Antenna with selectable elements for use in wireless communications

Information

  • Patent Grant
  • 9837711
  • Patent Number
    9,837,711
  • Date Filed
    Tuesday, December 28, 2010
    13 years ago
  • Date Issued
    Tuesday, December 5, 2017
    7 years ago
Abstract
A system and method for a wireless link to a remote receiver includes a communication device for generating RF and a planar antenna apparatus for transmitting the RF. The planar antenna apparatus includes selectable antenna elements, each of which has gain and a directional radiation pattern. The directional radiation pattern is substantially in the plane of the antenna apparatus. Switching different antenna elements results in a configurable radiation pattern. Alternatively, selecting all or substantially all elements results in an omnidirectional radiation pattern. One or more directors and/or one or more reflectors may be included to constrict the directional radiation pattern. The antenna apparatus may be conformally mounted to a housing containing the communication device and the antenna apparatus.
Description
BACKGROUND OF INVENTION

Field of the Invention


The present invention relates generally to wireless communications networks, and more particularly to a system and method for an omnidirectional planar antenna apparatus with selectable elements.


Description of the Prior Art


In communications systems, there is an ever-increasing demand for higher data throughput, and a corresponding drive to reduce interference that can disrupt data communications. For example, in an IEEE 802.11 network, an access point (i.e., base station) communicates data with one or more remote receiving nodes (e.g., a network interface card) over a wireless link. The wireless link may be susceptible to interference from other access points, other radio transmitting devices, changes or disturbances in the wireless link environment between the access point and the remote receiving node, and so on. The interference may be such to degrade the wireless link, for example by forcing communication at a lower data rate, or may be sufficiently strong to completely disrupt the wireless link.


One solution for reducing interference in the wireless link between the access point and the remote receiving node is to provide several omnidirectional antennas for the access point, in a “diversity” scheme. For example, a common configuration for the access point comprises a data source coupled via a switching network to two or more physically separated omnidirectional antennas. The access point may select one of the omnidirectional antennas by which to maintain the wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment, and each antenna contributes a different interference level to the wireless link. The switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link.


However, one problem with using two or more omnidirectional antennas for the access point is that typical omnidirectional antennas are vertically polarized. Vertically polarized radio frequency (RF) energy does not travel as efficiently as horizontally polarized RF energy inside a typical office or dwelling space, additionally, most of the laptop computer wireless cards have horizontally polarized antennas. Typical solutions for creating horizontally polarized RF antennas to date have been expensive to manufacture, or do not provide adequate RF performance to be commercially successful.


A further problem is that the omnidirectional antenna typically comprises an upright wand attached to a housing of the access point. The wand typically comprises a hollow metallic rod exposed outside of the housing, and may be subject to breakage or damage. Another problem is that each omnidirectional antenna comprises a separate unit of manufacture with respect to the access point, thus requiring extra manufacturing steps to include the omnidirectional antennas in the access point.


A still further problem with the two or more omnidirectional antennas is that because the physically separated antennas may still be relatively close to each other, each of the several antennas may experience similar levels of interference and only a relatively small reduction in interference may be gained by switching from one omnidirectional antenna to another omnidirectional antenna.


Another solution to reduce interference involves beam steering with an electronically controlled phased array antenna. However, the phased array antenna can be extremely expensive to manufacture. Further, the phased array antenna can require many phase tuning elements that may drift or otherwise become maladjusted.


SUMMARY OF INVENTION

In a first claimed embodiment, a network peripheral device is disclosed. The device includes a plurality of antennas and at least a single wireless module that is operable with the plurality of antennas. The single wireless module includes a single baseband operable with the plurality of antennas, an antenna selector control module operable with the baseband, and a processor. The device further includes a plurality of electronically controllable visual indicators and circuitry that activates and deactivates selected indicators from the plurality of indicators. The activation and deactivation corresponds to selection and deselection of respective antennas from among the plurality of antennas by the single wireless module as the single wireless module continues to operate.





BRIEF DESCRIPTION OF DRAWINGS

The present invention will now be described with reference to drawings that represent a preferred embodiment of the invention. In the drawings, like components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following figures:



FIG. 1 illustrates a system comprising an omnidirectional planar antenna apparatus with selectable elements, in one embodiment in accordance with the present invention;



FIG. 2A and FIG. 2B illustrate the planar antenna apparatus of FIG. 1, in one embodiment in accordance with the present invention;



FIGS. 2C and 2D illustrate dimensions for several components of the planar antenna apparatus of FIG. 1, in one embodiment in accordance with the present invention;



FIG. 3A illustrates various radiation patterns resulting from selecting different antenna elements of the planar antenna apparatus of FIG. 2, in one embodiment in accordance with the present invention;



FIG. 3B illustrates an elevation radiation pattern for the planar antenna apparatus of FIG. 2, in one embodiment in accordance with the present invention; and



FIG. 4A and FIG. 4B illustrate an alternative embodiment of the planar antenna apparatus 110 of FIG. 1, in accordance with the present invention.





DETAILED DESCRIPTION

A system for a wireless (i.e., radio frequency or RF) link to a remote receiving device includes a communication device for generating an RF signal and a planar antenna apparatus for transmitting and/or receiving the RF signal. The planar antenna apparatus includes selectable antenna elements. Each of the antenna elements provides gain (with respect to isotropic) and a directional radiation pattern substantially in the plane of the antenna elements. Each antenna element may be electrically selected (e.g., switched on or off) so that the planar antenna apparatus may form a configurable radiation pattern. If all elements are switched on, the planar antenna apparatus forms an omnidirectional radiation pattern. In some embodiments, if two or more of the elements is switched on, the planar antenna apparatus may form a substantially omnidirectional radiation pattern.


Advantageously, the system may select a particular configuration of selected antenna elements that minimizes interference over the wireless link to the remote receiving device. If the wireless link experiences interference, for example due to other radio transmitting devices, or changes or disturbances in the wireless link between the system and the remote receiving device, the system may select a different configuration of selected antenna elements to change the resulting radiation pattern and minimize the interference. The system may select a configuration of selected antenna elements corresponding to a maximum gain between the system and the remote receiving device. Alternatively, the system may select a configuration of selected antenna elements corresponding to less than maximal gain, but corresponding to reduced interference in the wireless link.


As described further herein, the planar antenna apparatus radiates the directional radiation pattern substantially in the plane of the antenna elements. When mounted horizontally, the RF signal transmission is horizontally polarized, so that RF signal transmission indoors is enhanced as compared to a vertically polarized antenna. The planar antenna apparatus is easily manufactured from common planar substrates such as an FR4 printed circuit board (PCB). Further, the planar antenna apparatus may be integrated into or conformally mounted to a housing of the system, to minimize cost and to provide support for the planar antenna apparatus.



FIG. 1 illustrates a system 100 comprising an omnidirectional planar antenna apparatus with selectable elements, in one embodiment in accordance with the present invention. The system 100 may comprise, for example without limitation, a transmitter and/or a receiver, such as an 802.11 access point, an 802.11 receiver, a set-top box, a laptop computer, a television, a PCMCIA card, a remote control, and a remote terminal such as a handheld gaming device. In some exemplary embodiments, the system 100 comprises an access point 130 for communicating to one or more remote receiving nodes 140a-140d over a wireless link 150, for example in an 802.11 wireless network. Typically, the system 100 may receive data from a router connected to the Internet (not shown), and the system 100 may transmit the data to one or more of the remote receiving nodes 140a-140d. The system 100 may also from a part of a wireless local area network by enabling communications among several remote receiving nodes. Although the disclosure will focus on a specific embodiment for the system 100, aspects of the invention are applicable to a wide variety of appliances, and are not intended to be limited to the disclosed embodiment. For example, although the system 100 may be described as transmitting to the remote receiving node via the planar antenna apparatus, the system 100 may also receive data from the remote receiving node via the planar antenna apparatus.


The system 100 includes a communication device 120 (e.g., a transceiver) and a planar antenna apparatus 110. The communication device 120 comprises virtually any device for generating and/or receiving an RF signal. The communication device 120 may include, for example, a radio modulator/demodulator for converting data received into the system 100 (e.g., from the router) into the RF signal for transmission to one or more of the remote receiving nodes. In some embodiments, for example, the communication device 120 comprises well-known circuitry for receiving data packets of video from the router and circuitry for converting the data packets into 802.11 compliant RF signals.


As described further herein, the planar antenna apparatus 110 comprises a plurality of individually selectable planar antenna elements. Each of the antenna elements has a directional radiation pattern with gain (as compared to an omnidirectional antenna). Each of the antenna elements also has a polarization substantially in the plane of the planar antenna apparatus 110. The planar antenna apparatus 110 may include an antenna element selecting device configured to selectively couple one or more of the antenna elements to the communication device 120.



FIG. 2A and FIG. 2B illustrate the planar antenna apparatus 110 of FIG. 1, in one embodiment in accordance with the present invention. The planar antenna apparatus 110 of this embodiment includes a substrate (considered as the plane of FIGS. 2A and 2B) having a first side (e.g., FIG. 2A) and a second side (e.g., FIG. 2B) substantially parallel to the first side. In some embodiments, the substrate comprises a PCB such as FR4, Rogers 4003, or other dielectric material.


On the first side of the substrate, the planar antenna apparatus 110 of FIG. 2A includes a radio frequency feed port 220 and four antenna elements 205a-205d. As described with respect to FIG. 4, although four antenna elements are depicted, more or fewer antenna elements are contemplated. Although the antenna elements 205a-205d of FIG. 2A are oriented substantially on diagonals of a square shaped planar antenna so as to minimize the size of the planar antenna apparatus 110, other shapes are contemplated. Further, although the antenna elements 205a-205d form a radially symmetrical layout about the radio frequency feed port 220, a number of non-symmetrical layouts, rectangular layouts, and layouts symmetrical in only one axis, are contemplated. Furthermore, the antenna elements 205a-205d need not be of identical dimension, although depicted as such in FIG. 2A.


On the second side of the substrate, as shown in FIG. 2B, the planar antenna apparatus 110 includes a ground component 225. It will be appreciated that a portion (e.g., the portion 230a) of the ground component 225 is configured to form an arrow-shaped bent dipole in conjunction with the antenna element 205a. The resultant bent dipole provides a directional radiation pattern substantially in the plane of the planar antenna apparatus 110, as described further with respect to FIG. 3.



FIGS. 2C and 2D illustrate dimensions for several components of the planar antenna apparatus 110, in one embodiment in accordance with the present invention. It will be appreciated that the dimensions of the individual components of the planar antenna apparatus 110 (e.g., the antenna element 205a, the portion 230a of the ground component 205) depend upon a desired operating frequency of the planar antenna apparatus 110. The dimensions of the individual components may be established by use of RF simulation software, such as IE3D from Zeland Software of Fremont, Calif. For example, the planar antenna apparatus 110 incorporating the components of dimension according to FIGS. 2C and 2D is designed for operation near 2.4 GHz, based on a substrate PCB of Rogers 4003 material, but it will be appreciated by an antenna designer of ordinary skill that a different substrate having different dielectric properties, such as FR4, may require different dimensions than those shown in FIGS. 2C and 2D.


As shown in FIG. 2, the planar antenna apparatus 110 may optionally include one or more directors 210, one or more gain directors 215, and/or one or more Y-shaped reflectors 235 (e.g., the Y-shaped reflector 235b depicted in FIGS. 2B and 2D). The directors 210, the gain directors 215, and the Y-shaped reflectors 235 comprise passive elements that concentrate the directional radiation pattern of the dipoles formed by the antenna elements 205a-205d in conjunction with the portions 230a-230d. In one embodiment, providing a director 210 for each antenna element 205a-205d yields an additional 1-2 dB of gain for each dipole. It will be appreciated that the directors 210 and/or the gain directors 215 may be placed on either side of the substrate. In some embodiments, the portion of the substrate for the directors 210 and/or gain directors 215 is scored so that the directors 210 and/or gain directors 215 may be removed. It will also be appreciated that additional directors (depicted in a position shown by dashed line 211 for the antenna element 205b) and/or additional gain directors (depicted in a position shown by a dashed line 216) may be included to further concentrate the directional radiation pattern of one or more of the dipoles. The Y-shaped reflectors 235 will be further described herein.


The radio frequency feed port 220 is configured to receive an RF signal from and/or transmit an RF signal to the communication device 120 of FIG. 1. An antenna element selector (not shown) may be used to couple the radio frequency feed port 220 to one or more of the antenna elements 205a-205d. The antenna element selector may comprise an RF switch (not shown), such as a PIN diode, a GaAs FET, or virtually any RF switching device, as is well known in the art.


In the embodiment of FIG. 2A, the antenna element selector comprises four PIN diodes 240a-240d, each PIN diode 240a-240d connecting one of the antenna elements 205a-205d to the radio frequency feed port 220. In this embodiment, the PIN diode comprises a single-pole single-throw switch to switch each antenna element either on or off (i.e., couple or decouple each of the antenna elements 205a-205d to the radio frequency feed port 220). In one embodiment, a series of control signals (not shown) is used to bias each PIN diode 240a-240d. With the PIN diode forward biased and conducting a DC current, the PIN diode switch is on, and the corresponding antenna element is selected. With the diode reverse biased, the PIN diode switch is off. In this embodiment, the radio frequency feed port 220 and the PIN diodes 240a-240d of the antenna element selector are on the side of the substrate with the antenna elements 205a-205d, however, other embodiments separate the radio frequency feed port 220, the antenna element selector, and the antenna elements 205a-205d. In some embodiments, the antenna element selector comprises one or more single-pole multiple-throw switches. In some embodiments, one or more light emitting diodes (LEDs) 241a-241d are coupled to the antenna element selector as a visual indicator of which of the antenna elements 205a-205d is on or off. In one embodiment, a light emitting diode is placed in circuit with the PIN diode so that the light emitting diode is lit when the corresponding antenna element 205 is selected.


In some embodiments, the antenna components (e.g., the antenna elements 205a-205d, the ground component 225, the directors 210, and the gain directors 215) are formed from RF conductive material. For example, the antenna elements 205a-205d and the ground component 225 may be formed from metal or other RF conducting foil. Rather than being provided on opposing sides of the substrate as shown in FIGS. 2A and 2B, each antenna element 205a-205d is coplanar with the ground component 225. In some embodiments, the antenna components may be conformally mounted to the housing of the system 100. In such embodiments, the antenna element selector comprises a separate structure (not shown) from the antenna elements 205a-205d. The antenna element selector may be mounted on a relatively small PCB, and the PCB may be electrically coupled to the antenna elements 205a-205d. In some embodiments, the switch PCB is soldered directly to the antenna elements 205a-205d.


In the embodiment of FIG. 2B, the Y-shaped reflectors 235 (e.g., the reflectors 235a) may be included as a portion of the ground component 225 to broaden a frequency response (i.e., bandwidth) of the bent dipole (e.g., the antenna element 205a in conjunction with the portion 230a of the ground component 225). For example, in some embodiments, the planar antenna apparatus 110 is designed to operate over a frequency range of about 2.4 GHz to 2.4835 GHz, for wireless LAN in accordance with the IEEE 802.11 standard. The reflectors 235a-235d broaden the frequency response of each dipole to about 300 MHz (12.5% of the center frequency) to 500 MHz (˜20% of the center frequency). The combined operational bandwidth of the planar antenna apparatus 110 resulting from coupling more than one of the antenna elements 205a-205d to the radio frequency feed port 220 is less than the bandwidth resulting from coupling only one of the antenna elements 205a-205d to the radio frequency feed port 220. For example, with all four antenna elements 205a-205d selected to result in an omnidirectional radiation pattern, the combined frequency response of the planar antenna apparatus 110 is about 90 MHz. In some embodiments, coupling more than one of the antenna elements 205a-205d to the radio frequency feed port 220 maintains a match with less than 10 dB return loss over 802.11 wireless LAN frequencies, regardless of the number of antenna elements 205a-205d that are switched on.



FIG. 3A illustrates various radiation patterns resulting from selecting different antenna elements of the planar antenna apparatus 110 of FIG. 2, in one embodiment in accordance with the present invention. FIG. 3A depicts the radiation pattern in azimuth (e.g., substantially in the plane of the substrate of FIG. 2). A line 300 displays a generally cardioid directional radiation pattern resulting from selecting a single antenna element (e.g., the antenna element 205a). As shown, the antenna element 205a alone yields approximately 5 dBi of gain. A dashed line 305 displays a similar directional radiation pattern, offset by approximately 90 degrees, resulting from selecting an adjacent antenna element (e.g., the antenna element 205b). A line 310 displays a combined radiation pattern resulting from selecting the two adjacent antenna elements 205a and 205b. In this embodiment, enabling the two adjacent antenna elements 205a and 205b results in higher directionality in azimuth as compared to selecting either of the antenna elements 205a or 205b alone, with approximately 5.6 dBi gain.


The radiation pattern of FIG. 3A in azimuth illustrates how the selectable antenna elements 205a-205d may be combined to result in various radiation patterns for the planar antenna apparatus 110. As shown, the combined radiation pattern resulting from two or more adjacent antenna elements (e.g., the antenna element 205a and the antenna element 205b) being coupled to the radio frequency feed port is more directional than the radiation pattern of a single antenna element.


Not shown in FIG. 3A for improved legibility, is that the selectable antenna elements 205a-205d may be combined to result in a combined radiation pattern that is less directional than the radiation pattern of a single antenna element. For example, selecting all of the antenna elements 205a-205d results in a substantially omnidirectional radiation pattern that has less directionality than that of a single antenna element. Similarly, selecting two or more antenna elements (e.g., the antenna element 205a and the antenna element 205c on opposite diagonals of the substrate) may result in a substantially omnidirectional radiation pattern. In this fashion, selecting a subset of the antenna elements 205a-205d, or substantially all of the antenna elements 205a-205d, may result in a substantially omnidirectional radiation pattern for the planar antenna apparatus 110.


Although not shown in FIG. 3A, it will be appreciated that additional directors (e.g., the directors 211) and/or gain directors (e.g., the gain directors 216) may further concentrate the directional radiation pattern of one or more of the antenna elements 205a-205d in azimuth. Conversely, removing or eliminating one or more of the directors 211, the gain directors 216, or the Y-shaped reflectors 235 expands the directional radiation pattern of one or more of the antenna elements 205a-205d in azimuth.



FIG. 3A also shows how the planar antenna apparatus 110 may be advantageously configured, for example, to reduce interference in the wireless link between the system 100 of FIG. 1 and a remote receiving node. For example, if the remote receiving node is situated at zero degrees in azimuth relative to the system 100 (at the center of FIG. 3A), the antenna element 205a corresponding to the line 300 yields approximately the same gain in the direction of the remote receiving node as the antenna element 205b corresponding to the line 305. However, as can be seen by comparing the line 300 and the line 305, if an interferer is situated at twenty degrees of azimuth relative to the system 100, selecting the antenna element 205a yields approximately a 4 dB signal strength reduction for the interferer as opposed to selecting the antenna element 205b. Advantageously, depending on the signal environment around the system 100, the planar antenna apparatus 110 may be configured (e.g., by switching one or more of the antenna elements 205a-205d on or off) to reduce interference in the wireless link between the system 100 and one or more remote receiving nodes.



FIG. 3B illustrates an elevation radiation pattern for the planar antenna apparatus 110 of FIG. 2. In the figure, the plane of the planar antenna apparatus 110 corresponds to a line from 0 to 180 degrees in the figure. Although not shown, it will be appreciated that additional directors (e.g., the directors 211) and/or gain directors (e.g., the gain directors 216) may advantageously further concentrate the radiation pattern of one or more of the antenna elements 205a-205d in elevation. For example, in some embodiments, the system 110 may be located on a floor of a building to establish a wireless local area network with one or more remote receiving nodes on the same floor. Including the additional directors 211 and/or gain directors 216 in the planar antenna apparatus 110 further concentrates the wireless link to substantially the same floor, and minimizes interference from RF sources on other floors of the building.



FIG. 4A and FIG. 4B illustrate an alternative embodiment of the planar antenna apparatus 110 of FIG. 1, in accordance with the present invention. On the first side of the substrate as shown in FIG. 4A, the planar antenna apparatus 110 includes a radio frequency feed port 420 and six antenna elements (e.g., the antenna element 405). On the second side of the substrate, as shown in FIG. 4B, the planar antenna apparatus 110 includes a ground component 425 incorporating a number of Y-shaped reflectors 435. It will be appreciated that a portion (e.g., the portion 430) of the ground component 425 is configured to form an arrow-shaped bent dipole in conjunction with the antenna element 405. Similarly to the embodiment of FIG. 2, the resultant bent dipole has a directional radiation pattern. However, in contrast to the embodiment of FIG. 2, the six antenna element embodiment provides a larger number of possible combined radiation patterns.


Similarly with respect to FIG. 2, the planar antenna apparatus 110 of FIG. 4 may optionally include one or more directors (not shown) and/or one or more gain directors 415. The directors and the gain directors 415 comprise passive elements that concentrate the directional radiation pattern of the antenna elements 405. In one embodiment, providing a director for each antenna element yields an additional 1-2 dB of gain for each element. It will be appreciated that the directors and/or the gain directors 415 may be placed on either side of the substrate. It will also be appreciated that additional directors and/or gain directors may be included to further concentrate the directional radiation pattern of one or more of the antenna elements 405.


An advantage of the planar antenna apparatus 110 of FIGS. 2-4 is that the antenna elements (e.g., the antenna elements 205a-205d) are each selectable and may be switched on or off to form various combined radiation patterns for the planar antenna apparatus 110. For example, the system 100 communicating over the wireless link to the remote receiving node may select a particular configuration of selected antenna elements that minimizes interference over the wireless link. If the wireless link experiences interference, for example due to other radio transmitting devices, or changes or disturbances in the wireless link between the system 100 and the remote receiving node, the system 100 may select a different configuration of selected antenna elements to change the radiation pattern of the planar antenna apparatus 110 and minimize the interference in the wireless link. The system 100 may select a configuration of selected antenna elements corresponding to a maximum gain between the system and the remote receiving node. Alternatively, the system may select a configuration of selected antenna elements corresponding to less than maximal gain, but corresponding to reduced interference. Alternatively, all or substantially all of the antenna elements may be selected to form a combined omnidirectional radiation pattern.


A further advantage of the planar antenna apparatus 110 is that RF signals travel better indoors with horizontally polarized signals. Typically, network interface cards (NICs) are horizontally polarized. Providing horizontally polarized signals with the planar antenna apparatus 110 improves interference rejection (potentially, up to 20 dB) from RF sources that use commonly-available vertically polarized antennas.


Another advantage of the system 100 is that the planar antenna apparatus 110 includes switching at RF as opposed to switching at baseband. Switching at RF means that the communication device 120 requires only one RF up/down converter. Switching at RF also requires a significantly simplified interface between the communication device 120 and the planar antenna apparatus 110. For example, the planar antenna apparatus provides an impedance match under all configurations of selected antenna elements, regardless of which antenna elements are selected. In one embodiment, a match with less than 10 dB return loss is maintained under all configurations of selected antenna elements, over the range of frequencies of the 802.11 standard, regardless of which antenna elements are selected.


A still further advantage of the system 100 is that, in comparison for example to a phased array antenna with relatively complex phase switching elements, switching for the planar antenna apparatus 110 is performed to form the combined radiation pattern by merely switching antenna elements on or off. No phase variation, with attendant phase matching complexity, is required in the planar antenna apparatus 110.


Yet another advantage of the planar antenna apparatus 110 on PCB is that the planar antenna apparatus 110 does not require a 3-dimensional manufactured structure, as would be required by a plurality of “patch” antennas needed to form an omnidirectional antenna. Another advantage is that the planar antenna apparatus 110 may be constructed on PCB so that the entire planar antenna apparatus 110 can be easily manufactured at low cost. One embodiment or layout of the planar antenna apparatus 110 comprises a square or rectangular shape, so that the planar antenna apparatus 110 is easily panelized.


The invention has been described herein in terms of several preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. A network peripheral device comprising: a plurality of individually selectable antennas formed on a first side of a substrate;a plurality of Y-shaped reflector formed on a second side of the substrate opposite to the first side, each Y-shaped reflector corresponding to one of the plurality of selectable antennas;a radio frequency feed port configured to receive radio frequency signals generated by a communication device, wherein the plurality of individually selectable antennas form a radially symmetrical layout about the radio frequency feed port;an antenna element selector configured to couple and decouple the radio frequency feed port to one or more of the plurality of individually selectable antennas, wherein a radiation pattern is changed based on the coupling and decoupling of the radio frequency feed port and the one or more of the plurality of individually selectable antennas, and wherein the radiation pattern is substantially omnidirectional when the radio frequency port is coupled to a subset of the plurality of individually selectable antennas; anda plurality of light emitting diodes (LEDs) each to be activated and deactivated depending on a selection and de-selection of respective antennas from among the plurality of individually selectable antennas by the antenna element selector.
  • 2. The device of claim 1, wherein the network peripheral device includes an access point configured to communicate to one or more remote receiving nodes over a wireless link or network.
  • 3. The device of claim 1, further comprising a modulator/demodulator that is communicatively coupled to the communication device, wherein the modulator/demodulator is configured to convert data received by the device into an RF signal to be transmitted to one or more remote receiving nodes.
  • 4. The device of claim 1, wherein each LED is lit when a corresponding antenna among the plurality of individually selectable antennas is selected.
  • 5. The device of claim 1, further comprising a ground component formed on the second side of the substrate, wherein a portion of the ground component is configured to form an arrow-shaped bent dipole in conjunction with one or more of the selectable antennas.
  • 6. The device of claim 1, further comprising one or more directors and one or more gain directors.
  • 7. The device of claim 6, wherein said one or more directors and one or more gain directors are formed on the first side of the substrate.
  • 8. The device of claim 6, wherein said one or more directors and one or more gain directors are formed on the second side of the substrate.
  • 9. The device of claim 5, wherein each antenna is coplanar with the ground component.
  • 10. The device of claim 5, wherein the antenna element selector is mounted on a printed circuit board (PCB), and wherein the PCB is electrically coupled to the plurality of individually selectable antennas.
  • 11. A method for providing a network peripheral device, the method comprising: providing a plurality of individually selectable antennas on a first side of a substrate;providing a plurality of Y-shaped reflector on a second side of the substrate opposite to the first side, each Y-shaped reflector corresponding to one of the plurality of selectable antennas;receiving radio frequency signals generated by a communication device, by a radio frequency feed port, wherein the plurality of individually selectable antennas form a radially symmetrical layout about the radio frequency feed port;coupling and decoupling the radio frequency feed port to one or more of the plurality of individually selectable antennas, by an antenna element selector to change a radiation pattern based on the coupling and decoupling of the radio frequency feed port and the one or more of the plurality of individually selectable antennas, wherein the radiation pattern is substantially omnidirectional when the radio frequency port is coupled to a subset of the plurality of individually selectable antennas; andactivating and deactivating a plurality of light emitting diodes (LEDs), depending on a selection and de-selection of respective antennas from among the plurality of individually selectable antennas by the antenna element selector.
  • 12. The method of claim 11, further comprising communicating with one or more remote receiving nodes over a wireless link or network by an access point included in the network peripheral device.
  • 13. The method of claim 11, further comprising converting data received by the network peripheral device into an RF signal to be transmitted to one or more remote receiving nodes, by a modulator/demodulator that is communicatively coupled to the communication device.
  • 14. The method of claim 11, further comprising activating each LED when a corresponding antenna among the plurality of individually selectable antennas is selected.
  • 15. The method of claim 11, further comprising providing a ground component formed on the second side of the substrate, wherein a portion of the ground component is configured to form an arrow-shaped bent dipole in conjunction with one or more of the selectable antennas.
  • 16. The method of claim 11, further comprising providing one or more directors and one or more gain directors.
  • 17. The method of claim 16, wherein said one or more directors and one or more gain directors are formed on the first side of the substrate.
  • 18. The device of claim 16, wherein said one or more directors and one or more gain directors are formed on the second side of the substrate.
  • 19. The device of claim 15, wherein each antenna is coplanar with the ground component.
  • 20. The device of claim 15, wherein the antenna element selector is mounted on a printed circuit board (PCB), and wherein the PCB is electrically coupled to the plurality of individually selectable antennas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional and claims the priority benefit of U.S. patent application Ser. No. 11/877,465 filed Oct. 23, 2007 and entitled “Antenna with Selectable Elements for Use in Wireless Communications,” which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 11/010,076 filed Dec. 9, 2004 and entitled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements,” which is now U.S. Pat. No. 7,292,198, which claims the priority benefit of U.S. Provisional Application No. 60/602,711 entitled “Planar Antenna Apparatus for Isotropic Coverage and QoS Optimization in Wireless Networks,” filed Aug. 18, 2004, and U.S. Provisional Application No. 60/603,157 entitled “Software for Controlling a Planar Antenna Apparatus for Isotropic Coverage and QoS Optimization in Wireless Networks,” filed Aug. 18, 2004. The disclosure of each of the aforementioned applications is incorporated by reference.

US Referenced Citations (381)
Number Name Date Kind
723188 Tesla Mar 1903 A
725605 Tesla Apr 1903 A
1869659 Broertjes Aug 1932 A
2292387 Markey et al. Aug 1942 A
3488445 Chang Jan 1970 A
3488455 Chang Jan 1970 A
3568105 Felsenheld Mar 1971 A
3721990 Gibson et al. Mar 1973 A
3887925 Ranghelli Jun 1975 A
3967067 Potter Jun 1976 A
3969730 Fuchser Jul 1976 A
3982214 Burns Sep 1976 A
3991273 Mathes Nov 1976 A
4001734 Burns Jan 1977 A
4027307 Litchford May 1977 A
4176356 Foster et al. Nov 1979 A
4193077 Greenberg et al. Mar 1980 A
4203118 Alford May 1980 A
4253193 Kennard Feb 1981 A
4305052 Baril et al. Dec 1981 A
4513412 Cox Apr 1985 A
4554554 Olesen et al. Nov 1985 A
4733203 Ayasli Mar 1988 A
4764773 Larsen et al. Aug 1988 A
4800393 Edward et al. Jan 1989 A
4814777 Monser Mar 1989 A
4821040 Johnson et al. Apr 1989 A
4920285 Clark et al. Apr 1990 A
4937585 Shoemaker Jun 1990 A
5063574 Moose Nov 1991 A
5097484 Akaiwa Mar 1992 A
5173711 Takeuchi et al. Dec 1992 A
5203010 Felix Apr 1993 A
5208564 Burns et al. May 1993 A
5220340 Shafai Jun 1993 A
5241693 Kim Aug 1993 A
5282222 Fattouche et al. Jan 1994 A
5291289 Hulyalkar et al. Mar 1994 A
5311550 Fouche et al. May 1994 A
5337066 Hirata et al. Aug 1994 A
5373548 McCarthy Dec 1994 A
5434575 Jelinek Jul 1995 A
5453752 Wang et al. Sep 1995 A
5479176 Zavrel Dec 1995 A
5507035 Bantz Apr 1996 A
5532708 Krenz et al. Jul 1996 A
5559800 Mousseau et al. Sep 1996 A
5726666 Hoover et al. Mar 1998 A
5754145 Evans May 1998 A
5767755 Kim et al. Jun 1998 A
5767807 Prtichett Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5786793 Maeda et al. Jul 1998 A
5802312 Lazaridis et al. Sep 1998 A
5828346 Park Oct 1998 A
5936595 Wang Aug 1999 A
5964830 Durrett Oct 1999 A
5966102 Runyon Oct 1999 A
5990838 Burns et al. Nov 1999 A
6005519 Burns Dec 1999 A
6005525 Kivela Dec 1999 A
6011450 Miya Jan 2000 A
6023250 Cronyn Feb 2000 A
6031503 Preiss, II et al. Feb 2000 A
6034638 Thiel et al. Mar 2000 A
6046703 Wang Apr 2000 A
6052093 Yao et al. Apr 2000 A
6061025 Jackson May 2000 A
6067053 Runyon et al. May 2000 A
6091364 Murakami et al. Jul 2000 A
6094177 Yamamoto Jul 2000 A
6097347 Duan et al. Aug 2000 A
6104356 Hikuma et al. Aug 2000 A
6169523 Ploussios Jan 2001 B1
6249216 Flick Jun 2001 B1
6266528 Farzaneh Jul 2001 B1
6281762 Nakao Aug 2001 B1
6288682 Thiel et al. Sep 2001 B1
6292153 Aiello et al. Sep 2001 B1
6307524 Britain Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323810 Poilasne et al. Nov 2001 B1
6326922 Hegendoerfer Dec 2001 B1
6326924 Muramoto et al. Dec 2001 B1
6337628 Campana, Jr. Jan 2002 B2
6337668 Ito et al. Jan 2002 B1
6339404 Johnson Jan 2002 B1
6345043 Hsu Feb 2002 B1
6351240 Karimullah et al. Feb 2002 B1
6356242 Ploussios Mar 2002 B1
6356243 Schneider et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366254 Sivenpiper Apr 2002 B1
6377227 Zhu et al. Apr 2002 B1
6392610 Braun et al. May 2002 B1
6396456 Chiang et al. May 2002 B1
6400329 Barnes Jun 2002 B1
6404386 Proctor, Jr. et al. Jun 2002 B1
6407719 Ohira et al. Jun 2002 B1
RE37802 Fattouche et al. Jul 2002 E
6414647 Lee Jul 2002 B1
6424311 Tsai et al. Jul 2002 B1
6442507 Skidmore et al. Aug 2002 B1
6445688 Garces et al. Sep 2002 B1
6456242 Crawford Sep 2002 B1
6476773 Palmer Nov 2002 B2
6492957 Carillo et al. Dec 2002 B2
6493679 Rappaport et al. Dec 2002 B1
6496083 Kushitani et al. Dec 2002 B1
6498589 Horii Dec 2002 B1
6499006 Rappaport et al. Dec 2002 B1
6507321 Oberschmidt et al. Jan 2003 B2
6521422 Hsu Feb 2003 B1
6531985 Jones et al. Mar 2003 B1
6545643 Sward et al. Apr 2003 B1
6583765 Schamberget et al. Jun 2003 B1
6586786 Kitazawa et al. Jul 2003 B2
6593891 Zhang Jul 2003 B2
6606059 Barabash Aug 2003 B1
6611230 Phelan Aug 2003 B2
6621029 Galmiche Sep 2003 B2
6625454 Rappaport et al. Sep 2003 B1
6633206 Kato Oct 2003 B1
6642889 McGrath Nov 2003 B1
6642890 Chen Nov 2003 B1
6674459 Ben-Shachar et al. Jan 2004 B2
6700546 Benhammou et al. Mar 2004 B2
6701522 Rubin et al. Mar 2004 B1
6724346 Le Bolzer Apr 2004 B2
6725281 Zintel et al. Apr 2004 B1
6741219 Shor May 2004 B2
6747605 Lebaric Jun 2004 B2
6753814 Killen et al. Jun 2004 B2
6757267 Evans Jun 2004 B1
6762723 Nallo et al. Jul 2004 B2
6774852 Chiang et al. Aug 2004 B2
6774864 Evans Aug 2004 B2
6779004 Zintel et al. Aug 2004 B1
6819287 Sullivan et al. Nov 2004 B2
6822617 Mather et al. Nov 2004 B1
6839038 Weinstein Jan 2005 B2
6859176 Choi Feb 2005 B2
6859182 Horii Feb 2005 B2
6864852 Chiang et al. Mar 2005 B2
6876280 Nakano Apr 2005 B2
6876836 Lin Apr 2005 B2
6879293 Sato Apr 2005 B2
6888504 Chiang et al. May 2005 B2
6888893 Li et al. May 2005 B2
6892230 Gu et al. May 2005 B1
6894653 Chiang et al. May 2005 B2
6903686 Vance et al. Jun 2005 B2
6906678 Chen Jun 2005 B2
6910068 Zintel et al. Jun 2005 B2
6914566 Beard Jul 2005 B2
6914581 Popek Jul 2005 B1
6924768 Wu et al. Aug 2005 B2
6931429 Gouge et al. Aug 2005 B2
6933907 Shirosaka Aug 2005 B2
6941143 Mathur Sep 2005 B2
6943749 Paun Sep 2005 B2
6950019 Bellone et al. Sep 2005 B2
6950069 Gaucher et al. Sep 2005 B2
6961028 Joy et al. Nov 2005 B2
6965353 Shirosaka et al. Nov 2005 B2
6973622 Rappaport et al. Dec 2005 B1
6975834 Forster Dec 2005 B1
6980782 Braun et al. Dec 2005 B1
7023909 Adams et al. Apr 2006 B1
7024225 Ito Apr 2006 B2
7034769 Surducan et al. Apr 2006 B2
7034770 Yang et al. Apr 2006 B2
7043277 Pfister May 2006 B1
7046201 Okada May 2006 B2
7050809 Lim May 2006 B2
7053844 Gaucher et al. May 2006 B2
7064717 Kaluzni Jun 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7088299 Siegler et al. Aug 2006 B2
7088306 Chiang et al. Aug 2006 B2
7089307 Zintel et al. Aug 2006 B2
7098863 Bancroft Aug 2006 B2
D530325 Kerila Oct 2006 S
7120405 Rofougaran Oct 2006 B2
7130895 Zintel et al. Oct 2006 B2
7148846 Qi et al. Dec 2006 B2
7162273 Ambramov et al. Jan 2007 B1
7164380 Saito Jan 2007 B2
7171475 Weisman et al. Jan 2007 B2
7193562 Shtrom Mar 2007 B2
7206610 Iacono et al. Apr 2007 B2
7215296 Ambramov et al. May 2007 B2
7277063 Shirosaka et al. Oct 2007 B2
7292198 Shtrom Nov 2007 B2
7292870 Heredia et al. Nov 2007 B2
7295825 Raddant Nov 2007 B2
7298228 Sievenpiper Nov 2007 B2
7312762 Puente Ballarda et al. Dec 2007 B2
7319432 Andersson Jan 2008 B2
7333460 Vaisanen Feb 2008 B2
7358912 Kish et al. Apr 2008 B1
7362280 Shtrom Apr 2008 B2
7385563 Bishop Jun 2008 B2
7498999 Shtrom Mar 2009 B2
7511680 Shtrom et al. Mar 2009 B2
7522569 Rada Apr 2009 B2
7525486 Shtrom Apr 2009 B2
7609648 Hoffmann et al. Oct 2009 B2
7697550 Rada Apr 2010 B2
7733275 Hirota Jun 2010 B2
7782895 Pasanen et al. Aug 2010 B2
7835697 Wright Nov 2010 B2
7847741 Hirota Dec 2010 B2
7864119 Shtrom et al. Jan 2011 B2
7893882 Shtrom Feb 2011 B2
7916463 Aya et al. Mar 2011 B2
8068068 Kish et al. Nov 2011 B2
8085206 Shtrom Dec 2011 B2
8217843 Shtrom Jul 2012 B2
8355912 Keesey et al. Jan 2013 B1
8358248 Shtrom Jan 2013 B2
8686905 Shtrom Apr 2014 B2
8704720 Kish Apr 2014 B2
8723741 Shtrom May 2014 B2
8756668 Ranade et al. Jun 2014 B2
8836606 Kish et al. Sep 2014 B2
9019165 Shtrom Apr 2015 B2
9093758 Kish Jul 2015 B2
20010046848 Kenkel Nov 2001 A1
20020031130 Tsuchiya et al. Mar 2002 A1
20020036586 Gothard et al. Mar 2002 A1
20020047800 Proctor, Jr. et al. Apr 2002 A1
20020080767 Lee Jun 2002 A1
20020084942 Tsai et al. Jul 2002 A1
20020101377 Crawford Aug 2002 A1
20020105471 Kojima et al. Aug 2002 A1
20020112058 Weisman et al. Aug 2002 A1
20020119757 Hamabe Aug 2002 A1
20020158798 Chiang et al. Oct 2002 A1
20020163473 Koyama et al. Nov 2002 A1
20020170064 Monroe et al. Nov 2002 A1
20030026240 Eyuboglu et al. Feb 2003 A1
20030030588 Kalis et al. Feb 2003 A1
20030038698 Hirayama Feb 2003 A1
20030063591 Leung et al. Apr 2003 A1
20030122714 Wannagot et al. Jul 2003 A1
20030169330 Ben-Shachar et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030184490 Raiman et al. Oct 2003 A1
20030184492 Chiang et al. Oct 2003 A1
20030189514 Miyano et al. Oct 2003 A1
20030189521 Yamamoto et al. Oct 2003 A1
20030189523 Ojantakanen et al. Oct 2003 A1
20030210207 Suh et al. Nov 2003 A1
20030214446 Shehab Nov 2003 A1
20030227414 Saliga et al. Dec 2003 A1
20040014432 Boyle Jan 2004 A1
20040017310 Vargas-Hurlston et al. Jan 2004 A1
20040017315 Fang et al. Jan 2004 A1
20040017860 Liu Jan 2004 A1
20040027291 Zhang et al. Feb 2004 A1
20040027304 Chiang et al. Feb 2004 A1
20040030900 Clark Feb 2004 A1
20040032378 Volman et al. Feb 2004 A1
20040036651 Toda Feb 2004 A1
20040036654 Hsieh Feb 2004 A1
20040041732 Aikawa et al. Mar 2004 A1
20040048593 Sano Mar 2004 A1
20040058690 Ratzel et al. Mar 2004 A1
20040061653 Webb et al. Apr 2004 A1
20040070543 Masaki Apr 2004 A1
20040075609 Li Apr 2004 A1
20040080455 Lee Apr 2004 A1
20040090371 Rossman May 2004 A1
20040095278 Kanemoto et al. May 2004 A1
20040114535 Hoffmann et al. Jun 2004 A1
20040125777 Doyle et al. Jul 2004 A1
20040145528 Mukai et al. Jul 2004 A1
20040153647 Rotholtz et al. Aug 2004 A1
20040160376 Hornsby et al. Aug 2004 A1
20040190477 Olson et al. Sep 2004 A1
20040203347 Nguyen Oct 2004 A1
20040207563 Yang Oct 2004 A1
20040227669 Okada Nov 2004 A1
20040260800 Gu et al. Dec 2004 A1
20050022210 Zintel et al. Jan 2005 A1
20050041739 Li et al. Feb 2005 A1
20050042988 Hoek et al. Feb 2005 A1
20050048934 Rawnick et al. Mar 2005 A1
20050050352 Narayanaswami et al. Mar 2005 A1
20050062649 Chiang et al. Mar 2005 A1
20050074018 Zintel et al. Apr 2005 A1
20050097503 Zintel et al. May 2005 A1
20050122265 Gaucher et al. Jun 2005 A1
20050128983 Kim et al. Jun 2005 A1
20050128988 Simpson Jun 2005 A1
20050135480 Li et al. Jun 2005 A1
20050138137 Encarnacion et al. Jun 2005 A1
20050138193 Encarnacion et al. Jun 2005 A1
20050146475 Bettner et al. Jul 2005 A1
20050180381 Retzer et al. Aug 2005 A1
20050184920 Mahler et al. Aug 2005 A1
20050188193 Kuehnel et al. Aug 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050240665 Gu et al. Oct 2005 A1
20050267935 Gandhi et al. Dec 2005 A1
20060031922 Sakai Feb 2006 A1
20060038734 Shtrom et al. Feb 2006 A1
20060050005 Shirosaka et al. Mar 2006 A1
20060094371 Nguyen May 2006 A1
20060098607 Zeng et al. May 2006 A1
20060109191 Shtrom May 2006 A1
20060111902 Julia et al. May 2006 A1
20060123124 Weisman et al. Jun 2006 A1
20060123125 Weisman et al. Jun 2006 A1
20060123455 Pai et al. Jun 2006 A1
20060168159 Weisman et al. Jul 2006 A1
20060184660 Rao et al. Aug 2006 A1
20060184661 Weisman et al. Aug 2006 A1
20060184693 Rao et al. Aug 2006 A1
20060224690 Falkenburg et al. Oct 2006 A1
20060225107 Seetharaman et al. Oct 2006 A1
20060227062 Francque et al. Oct 2006 A1
20060227761 Scott, III et al. Oct 2006 A1
20060239369 Lee Oct 2006 A1
20060251256 Asokan et al. Nov 2006 A1
20060262015 Thornell-Pers et al. Nov 2006 A1
20060291434 Gu et al. Dec 2006 A1
20070027622 Cleron et al. Feb 2007 A1
20070037619 Matsunaga et al. Feb 2007 A1
20070115180 Kish et al. May 2007 A1
20070124490 Kalavade et al. May 2007 A1
20070130294 Nishio Jun 2007 A1
20070135167 Liu Jun 2007 A1
20080060064 Wynn et al. Mar 2008 A1
20080062058 Bishop Mar 2008 A1
20080075280 Ye et al. Mar 2008 A1
20080096492 Yoon Apr 2008 A1
20080109657 Bajaj et al. May 2008 A1
20080136715 Shtrom Jun 2008 A1
20080212535 Karaoguz et al. Sep 2008 A1
20080272977 Gaucher et al. Nov 2008 A1
20090005005 Forstall et al. Jan 2009 A1
20090103731 Sarikaya Apr 2009 A1
20090187970 Mower et al. Jul 2009 A1
20090217048 Smith Aug 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090295648 Dorsey et al. Dec 2009 A1
20090315794 Alamouti et al. Dec 2009 A1
20100053023 Shtrom Mar 2010 A1
20100103065 Shtrom et al. Apr 2010 A1
20100103066 Shtrom et al. Apr 2010 A1
20100299518 Viswanathan et al. Nov 2010 A1
20100332828 Goto Dec 2010 A1
20110007705 Buddhikot et al. Jan 2011 A1
20110040870 Wynn et al. Feb 2011 A1
20110047603 Gordon et al. Feb 2011 A1
20110126016 Sun May 2011 A1
20110208866 Marmolejo-Meillon et al. Aug 2011 A1
20120030466 Yamaguchi Feb 2012 A1
20120054338 Ando Mar 2012 A1
20120089845 Raleigh Apr 2012 A1
20120098730 Kish Apr 2012 A1
20120134291 Raleigh May 2012 A1
20120257536 Kholaif et al. Oct 2012 A1
20120284785 Salkintzis et al. Nov 2012 A1
20120299772 Shtrom Nov 2012 A1
20120322035 Julia et al. Dec 2012 A1
20130038496 Shtrom Feb 2013 A1
20130047218 Smith Feb 2013 A1
20130182693 Sperling et al. Jul 2013 A1
20130207865 Shtrom Aug 2013 A1
20130207866 Shtrom Aug 2013 A1
20130207877 Shtrom Aug 2013 A1
20130212656 Ranade et al. Aug 2013 A1
20130241789 Shtrom Sep 2013 A1
20130269008 Sheu et al. Oct 2013 A1
20140210681 Shtrom Jul 2014 A1
20140282951 Ranade Sep 2014 A1
20140334322 Shtrom Nov 2014 A1
20150070243 Kish Mar 2015 A1
Foreign Referenced Citations (50)
Number Date Country
2003227399 Oct 2003 AU
02494982 Oct 2003 CA
10 2006 02635 Dec 2006 DE
102006026350 Dec 2006 DE
352 787 Jan 1990 EP
352787 Jan 1990 EP
0 534 612 Mar 1993 EP
0 756 381 Jan 1997 EP
0756381 Jan 1997 EP
0883206 May 1998 EP
0 883 206 Dec 1998 EP
1 152 542 Nov 2001 EP
1 152 543 Nov 2001 EP
1152543 Nov 2001 EP
1 376 920 Jun 2002 EP
1 220 461 Jul 2002 EP
1 315 311 May 2003 EP
1 450 521 Aug 2004 EP
1 450521 Aug 2004 EP
1 608 108 Dec 2005 EP
1608108 Dec 2005 EP
1 909 358 Apr 2008 EP
1 287 588 Jan 2009 EP
2 426 870 Jun 2006 GB
2426870 Jun 2006 GB
2 423 191 Aug 2006 GB
2423191 Aug 2006 GB
03038933 Feb 1991 JP
2008088633 Feb 1996 JP
2008088633 Apr 1996 JP
2001-057560 Feb 2001 JP
2002-505835 Feb 2002 JP
2001057560 Feb 2002 JP
2005-354249 Dec 2005 JP
2005354249 Dec 2005 JP
2006060408 Mar 2006 JP
2006060408 Mar 2006 JP
WO 9004893 May 1990 WO
WO9004893 May 1990 WO
WO 9955012 Oct 1999 WO
WO9955012 Oct 1999 WO
WO 0113461 Feb 2001 WO
WO 0169724 Sep 2001 WO
WO 0225967 Mar 2002 WO
WO02025967 Mar 2002 WO
WO 03079484 Sep 2003 WO
WO03079484 Sep 2003 WO
WO 03081718 Oct 2003 WO
WO 2004051798 Jun 2004 WO
WO2004051798 Jun 2004 WO
Non-Patent Literature Citations (172)
Entry
U.S. Appl. No. 61/043,556, filed Aug. 15, 2000, Hikuma et al.
U.S. Appl. No. 95/001,078, filed Sep. 4, 2008, Shtrom et al.
U.S. Appl. No. 95/001,079, filed Sep. 4, 2008, Shtrom et al.
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002).
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transaction of Antennas and propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004).
W.E. Doherty, Jr. et al., “The Pin Diode Circuit Designer's Handbook,” 1998.
English Translation of PCT Pub. No. WO2004/051798 (as fioled U.S. Appl. No. 10/536,547).
Behdad et al., “Slot Antenna Miniaturization Using Distributed Inductive Loading,” Antenna and Propogation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003).
Press Release, Netgear RangeMax™ Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireless Inc.
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90.
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C. 2d 876, Gen Docket No. 81-413, Jun. 30, 1981.
RL Miller, 4.3 Project X—A True Secrecy System for Speech, Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc.
Chang, Robert W. et al. Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission, The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.
Cimini, Leonard J. Jr., “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7 Jul. 1985, pp. 665-675.
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System.” IEEE Transactions on Communication Technology, vol. Com-15, No. 6 Dec. 1967, pp. 805-811.
Weinstein, S.B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communications, vol. Col-19, No. 5, Oct. 1971, pp. 628-634.
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE, CH2831-6/90/0000-0273.
Casas, Eduardo F., “OFDM for Data Communication Over Mobile Radio FM Channels-Part1: Analysis and Experimental Results.” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793.
Casas, Eduardo F., “OFDM for Data Communication over Mobile Radio FM Channels; Part II: Performance Improvement.” Department of Electrical Engineering, University of British Columbia.
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme.” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540.
Gledhill, J.J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180.
Alard, M., et al., “Principles of Modulationand Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium.
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection” Nov. 2003.
Guar, Sudhanshu, et al., “Transmit/ Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005.
Sadek, Mirett et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510.
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection-and Overview,” Draft, Dec. 31, 2003.
Tang, Ken, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
Tang, Ken, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, Jul. 1998, pp. 1008-1013.
Park, Vincent D., et al., “A Performance Comparison of the Termprally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598.
Akyildiz, Ian F., et al. “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology.
Microsoft Corporation, “IEEE 802.11 Networks and Windows Xp,” Windows Harware Developer Central, Dec. 4, 2001.
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2nd Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
Hirayama, Koji et al., “Next Generation Mobile-Access IP Network” hitachi Review vol. 49, No. 4, 2000.
Calhoun, Pat et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005.
Alimian, Areg et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
Information Soceity Techonologies Ultrawaves, “System Concept / Architecture Design and Communcation Stack Requirement Document,” Feb. 23, 2004.
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-level solutions in the uinlicensed bands,” Cambridge University Press, 2006.
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access” Sep. 2007.
Tsunekawa, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. 1, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA.
Supplementary European Search Report dated Jul. 21, 2009 in European patent application No. 05 776697.4.-1248.
Supplementary European Search Report for foreign application No. EP07755519 dated Mar. 11, 2009.
Request for Inter Partes reexamination for U.S. Pat. No. 7,358,912, filed by Rayspan Corporation and Netgear, Inc. on Sep. 4, 2008.
Response to Mar. 19, 2009 Office Action issued in Reexamination for U.S. Pat. No. 7,358,912 (No. 95/001079), filed May 19, 2009.
Orinco, AP-2000 5GHz Kit, “Access Point Family,” Proxim Wireless Corporation.
Ando et al., Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2×2 MIMO-OFDM Systems, Antennas and Propagation Society International Symposium, IEEE, pp. 1740-1743 vol. 2, 2004.
Bedell, “Wireless Crash Course,” p. 84, The McGraw-Hill Companies, Inc., USA, 2005.
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
Ruckus Wireless, Inc. vs. Netgear, Inc; Defendant Netgear, Inc. Invalidity Contentions.
Abramov 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Abramov 273—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Abramov 296—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Airgain 2004—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Bancroft 863—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Barabash 059—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Cetiner 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Chuang 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Evans 864—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486.
Johnson 404—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Kalis 2000—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Kalis 2002—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486.
Kaluzni 717—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Kim 693—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Lin 836—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Nakao 762—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486.
Okada 201—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Palmer 773—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Paun 749—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Qian 2000—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Shehab 2003—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Shirosaka 907—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Shtrom 198 & 280—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Sievenpiper 254—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Simons 1994—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Sward 643—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Vaughan 1995—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Wang 703—P.R. 3-3 © Chart for U.S. Pat. No. 7,525,486 and U.S. Pat. No. 7,193,562.
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium.
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2×2 MIMO-OFFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743 vol. 2.
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90, Jun. 18, 1985.
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Gen Docket No. 81-413, Jun. 30, 1981.
Bedell, Paul, “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA.
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003).
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003.
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels—Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793.
Casas, Eduardo F., et al., “OFDM for Data Communication over Mobile Radio FM Channels; Part II: Performance Improvement,” Department of Electrical Engineering, University of British Columbia.
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007.
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540.
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.C.
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002).
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675.
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003.
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003.
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002.
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004.
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
English Translation of PCT Pub. No. WO2004/051798 (as filed US National Stage U.S. Appl. No. 10/536,547).
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002.
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004).
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005.
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180.
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006.
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003.
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000.
Ian F. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology.
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004.
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013.
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006.
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001.
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003.
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE,CH2831-6/90/0000-0273.
Orinoco AP-2000 5GHz Kit, “Access Point Family,” Proxim Wireless Corporation.
Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html.
Press Release, Netgear RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php.
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc.
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510.
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811.
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003.
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001.
Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. I, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA.
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041.
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598.
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook (1998).
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634.
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001.
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 2009.
European Examination Report for EP Application No. 05776697.4 dated Jan. 21, 2011.
European Second Examination Report for EP Application No. 07775498.4 dated Mar. 12, 2013.
European Third Examination Report for EP Application No. 07775498.4 dated Oct. 17, 2011.
European First Examination Report for EP Application No. 09014989.9 dated May 7, 2012.
Supplementary European Search Report for EP Application No. EP05776697.4 dated Jul. 10, 2009.
Supplementary European Search Report for EP Application No. EP07755519 dated Mar. 11, 2009.
PCT Application No. PCT/US2005/27023, International Search Report and Written Opinion dated Dec. 23, 2005.
PCT Application No. PCT/US2006/49211, International Search Report and Written Opinion dated Aug. 29, 2008.
PCT Application No. PCT/US2007/09276, International Search Report and Written Opinion dated Aug. 11, 2008.
Chinese Application No. 200680048001.7, Office Action dated Jun. 20, 2012.
Chinese Application No. 200780020943.9, Office Action dated Feb. 7, 2013.
Chinese Application No. 200780020943.9, Office Action dated Aug. 29, 2012.
Chinese Application No. 200780020943.9, Office Action dated Dec. 19, 2011.
Chinese Application No. 200910258884.X, Office Action dated Aug. 3, 2012.
Taiwan Application No. 094127953, Office Action dated Mar. 20, 2012.
Taiwan Application No. 096114265, Office Action dated Jun. 20, 2011.
U.S. Appl. No. 11/010,076, Office Action dated Oct. 31, 2006.
U.S. Appl. No. 11/010,076, Final Office Action dated Aug. 8, 2006.
U.S. Appl. No. 11/010,076, Office Action dated Dec. 23, 2006.
U.S. Appl. No. 11/022,080, Office Action dated Jul. 21, 2006.
U.S. Appl. No. 11/041,145, Final Office Action dated Jan. 29, 2007.
U.S. Appl. No. 11/041,145, Office Action dated Jul. 21, 2006.
U.S. Appl. No. 11/265,751, Office Action dated Mar. 18, 2008.
U.S. Appl. No. 11/413,461, Office Action dated Jun. 7, 2007.
U.S. Appl. No. 11/714,707, Final Office Action dated May 30, 2008.
U.S. Appl. No. 11/714,707, Office Action dated Oct. 15, 2007.
U.S. Appl. No. 11/924,082, Office Action dated Aug. 29, 2008.
U.S. Appl. No. 12/082,090, Office Action dated Jan. 18, 2011.
U.S. Appl. No. 12/404,124, Final Office Action dated Feb. 7, 2012.
U.S. Appl. No. 12/404,124, Office Action dated Sep. 19, 2011.
U.S. Appl. No. 12/953,324, Office Action dated Mar. 24, 2011.
U.S. Appl. No. 13/280,278, Office Action dated Mar. 25, 2013.
U.S. Appl. No. 13/280,278, Final Office Action mailed Aug. 22, 2012.
U.S. Appl. No. 13/280,278, Office Action dated Feb. 21, 2012.
U.S. Appl. No. 13/305,609, Final Office Action dated Jul. 3, 2012.
U.S. Appl. No. 13/305,609, Office Action dated Dec. 20, 2011.
U.S. Appl. No. 13/485,012, Final Office Action dated Mar. 3, 2013.
U.S. Appl. No. 13/485,012, Office Action dated Oct. 25, 2012.
U.S. Appl. No. 13/862,834, Office Action dated Apr. 27, 2015.
U.S. Appl. No. 13/396,482, Final Office Action dated Jan. 22, 2015.
U.S. Appl. No. 13/396,484, Office Action dated Jan. 21, 2015.
U.S. Appl. No. 13/862,834, Final Office Action dated Sep. 22, 2015.
U.S. Appl. No. 13/396,482, Office Action dated Aug. 20, 2015.
U.S. Appl. No. 13/396,484, Final Office Action dated Aug. 20, 2015.
Related Publications (1)
Number Date Country
20110095960 A1 Apr 2011 US
Provisional Applications (2)
Number Date Country
60602711 Aug 2004 US
60603157 Aug 2004 US
Divisions (1)
Number Date Country
Parent 11877465 Oct 2007 US
Child 12980253 US
Continuations (1)
Number Date Country
Parent 11010076 Dec 2004 US
Child 11877465 US