432, and the connecting conductors 60-2, 60-3 of the first connecting pair. The second path T2 is a portion of the current path traversing the connecting conductors 60-1, 60-3 of the second connecting pair. A current path including the second path T2 in a portion thereof includes the ground conductor 440, the first conductor 432-1, the second conductor 432, and the connecting conductors 60-1, 60-3 of the second connecting pair.
When the resonant structure 410 resonates at the first frequency k1, current can flow from the connecting conductor 60-3 towards the connecting conductor 60-2 over the first path T1 and from the connecting conductor 60-2 towards the connecting conductor 60-1 over the second path T2. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves are substantially parallel to the Y-direction.
The resonant structure 410 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency k1 and polarized in the Y-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 430 is located.
The connecting conductor 60-2 and the connecting conductor 60-3 become a first connecting pair aligned along the C-direction as the first direction. The connecting conductor 60-1 and the connecting conductor 60-3 become a second connecting pair aligned along the D-direction as the second direction. The connecting conductor 60-1 and the connecting conductor 60-2 become a third connecting pair aligned along the X-direction as the third direction.
The resonant structure 410 resonates at the first frequency k1 along a path substantially parallel to the X-direction. The path substantially parallel to the X-direction appears as a result of a first path T3, a second path T4, and a third path T5. The first path T3 is a path in the same or similar manner as the first path T1 illustrated in
When the resonant structure 410 resonates at a first frequency k2, current can flow from the connecting conductor 60-3 towards the connecting conductor 60-2 over the first path T3. Current can flow from the connecting conductor 60-3 towards the connecting conductor 60-1 over the second path T4. Current can flow from the connecting conductor 60-1 towards the connecting conductor 60-2 over the third path T5. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves are substantially parallel to the X-direction.
The resonant structure 410 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency k2 and polarized in the X-direction, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 430 is located.
The resonant structure 410A includes a conducting portion 430A. The conducting portion 430A includes first conductors 431A-1, 431A-2, 431A-3, a second conductor 432a, and third conductors 433-1, 433-2, 433-3. The first conductors 431A-1, 431A-2, 431A-3 are collectively indicated as the “first conductors 431A” when no particular distinction is made therebetween.
The first conductors 431A-1 to 431A-3 illustrated in
The ratio between the length of the side of the first conductor 431A-1 substantially parallel to the X-direction and the length of the side of the first conductor 431A-2 substantially parallel to the X-direction in
The ratio between the length of the side of the first conductor 431A-1 substantially parallel to the D-direction and the length of the side of the first conductor 431A-3 substantially parallel to the D-direction in
The ratio between the length of the side of the first conductor 431A-2 substantially parallel to the C-direction and the length of the side of the first conductor 431A-3 substantially parallel to the C-direction in
The width and position of the gaps Sb, Sc, Sd may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 410A.
The second conductor 432a illustrated in
The resonant structure 410B includes a conducting portion 430B. The conducting portion 430B includes first conductors 431B-1, 431B-2, a second conductor 432a, and third conductors 433-1, 433-2, 433-3. The first conductors 431B-1, 431B-2 are collectively indicated as the “first conductors 431B” when no particular distinction is made therebetween.
The first conductor 431B-1 is substantially trapezoidal. The first conductor 431B-1 includes a connector 431a that connects to the connecting conductor 60-1 and a connector 431a that connects to the connecting conductor 60-2, in the same or similar manner as the first conductor 431A-1 illustrated in
The first conductor 431B-2 is substantially triangular. The first conductor 431B-2 includes a connector 431a that connects to the connecting conductor 60-3 in the same or similar manner as the first conductor 431A-3 illustrated in
The ratio between the length of the side of the first conductor 431B-1 substantially parallel to the C-direction and the length of the side of the first conductor 431B-2 substantially parallel to the C-direction is approximately 2:3. The ratio between the length of the side of the first conductor 431B-1 substantially parallel to the D-direction and the length of the side of the first conductor 431B-2 substantially parallel to the D-direction is approximately 2:3. The gap Se is located between the first conductor 431B-1 and the first conductor 431B-2. The gap Se extends from a location between the side of the first conductor 431B-1 substantially parallel to the C-direction and the side of the first conductor 431B-2 substantially parallel to the C-direction to a location between the side of the first conductor 431B-1 substantially parallel to the D-direction and the side of the first conductor 431B-2 substantially parallel to the D-direction. The width and position of the gap Se may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 410B.
The resonant structure 410B resonates at the first frequency k1 along the first path T1 illustrated in
The resonant structure 410C includes a conducting portion 430C. The conducting portion 430C includes first conductors 431C-1, 431C-2, a second conductor 432a, and third conductors 433-1, 433-2, 433-3. The first conductors 431C-1, 431C-2 are collectively indicated as the “first conductors 431C” when no particular distinction is made therebetween.
The first conductor 431C-1 is substantially trapezoidal. The first conductor 431C-1 includes a connector 431a that connects to the connecting conductor 60-1 and a connector 431a that connects to the connecting conductor 60-2, in the same or similar manner as the first conductor 431A-1 illustrated in
The first conductor 431C-2 is substantially triangular. The first conductor 431C-2 includes a connector 431a that connects to the connecting conductor 60-3 in the same or similar manner as the first conductor 431A-3 illustrated in
The ratio between the length of the side of the first conductor 431C-1 substantially parallel to the C-direction and the length of the side of the first conductor 431C-2 substantially parallel to the C-direction is approximately 2:3. The ratio between the length of the side of the first conductor 431C-1 substantially parallel to the D-direction and the length of the side of the first conductor 431C-2 substantially parallel to the D-direction is approximately 2:3. The gap Se is located between the first conductor 431B-1 and the first conductor 431B-2 in the same or similar manner as the configuration illustrated in
The resonant structure 410D includes a conducting portion 430D. The conducting portion 430D includes first conductors 431D-1, 431D-2, at least one second conductor 432a, and third conductors 433-1, 433-2, 433-3. The first conductors 431D-1, 431D-2 are collectively indicated as the “first conductors 431D” when no particular distinction is made therebetween.
The first conductor 431D-1 is substantially quadrangular. The first conductor 431D-1 includes a connector 431a that connects to the connecting conductor 60-1 and a connector 431a that connects to the connecting conductor 60-2 in the same or similar manner as the first conductor 431A-1 illustrated in
The first conductor 431D-2 is substantially triangular. The first conductor 431D-2 includes a connector 431a that connects to the connecting conductor 60-3 in the same or similar manner as the first conductor 431A-3 illustrated in
The ratio between the length of the side of the first conductor 431D-1 substantially parallel to the C-direction and the length of the side of the first conductor 431D-2 substantially parallel to the C-direction is approximately 2:7. The gap Sg is located between the first conductor 431D-1 and the first conductor 431D-2. The ratio between the length of the side of the first conductor 431D-1 substantially parallel to the D-direction and the length of the side of the first conductor 431D-2 substantially parallel to the D-direction is approximately 2:3. The gap Sg extends from a location between the side of the first conductor 431D-1 substantially parallel to the D-direction and the side of the first conductor 431D-2 substantially parallel to the D-direction to a location between the side of the first conductor 431D-1 substantially parallel to the C-direction and the side of the first conductor 431D-2 substantially parallel to the C-direction. The width of the gap Sg gradually increases from the side of the conducting portion 430 substantially parallel to the D-direction towards the side of the conducting portion substantially parallel to the C-direction. The configuration of the gap Sg may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 410D.
The resonant structure 410E includes a conducting portion 430E. The conducting portion 430E includes first conductors 431E-1, 431E-2, 431E-3, a second conductor 432a, and third conductors 433-1, 433-2, 433-3. The first conductors 431E-1 to 431E-3 are collectively indicated as the “first conductors 431E” when no particular distinction is made therebetween.
The first conductor 431E-1 is substantially trapezoidal. The first conductor 431E-1 includes a connector 431a that connects to the connecting conductor 60-1 in the same or similar manner as the first conductor 431A-1 illustrated in
The first conductor 431E-2 is substantially trapezoidal. The first conductor 431E-2 includes a connector 431a that connects to the connecting conductor 60-2 in the same or similar manner as the first conductor 431A-2 illustrated in
The first conductor 431E-3 is substantially triangular. The first conductor 431E-3 includes a connector 431a that connects to the connecting conductor 60-3 in the same or similar manner as the first conductor 431A-3 illustrated in
The ratio between the length of the side of the first conductor 431E-1 substantially parallel to the C-direction and the length of the side of the first conductor 431E-2 substantially parallel to the C-direction is approximately 3.5:6.5. The ratio between the length of the side of the first conductor 431E-1 substantially parallel to the D-direction and the length of the side of the first conductor 431E-2 substantially parallel to the D-direction is approximately 3.5:6.5. The gap Se is located between the first conductors 431E-1, 431E-2 and the first conductor 431E-3 in the same or similar manner as the configuration illustrated in
The resonant structure 510 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 530 illustrated in
As illustrated in
As illustrated in
The first conductors 531-1 to 531-4 are collectively indicated as the “first conductors 531” when no particular distinction is made therebetween. The third conductors 533-1 to 533-4 are collectively indicated as the “third conductors 533” when no particular distinction is made therebetween.
The first conductors 531-1 to 531-4 illustrated in
A gap Si is located between the first conductors 531-1, 531-4 and the first conductors 531-2, 531-3. The gap Si extends from the lower base towards the upper base of the substantially trapezoidal conducting portion 530. The gap Si is located at a position that divides the lower base, farther in the negative direction of the Y-axis, of the substantially trapezoidal conducting portion 530 into sections at a 1:1 ratio. The gap Si is located at a position that divides the upper base, farther in the positive direction of the Y-axis, of the substantially trapezoidal conducting portion 530 into sections at a 1:1 ratio. The width and position of the gap Si may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 510.
A gap Sj is located between the first conductors 531-1, 531-2 and the first conductors 531-3, 531-4. The gap Sj extends in a direction substantially parallel to the X-direction. The gap Sj is located in the Y-direction at a position that divides the upper base, farther in the positive direction of the Y-axis, of the substantially trapezoidal conducting portion 320 into sections at a 1:1 ratio. The width and position of the gap Sj may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 510.
The remaining configuration of the first conductors 531 illustrated in
The second conductor 532 illustrated in
Each of the first conductors 533-1 to 533-4 is connected to a different one of the connecting conductors 60-1 to 60-4. The third conductors 533 illustrated in
The ground conductor 540 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The connecting conductors 60 illustrated in
The connecting conductor 60-1 and the connecting conductor 60-2 become a first connecting pair aligned along the lower base, substantially parallel to the X-direction, of the substantially trapezoidal conducting portion 530.
The connecting conductor 60-2 and the connecting conductor 60-3 become a second connecting pair aligned along the hypotenuse, which is farther in the negative direction of the X-axis, of the substantially trapezoidal conducting portion 530.
The connecting conductor 60-3 and the connecting conductor 60-4 become a third connecting pair aligned along the upper base, substantially parallel to the X-direction, of the substantially trapezoidal conducting portion 530.
The connecting conductor 60-1 and the connecting conductor 60-4 become a fourth connecting pair aligned along the side of the substantially trapezoidal conducting portion 530 farther in the positive direction of the X-axis.
The resonant structure 510 resonates at a first frequency u1 along a first path U1. The first path U1 is a portion of the current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair. The current path traversing the connecting conductors 60-1, 60-2 of the first connecting pair includes the ground conductor 540, the first conductors 531-1, 531-2, the second conductor 532, and the connecting conductors 60-1, 60-2 of the first connecting pair. The resonant structure 510 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency u1 and polarized along the first path U1, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 530 is located.
The resonant structure 510 resonates at a second frequency u2 along a second path U2. The second path U2 is a portion of the current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair. The current path traversing the connecting conductors 60-2, 60-3 of the second connecting pair includes the ground conductor 540, the first conductors 531-2, 531-3, the second conductor 532, and the connecting conductors 60-2, 60-3 of the second connecting pair. The resonant structure 510 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the second frequency u2 and polarized along the second path U2, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 530 is located.
The resonant structure 510 resonates at a third frequency u3 along a third path U3. The third path U3 is a portion of the current path traversing the connecting conductors 60-3, 60-4 of the third connecting pair. The current path traversing the connecting conductors 60-3, 60-4 of the third connecting pair includes the ground conductor 540, the first conductors 531-3, 531-4, the second conductor 532, and the connecting conductors 60-3, 60-3 of the third connecting pair. The resonant structure 510 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the third frequency u3 and polarized along the third path U3, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 530 is located.
The resonant structure 510 resonates at a fourth frequency u4 along a fourth path U4. The fourth path U4 is a portion of the current path traversing the connecting conductors 60-1, 60-4 of the fourth connecting pair. The current path traversing the connecting conductors 60-1, 60-4 of the fourth connecting pair includes the ground conductor 540, the first conductors 531-1, 531-4, the second conductor 532, and the connecting conductors 60-1, 60-4 of the fourth connecting pair. The resonant structure 510 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the fourth frequency u4 and polarized along the fourth path U4, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 530 is located.
In the resonant structure 510, the length of the side (lower base) of the substantially trapezoidal conducting portion 320 farther in the positive Y-direction and the length of the side (hypotenuse) of the substantially trapezoidal conducting portion 320 farther in the negative direction of the X-axis can be close values. The length of the first path U1 along the lower base of the conducting portion 320 and the length of the second path U2 along the side of the conducting portion farther in the positive direction of the X-axis can be close values.
In the resonant structure 510, the length of the first path U1, the second path U2, the third path U3, and the fourth path U4 can be shorter in this order. Accordingly, the first frequency u1, the second frequency u2, the third frequency u3, and the fourth frequency u4 can increase in this order.
The resonant structure 510 can resonate along the third path U3 as a result of a power supply from the first feeder 51 to the conducting portion 530. The resonant structure 510 can resonate along the fourth path U4 as a result of a power supply from the second feeder 52 to the conducting portion 530.
In the resonant structure 510A, the first feeder 51 is located between the first conductor 531-2 and the first conductor 531-3 in the XY plane. In the resonant structure 510A, the second feeder 52 is located between the first conductor 531-3 and the first conductor 531-4 in the XY plane.
The resonant structure 610 resonates at one or a plurality of resonance frequencies. As illustrated in
The conducting portion 630 illustrated in
As illustrated in
The first conductors 631 illustrated in
A gap Sk is located between adjacent first conductors 631. The width and position of the gap Sk may be appropriately adjusted in accordance with the desired resonance frequency of the resonant structure 610.
The remaining configuration of the first conductor 631 illustrated in
The second conductor 632 illustrated in
Each of the third conductors 33c-1 to 33c-6 is connected to a different one of the connecting conductors 60-1 to 60-6.
The ground conductor 640 illustrated in
The first feeder 51 illustrated in
The second feeder 52 illustrated in
The connecting conductors 60 illustrated in
The resonant structure 610 resonates at a first frequency v1 along a first path V1. The resonant structure 610 resonates at a second frequency v2 along a second path V2. The resonant structure 610 resonates at a third frequency v3 along a third path V3. The resonant structure 610 resonates at a fourth frequency v4 along a fourth path V4. The resonant structure 610 resonates at a fifth frequency v5 along a fifth path V5. The resonant structure 610 resonates at a sixth frequency v6 along a sixth path V6.
The conducting portion 630 in the resonant structure 610 is substantially a regular hexagon. Each of the first path V1 to the sixth path V6 extends along a side of the conducting portion 630 that is substantially a regular hexagon. The lengths of the first path V1 to the sixth path V6 can be equivalent. When the lengths of the first path V1 to the sixth path V6 are equivalent, the first frequency v1 to the sixth frequency v6 can be equivalent.
In an example of resonance of the resonant structure 610, current flows from the connecting conductor 60-1 through each connecting conductor towards the connecting conductor 60-4 located diagonally across. Each of the currents flowing between the connecting conductors 60 induces electromagnetic waves. The electromagnetic waves induced by these currents combine and are emitted. Consequently, the combined electromagnetic waves appear to be induced by high-frequency current flowing in a direction connecting two diagonally opposite connecting conductors as an apparent current path.
The resonant structure 610 exhibits an artificial magnetic conductor character relative to electromagnetic waves, at the first frequency v1 and polarized along each of the first path V1 through the sixth path V6, incident from the outside onto the upper surface 21 of the substrate 20 on which the conducting portion 630 is located.
The resonant structure 710 resonates at one or a plurality of resonance frequencies. The resonant structure 710 includes a substrate 20, conducting portions 730-1, 730-2, 730-3, 730-4, connectors 733-1, 733-2, 733-3, 733-4, a ground conductor 740, and connecting conductors 760-1, 760-2, 760-3, 760-4. The resonant structure 710 may include a first feeder 51.
The conducting portions 730-1 to 730-4 are collectively indicated as the “conducting portions 730” when no particular distinction is made therebetween. The number of conducting portions 730 in the resonant structure 710 illustrated in
The connectors 733-1 to 733-4 are collectively indicated as the “connectors 733” when no particular distinction is made therebetween. The connecting conductors 760-1 to 760-4 are collectively indicated as the “connecting conductors 760” when no particular distinction is made therebetween.
The conducting portions 730 are configured to function as a portion of a resonator. The conducting portions 730 can be unit structures. The conducting portions 730 have the same substantially rectangular shape. The conducting portions 730 have a substantially rectangular shape with long sides parallel to the X-direction and short sides parallel to the Y-direction.
The conducting portions 730 illustrated in
The conducting portions 730 illustrated in
Adjacent first conductors 331 that are included in different conducting portions 730 can be integrated as one flat conductor. As illustrated in
The connectors 733 illustrated in
The ground conductor 740 illustrated in
The connecting conductors 760 have the shape of the connecting conductors 60 illustrated in
The first feeder 51 is configured to connect electromagnetically to the second conductor 332 of the conducting portion 730-1. When the resonant structure 710 is used as an antenna, the first feeder 51 is configured to supply power to the conductor 730 through the second conductor 332 of the conducting portion 730-1. When the resonant structure 710 is used as an antenna or a filter, the first feeder 51 is configured to supply power from the conducting portions 730 through the second conductor 332 of the conducting portion 730-1 to the outside.
The resonant structure 810 resonates at one or a plurality of resonance frequencies. The resonant structure 810 includes a substrate 20, conducting portions 230-1, 230-2, 230-3, 230-4, 230-5, 230-6, 230-7, 230-8, 230-9, and connecting conductors 60-1, 60-2, 60-3, 60-4. The resonant structure 810 includes a ground conductor that is the same as or similar to the ground conductor 240 illustrated in
The conducting portions 230-1 to 230-9 can be the same as or similar to the conducting portions 230 illustrated in
Adjacent first conductors 231 that are included in different conducting portions 230 can be integrated as a flat conductor. For example, the connection relationship in the conducting portion 230-1 is as follows. The first conductor 231-2 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-5 are integrated as a flat conductor. The first conductor 231-3 of the conducting portion 230-1, the first conductor 231-4 of the conducting portion 230-5, the first conductor 231-1 of the conducting portion 230-9, and the first conductor 231-2 of the conducting portion 230-8, for example, are integrated as a flat conductor. The first conductor 231-4 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-8, for example, are integrated as a flat conductor.
The first feeder 51 is configured to connect electromagnetically to the second conductor 32 of the conducting portion 230-9 located in the center of the conducting portions 230 aligned in a square grid. When the resonant structure 810 is used as an antenna, the first feeder 51 is configured to supply power to the conducting portions 230 through the second conductor 32. When the resonant structure 810 is used as an antenna or a filter, the first feeder 51 is configured to supply power from the conducting portions 230 through the second conductor 32 to the outside.
The second feeder 52 is configured to connect electromagnetically to the second conductor 32 of the conducting portion 230-9 located in the center of the conducting portions 230 aligned in a square grid. The second feeder 52 is electromagnetically connected to the second conductor 32 at a different position than the first feeder 51. When the resonant structure 810 is used as an antenna, the second feeder 52 is configured to supply power to the conducting portions 230 through the second conductor 32. When the resonant structure 810 is used as an antenna or a filter, the second feeder 52 is configured to supply power from the conducting portions 230 through the second conductor 32 to the outside.
The resonant structure 810A includes 12 connectors 33a and connecting conductors 60-1 to 60-12. Each of the connectors 33a is connected to a different one of the connecting conductors 60-1 to 60-12.
The connecting conductors 60-5, 60-6 are located between the connecting conductor 60-1 and the connecting conductor 60-2 in the X-direction. The connecting conductor 60-5 and the connecting conductor 60-6 may be aligned at equal intervals between the connecting conductor 60-1 and the connecting conductor 60-2. The connecting conductor 60-5 is connected to the first conductor 231-2 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-5. The connecting conductor 60-6 is connected to the first conductor 231-1 of the conducting portion 230-2 and the first conductor 231-2 of the conducting portion 230-5.
The connecting conductors 60-7, 60-8 are located between the connecting conductor 60-2 and the connecting conductor 60-3 in the Y-direction. The connecting conductor 60-7 and the connecting conductor 60-8 may be aligned at equal intervals between the connecting conductor 60-2 and the connecting conductor 60-3. The connecting conductor 60-7 is connected to the first conductor 231-3 of the conducting portion 230-2 and the first conductor 231-2 of the conducting portion 230-6. The connecting conductor 60-8 is connected to the first conductor 231-3 of the conducting portion 230-6 and the first conductor 231-2 of the conducting portion 230-3.
The connecting conductors 60-9, 60-10 are located between the connecting conductor 60-3 and the connecting conductor 60-4 in the X-direction. The connecting conductor 60-9 and the connecting conductor 60-10 may be aligned at equal intervals between the connecting conductor 60-3 and the connecting conductor 60-4. The connecting conductor 60-9 is connected to the first conductor 231-4 of the conducting portion 230-3 and the first conductor 231-3 of the conducting portion 230-7. The connecting conductor 60-10 is connected to the first conductor 231-3 of the conducting portion 230-4 and the first conductor 231-4 of the conducting portion 230-7.
The connecting conductors 60-11, 60-12 are located between the connecting conductor 60-1 and the connecting conductor 60-4 in the Y-direction. The connecting conductor 60-11 and the connecting conductor 60-12 may be aligned at equal intervals between the connecting conductor 60-1 and the connecting conductor 60-4. The connecting conductor 60-11 is connected to the first conductor 231-1 of the conducting portion 230-4 and the first conductor 231-4 of the conducting portion 230-8. The connecting conductor 60-12 is connected to the first conductor 231-4 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-8.
The resonant structure 810B includes conducting portions 230-1, 230-2, 230-3, 230-4 and connecting conductors 60-1, 60-2, 60-4, 60-4.
The conducting portion 230-1 includes a third conductor 33P-1 that connects to the connecting conductor 60-1. The conducting portion 230-2 includes a third conductor 33P-2 that connects to the connecting conductor 60-2. The conducting portion 230-3 includes a third conductor 33P-3 that connects to the connecting conductor 60-3. The conducting portion 230-4 includes a third conductor 33P-4 that connects to the connecting conductor 60-4. The third conductors 33P-1 to 33P-4 can be the same as those illustrated in
Adjacent first conductors 231 that are included in different conducting portions 230 can be integrated as a flat conductor. The first conductor 231-2 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-2, for example, are integrated as a flat conductor. The first conductor 231-3 of the conducting portion 230-1, the first conductor 231-4 of the conducting portion 230-2, the first conductor 231-1 of the conducting portion 230-3, and the first conductor 231-2 of the conducting portion 230-4, for example, are integrated as a flat conductor. The first conductor 231-4 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-4, for example, are integrated as a flat conductor. The first conductor 231-3 of the conducting portion 230-2 and the first conductor 231-2 of the conducting portion 230-3, for example, are integrated as a flat conductor. The first conductor 231-4 of the conducting portion 230-3 and the first conductor 231-3 of the conducting portion 230-4, for example, are integrated as a flat conductor.
The first feeder 51 is configured to connect electromagnetically to the second conductor 32 of the conducting portion 230-2. The second feeder 52 is configured to connect electromagnetically to the second conductor 32 of the conducting portion 230-2 at a different position than the first feeder 51.
In addition to the connecting conductors 60-1 to 60-4, the resonant structure 810C includes connecting conductors 60-5 to 60-8. The resonant structure 810 includes four connectors 33a. Each of the connectors 33a is connected to a different one of the connecting conductors 60-5 to 60-8.
The connecting conductor 60-5 is located between the connecting conductor 60-1 and the connecting conductor 60-2 in the X-direction. The connecting conductor 60-5 may be located in the central region between the connecting conductor 60-1 and the connecting conductor 60-2. The connecting conductor 60-5 is connected to the first conductor 231-2 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-2.
The connecting conductor 60-6 is located between the connecting conductor 60-2 and the connecting conductor 60-3 in the Y-direction. The connecting conductor 60-6 may be located in the central region between the connecting conductor 60-2 and the connecting conductor 60-3. The connecting conductor 60-6 is connected to the first conductor 231-3 of the conducting portion 230-2 and the first conductor 231-2 of the conducting portion 230-3.
The connecting conductor 60-7 is located between the connecting conductor 60-3 and the connecting conductor 60-4 in the X-direction. The connecting conductor 60-7 may be located in the central region between the connecting conductor 60-3 and the connecting conductor 60-4. The connecting conductor 60-7 is connected to the first conductor 231-4 of the conducting portion 230-3 and the first conductor 231-3 of the conducting portion 230-4.
The connecting conductor 60-8 is located between the connecting conductor 60-1 and the connecting conductor 60-4 in the Y-direction. The connecting conductor 60-8 may be located in the central region between the connecting conductor 60-1 and the connecting conductor 60-4. The connecting conductor 60-8 is connected to the first conductor 231-4 of the conducting portion 230-1 and the first conductor 231-1 of the conducting portion 230-4.
[Wireless Communication Module]
The wireless communication module 1 includes an antenna 11, an RF module 12, and a circuit board 14 that includes a ground conductor 13A and an organic substrate 13B.
The antenna 11 includes the resonant structure 10 illustrated in
As illustrated in
The resonant structure 10 included in the antenna 11 is not limited to including both the first feeder 51 and the second feeder 52. The resonant structure 10 included in the antenna 11 may include one of the first feeder 51 and the second feeder 52. When the antenna 11 includes one feeder, corresponding changes are made to the structure of the circuit board 14 as appropriate. The RF module 12, for example, may have one connection terminal. The circuit board 14, for example, may have one conducting wire that connects the connection terminal of the RF module 12 and the feeder of the antenna 11.
The ground conductor 13A can include a conductive material. The ground conductor 13A can extend along the XY plane. The ground conductor 13A has a greater area in the XY plane than the ground conductor 40 of the antenna 11. The length of the ground conductor 13A in the Y-direction is greater than the length of the ground conductor 40 of the antenna 11 in the Y-direction. The length of the ground conductor 13A in the X-direction is greater than the length of the ground conductor 40 of the antenna 11 in the X-direction. The antenna 11 can be located in the Y-direction towards an edge from the center of the ground conductor 13A. The center of the antenna 11 can differ from the center of the ground conductor 13A in the XY plane. The center of the antenna 11 can differ from the center of the first conductors 31-1 to 31-4 illustrated in
In the antenna 11, current loops along a first current path through two connecting conductors 60 that form the first connecting pair illustrated in
The antenna 11 can be integrated with the circuit board 14. When the antenna 11 is integrated with the circuit board 14, the ground conductor 40 of the antenna 11 can be integrated with the ground conductor 13A of the circuit board 14.
The RF module 12 can be configured to control the power supplied to the antenna 11. The RF module 12 is configured to modulate a baseband signal and supply the modulated signal to the antenna 11. The RF module 12 can be configured to modulate an electric signal received by the antenna 11 into a baseband signal.
The change in the resonance frequency of the antenna 11 due to the conductor on the circuit board 14 side is small. By including the antenna 11, the wireless communication module 1 can reduce the effect of the outside environment.
[Wireless Communication Device]
The wireless communication device 2 includes a wireless communication module 1, a sensor 15, a battery 16, a memory 17, a controller 18, and a housing 19.
The sensor 15 may, for example, include a speed sensor, a vibration sensor, an acceleration sensor, a gyro sensor, a rotation angle sensor, an angular velocity sensor, a geomagnetic sensor, a magnetic sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, a light sensor, an illuminance sensor, a UV sensor, a gas sensor, a gas density sensor, an atmospheric sensor, a level sensor, an odor sensor, a pressure sensor, an air pressure sensor, a contact sensor, a wind sensor, an infrared sensor, a human sensor, a displacement sensor, an image sensor, a weight sensor, a smoke sensor, a leak sensor, a vital sensor, a battery level sensor, an ultrasound sensor, a global positioning system (GPS) signal receiver, or the like.
The battery 16 is configured to supply power to the wireless communication module 1. The battery 16 can be configured to supply power to at least one of the sensor 15, the memory 17, and the controller 18. The battery 16 can include at least one of a primary battery and a secondary battery. The negative electrode of the battery 16 is configured to be connected electrically to the ground terminal of the circuit board 14 illustrated in
The memory 17 can, for example, include a semiconductor memory or the like. The memory 17 can be configured to function as a working memory of the controller 18. The memory 17 can be included in the controller 18. The memory 17 stores programs describing the processing for implementing the functions of the wireless communication device 2, information used for processing on the wireless communication device 2, and the like.
The controller 18 can, for example, include a processor. The controller 18 may include one or more processors. The term “processor” may encompass universal processors that execute particular functions by reading particular programs and dedicated processors that are specialized for particular processing. Dedicated processors may include an application specific integrated circuit (ASIC). The processor may include a programmable logic device (PLD). The PLD may include a field-programmable gate array (FPGA). The controller 18 may be either a system-on-a-chip (SoC) or a system in a package (SiP) with one processor or a plurality of processors that work together. The controller 18 may store various information, programs for causing the constituent elements of the wireless communication device 2 to operate, and the like in the memory 17.
The controller 18 is configured to generate a transmission signal for transmission from the wireless communication device 2. The controller 18 may, for example, be configured to acquire measurement data from the sensor 15. The controller 18 may be configured to generate the transmission signal in accordance with the measurement data. The controller 18 can be configured to transmit a baseband signal to the RF module 12 of the wireless communication module 1.
The housing 19 illustrated in
The first housing 19A illustrated in
The first housing 19A illustrated in
The second housing 19B illustrated in
The conductive member 19C illustrated in
Configurations according to the present disclosure are not limited to the above embodiments, and a variety of modifications and changes are possible. For example, the functions and the like included in the various components may be reordered in any logically consistent way. Furthermore, components may be combined into one or divided.
For example, a resonant structure 210X that includes a conducting portion 230X as illustrated in
The first conductors 231X-1, 231X-2 illustrated in
The second conductors 32X-1, 32X-2 illustrated in
The third conductor 33c-1 illustrated in
The drawings illustrating configurations according to the present disclosure are merely schematic. The dimensional ratios and the like in the drawings do not necessarily match the actual dimensions.
The references to “first”, “second”, “third”, and the like in the present disclosure are examples of identifiers for distinguishing between elements. The numbers attached to elements distinguished by references to “first”, “second”, and the like in the present disclosure may be switched. For example, the identifiers “first” and “second” of the first frequency and the second frequency may be switched. Identifiers are switched simultaneously, and the elements are still distinguished between after identifiers are switched. The identifiers may be removed. Elements from which the identifiers are removed are distinguished by their reference sign. Identifiers in the present disclosure, such as “first”, “second”, and the like, may not be used in isolation as an interpretation of the order of elements, as the basis for the existence of the identifier with a lower number, or as the basis for the existence of the identifier with a higher number.
Number | Date | Country | Kind |
---|---|---|---|
2018-158793 | Aug 2018 | JP | national |
The present application is a continuation of U.S. patent application Ser. No. 16/795,574, filed Feb. 20, 2020, which is a continuation of International Application No. PCT/JP2019/032876, filed Aug. 22, 2019, which claims priority based on Japanese Patent Application No. 2018-158793, filed Aug. 27, 2018, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5173711 | Takeuchi et al. | Dec 1992 | A |
6483481 | Sivenpiper et al. | Nov 2002 | B1 |
20070075903 | Matsugatani et al. | Apr 2007 | A1 |
20080150825 | Higaki et al. | Jun 2008 | A1 |
20120056787 | Tatarnikov et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
1804335 | Jul 2007 | EP |
2963736 | Jan 2016 | EP |
2004514364 | May 2004 | JP |
200594360 | Apr 2005 | JP |
2008160589 | Jul 2008 | JP |
2018029249 | Feb 2018 | JP |
2020045237 | Mar 2020 | WO |
Entry |
---|
Liang Jiang et al., “A CMOS UWB On-Chip Antenna With a MIM Capacitor Loading AMC”, IEEE Transactions on Electron Devices, Jun. 2012, pp. 1757-1764, vol. 59, No. 6, 9pp. |
Yasutaka Murakami et al., “Low-Profile Design and Bandwidth Characteristics of Artificial Magnetic Conductor with Dielectric Substrate”, IEICE Transactions on Communications (B), 2015, pp. 172-179, vol. J98-B No. 2, 9pp. |
Yasutaka Murakami et al., “Optimum Configuration of Reflector for Dipole Antenna with AMC Reflector”, IEICE Transactions on Communications (B), 2015, pp. 1212-1220, vol. J98-B No. 11, 10pp. |
Number | Date | Country | |
---|---|---|---|
20210257727 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16795574 | Feb 2020 | US |
Child | 17306844 | US | |
Parent | PCT/JP2019/032876 | Aug 2019 | US |
Child | 16795574 | US |