The field of the present invention is antennas for wireless communication devices.
One of the many challenges in miniaturization of wireless communication devices is the lack of a sufficiently large ground plane for an antenna.
As described in US Publication No. 2008/0252536 A1 to Anguera et al., a conventional antenna set for a portable wireless communication device, such as a cell phone, includes an antenna element and a ground plane. The communication device includes a multi-layer printed circuit board (PCB), one of the layers of which serves as a ground plane for the antenna.
Design of an antenna set is done in conjunction with development of the communication device. Antenna design is based inter alia on form factor of the communication device, PCB layout, and location of different elements, especially metallic elements such as hinges, rails, cables, audio lines, LCD and battery. The antenna set is calibrated by performance testing that recursively tests modifications in the antenna with the hardware and the form factor of the communication device. The antenna set is performance tested in several scenarios, with different hand positionings of the phone and fingers covering the antenna.
In order for the antenna to perform well, in terms of its bandwidth, efficiency and gain, the ground plane must be sufficiently large relative to the wavelengths of the frequencies of operation of the antenna. But as the size of the communication device shrinks, the size of the ground plane is correspondingly reduced, yet the frequencies of operation of the antenna must remain substantially unchanged. As such, performance of the antenna degrades.
Aspects of the present invention relate to miniature communication devices that use extended ground planes to achieve required antenna performance. An antenna and a first ground plane for the antenna are housed within a modular communication device. A second ground plane, which extends the first ground plane, is housed within a jacket into which the modular communication device is inserted, or to which the modular communication device is attached. Additional extended ground planes may be used, as appropriate.
Embodiments of the present invention include inter alia a tiny communicator module that inserts into or attaches to a variety of different devices, to provide the devices with cell phone, short messaging service (SMS) and other communication functionality. Examples of such devices include cameras, MP3 players, digital picture frames, clocks, and a huge assortment of consumer electronic devices that can all benefit from wireless communication.
There is thus provided in accordance with an embodiment of the present invention a transceiver, including a multi-layer printed circuit board including a layer that serves as a first ground plane, and an antenna for transmitting and receiving radio signals, a second ground plane, and at least one ground contact for connecting the first ground plane and the second ground plane, wherein the first ground plane is too short for the antenna to resonate at a desired frequency, but the first and second ground planes, when connected, provide a combined ground plane sufficient for the antenna to resonate at the desired frequency.
There is additionally provided in accordance with an embodiment of the present invention a modular communicator including an antenna for transmitting and receiving radio waves, a ground plane for the antenna, a power amplifier to amplifying signals received by said antenna, a modem for transmitting and receiving data via the antenna, and at least one ground contact, for connecting the ground plane to an extended ground plane housed within a removable jacket for the modular communicator, wherein the ground plane is too short for the antenna to resonate at a desired frequency, but the ground plane when connected with the extended ground plane, provides a combined ground plane sufficient for the antenna to resonate at the desired frequency.
There is further provided in accordance with an embodiment of the present invention a removable jacket for a modular communicator, including an extended ground plane for an antenna, and at least one ground contact, for connecting the extended ground plane to a ground plane for a communicator that houses the antenna, wherein the ground plane is too short for the antenna to resonate at a desired frequency, but the ground plane when connected with the extended ground plane, provides a combined ground plane sufficient for the antenna to resonate at the desired frequency.
There is yet further provided in accordance with an embodiment of the present invention a communication system, including a modular communicator, including an antenna for transmitting and receiving radio waves, a ground plane for the antenna, a power amplifier to amplifying signals received by the antenna, a modem for transmitting and receiving data via the antenna, and at least one ground contact, for connecting the ground plane to a jacket for the modular communicator, and a removable jacket for the modular communicator, including an extended ground plane for the antenna, wherein the ground plane is too short for the antenna to resonate at a desired frequency, but the ground plane and the extended ground plane, when the modular communicator and the removable jacket are connected, provide a combined ground plane sufficient for the antenna to resonate at the desired frequency.
There is moreover provided in accordance with an embodiment of the present invention a transceiver, including a multi-layer printed circuit board including a layer that serves as a first ground plane, and an antenna for transmitting and receiving radio signals, a second ground plane, and at least one ground contact for connecting the first ground plane and the second ground plane, wherein the first ground plane is too short for the antenna to resonate efficiently, but the first and second ground planes, when connected, provide a combined ground plane that resonates with greater efficiency.
There is additionally provided in accordance with an embodiment of the present invention a modular communicator including an antenna for transmitting and receiving radio waves, a ground plane for the antenna, a power amplifier to amplifying signals received by the antenna, a modem for transmitting and receiving data via the antenna, and at least one ground contact, for connecting the ground plane to an extended ground plane housed within a removable jacket for the modular communicator, wherein the ground plane is too short for the antenna to resonate efficiently, but the ground plane when connected with the extended ground plane, provides a combined ground plane that resonates with greater efficiency.
There is further provided in accordance with an embodiment of the present invention a removable jacket for a modular communicator, including an extended ground plane for an antenna, and at least one ground contact, for connecting the extended ground plane to a ground plane for a communicator that houses the antenna, wherein the ground plane is too short for the antenna to resonate efficiently, but the ground plane when connected with the extended ground plane, provides a combined ground plane that resonates with greater efficiency.
There is yet further provided in accordance with an embodiment of the present invention a communication system, including a modular communicator, including an antenna for transmitting and receiving radio waves, a ground plane for the antenna, a power amplifier to amplifying signals received by the antenna, a modem for transmitting and receiving data via the antenna, and at least one ground contact, for connecting the ground plane to a jacket for the modular communicator, and a removable jacket for the modular communicator, including an extended ground plane for the antenna, wherein the ground plane is too short for the antenna to resonate efficiently, but the ground plane and the extended ground plane, when the modular communicator and said removable jacket are connected, provide a combined ground plane that resonates with greater efficiency.
The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:
Aspects of the present invention relate to a wireless communicator antenna that uses a ground plane that is divided into at least two smaller ground planes, one of which is a component of the communicator and others of which are components of a jacket for the communicator. When the communicator is inserted into or attached to the jacket, the smaller ground planes join to form a combined ground plane for the antenna.
Reference is made to
Even if ground plane 120 is long enough for antenna 110 to resonate at the desired frequency, the efficiency of the resonance may be low. In this case, ground plane 130 serves to improve the efficiency of the resonance.
In configuration 100A the ground planes 120 and 130 are co-planar, and form a straight combined ground plane. In configuration 100B the ground planes 120 and 130 are skewed, and form a dihedral angle less than 180°.
For each configuration 100A and 100B, empirical tests have been performed on several parameters, as indicated in TABLE I.
Reference is made to
Aspects of the present invention relate to a modular wireless communicator that inserts into or attaches to a “jacket”. A jacket is defined herein to mean a component that the communicator inserts into or attaches to, and thereby extends the surface of the antenna to improve its functionality. A jacket may be a device that provides an enhanced user interface for the communicator. A jacket may be a device that enriches the capabilities of the communicator. A jacket may or may not be able to operate independently when the communicator is not connected thereto.
In accordance with an embodiment of the present invention, antenna 110 and ground plane 120 are housed within the communicator, and extended ground plane 130 is housed within the jacket. As such, when the communicator is inserted into or attached to the jacket, antenna 110 is able to operate in conjunction with the combined ground plane.
Ground contacts 140 may be embedded within connectors of the communicator and the jacket. Ground contacts 140 may alternatively be embedded within shieldings of such connectors. Ground contacts 140 may yet alternatively be embedded at any other dedicated contact points between the communicator and the jacket, including inter alia metal springs and protrusions. Ground contacts 140 may yet alternatively be embedded at any other mechanical contact that is made when the communicator is inserted into or attached to the jacket.
In some embodiments of the present invention, close proximity yields electromagnetic contact between the ground planes via capacitive coupling, without the need for physical contact.
Reference is made to
Also shown in
Reference is further made to
Reference is made to
Controller 210 executes programmed instructions that control the data flow between communicator 200 and jacket 300. Modem 220 controls the communication functionality of communicator 200. User interface 230 includes a display screen 231 and a keypad 232. User interface 230 may optionally include additional components (not shown) such as a microphone, a headset audio jack, an earpiece, a mono speaker or stereo speakers, and a vibrator.
Power amplifier 260 includes a radio frequency (RF) interface 265, and is connected to antenna 110.
In accordance with an embodiment of the present invention, the interface between controller 210 and storage 240, and the interface between controller 210 and modem 220 are both SD interfaces. The interface between controller 210 and connector 280 is a custom interface.
Communicator 200 may also include an optional power management subsystem 250, which includes charging circuitry for charging a battery 255.
In some embodiments of the present invention, communicator 200 may be missing some of the components shown in
Jacket 300 includes extended ground plane 130, and may include additional extended ground planes, as appropriate. In addition, jacket 300 generally includes four primary components, as follows: a controller 310, a user interface 330, a memory storage 340, and a connector 380 for connecting the jacket to communicator 200 when communicator 200 is inserted into the jacket. Jacket 300 may also include an optional power management subsystem 350 and an optional battery 355.
User interface 330 includes a display screen 331 and a keypad 532. User interface 330 may optionally include additional components (not shown), such as a microphone, a headset audio jack, an earpiece, a mono speaker or stereo speakers, and a vibrator.
In accordance with an embodiment of the present invention, the interface between controller 310 and storage 340 is an SD interface. The interface between controller 310 and connector 380 is a custom interface.
When communicator 200 is inserted into or attached to jacket 300, ground plane 120 and extended ground plane 130 form a combined ground plane for antenna 110.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention as set forth in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application claims benefit of U.S. Provisional Application No. 61/180,894, entitled ANTENNA WITH DIVIDED GROUND PLANE, filed on May 25, 2009 by inventors Sagiv Zeltser and Yohan Cohen.
Number | Name | Date | Kind |
---|---|---|---|
5625673 | Grewe et al. | Apr 1997 | A |
5628055 | Stein | May 1997 | A |
5809115 | Inkinen | Sep 1998 | A |
5893037 | Reele et al. | Apr 1999 | A |
5907815 | Grimm et al. | May 1999 | A |
6188917 | Laureanti | Feb 2001 | B1 |
6201867 | Koike | Mar 2001 | B1 |
6243578 | Koike | Jun 2001 | B1 |
6477357 | Cook | Nov 2002 | B1 |
6516202 | Hawkins et al. | Feb 2003 | B1 |
6640113 | Shim et al. | Oct 2003 | B1 |
6690947 | Tom | Feb 2004 | B1 |
6898283 | Wycherley et al. | May 2005 | B2 |
6907264 | Sterkel | Jun 2005 | B1 |
6999792 | Warren | Feb 2006 | B2 |
7085542 | Dietrich et al. | Aug 2006 | B2 |
7194285 | Tom | Mar 2007 | B2 |
7266391 | Warren | Sep 2007 | B2 |
7477919 | Warren | Jan 2009 | B2 |
7515937 | Lee | Apr 2009 | B2 |
7602344 | Park et al. | Oct 2009 | B2 |
7620436 | Krenz et al. | Nov 2009 | B2 |
20020090980 | Wilcox et al. | Jul 2002 | A1 |
20020151327 | Levitt | Oct 2002 | A1 |
20040233930 | Colby, Jr. | Nov 2004 | A1 |
20040268005 | Dickie | Dec 2004 | A1 |
20050159184 | Kerner et al. | Jul 2005 | A1 |
20060003804 | Liu | Jan 2006 | A1 |
20060105722 | Kumar | May 2006 | A1 |
20060190321 | Martins Nicho et al. | Aug 2006 | A1 |
20060241353 | Makino et al. | Oct 2006 | A1 |
20070004450 | Parikh | Jan 2007 | A1 |
20070018957 | Seo | Jan 2007 | A1 |
20070079030 | Okuley et al. | Apr 2007 | A1 |
20070161404 | Yasujima et al. | Jul 2007 | A1 |
20070288583 | Rensin et al. | Dec 2007 | A1 |
20080009325 | Zinn et al. | Jan 2008 | A1 |
20080040354 | Ray et al. | Feb 2008 | A1 |
20080140886 | Izutsu | Jun 2008 | A1 |
20080252536 | Anguera et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1871075 | Dec 2007 | EP |
9421058 | Sep 1994 | WO |
0059247 | Oct 2000 | WO |
0186922 | Nov 2001 | WO |
03103174 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100295747 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61180894 | May 2009 | US |