The present invention relates generally to antennas, and specifically to devices and methods for controlling the Specific Absorption Rate (SAR) of radiation from the antenna of a mobile communication device in the tissues of a user of the device.
Concern has been growing over the radiation hazard involved in use of cellular telephones. Complaints of headaches, dizziness and fatigue are common among heavy users of cellular phones. Recent studies have indicated that long exposure to radio frequency (RF) radiation emitted by cellular phone antennas could cause serious medical problems due to the interference with brain cell activity, possibly leading to brain cancer. Some governments have already started warning users in regard to risks associated with use of cell phones. Recently, the British government has issued a recommendation to parents to limit the time their children use mobile phones. In the United States and in other countries, cellular and other wireless handsets must meet regulatory requirements for maximum specific absorption rate (SAR) levels in body tissues.
The concerns about the adverse health effects of cellular phone use arise from the fact that their antennas can deliver large amounts of RF energy to very small areas of the user's brain. In many cases, over 70% of the electromagnetic power emitted by the antenna in the 800-900 MHz band is absorbed in the human head. Although the radio frequency emissions of wireless handsets are classified as non-ionizing, they are able to transfer energy in the form of heat to any absorptive material. The antenna location, near field emission characteristics, radio frequency power, and frequency establish the basis for conformance to SAR limits. Energy absorption in the head also introduces extra loss into the power budget of the cellular phone itself, causing increased power consumption and reduced battery life for a given level of antenna emission.
Some attempts to reduce the health hazards of radio telephone antennas use RF-absorbing materials to shield the head. For example, U.S. Pat. Nos. 5,666,125 and 5,777,586, whose disclosures are incorporated herein by reference, describe an antenna assembly that includes a radiation absorber defining an open curved shape. At least some of the radiation emitted from the antenna in directions toward the user is blocked by the radiation absorber. Similarly, U.S. Pat. No. 5,694,137, whose disclosure is incorporated herein by reference, describes an arc-shaped shield, made of material impervious to radiation, which is positionable along an exterior of an antenna. While such absorbing shields may reduce the SAR in the head, however, they only aggravate the power loss problem. Therefore, an optimal antenna design should be based on improving efficiency of the radiation pattern as the key means for reducing SAR in body tissues.
As an alternative to absorbing materials, manufacturers often use electrically-conducting (grounded) surfaces to shield the user from the antenna. For example, U.S. Pat. No. 6,088,579 describes a radio communication device that has a conductive shielding layer between the antenna and the user. The shielding layer may be movable away from the antenna when not in use. Similarly, U.S. Pat. No. 5,613,221 describes a radiation shield for a hand-held cellular telephone made of a metal strip placed between the antenna rod of the telephone and the user. U.S. Pat. No. 6,075,977 describes a dual-purpose flip shield for retrofit to an existing hand-held cellular telephone. The shield, made of a polished material, preferably aluminum, is flipped up to a position between the telephone antenna and the user's head when the telephone is in use so as to provide high reflectance of electromagnetic waves away from the user. Other conductive antenna shielding devices are described in U.S. Pat. Nos. 6,088,603, 6,137,998, 6,097,340, 5,999,142 and 5,335,366. The disclosures of all the patents mentioned in this paragraph are incorporated herein by reference.
Conductive shields of the types described in these patents are not very effective in redirecting antenna energy, however, particularly when monopole antennas are involved. The problems with conductive shields stem from the fact that the boundary condition of the electromagnetic fields on a conductive surface requires the total electric field tangential to the surface to be zero. Therefore, the conductive surface necessarily has a reflection coefficient with a phase shift of 180° in the electric field. For the direct and reflected fields to be in phase, so that the antenna field is not canceled (shorted out) by destructive interference, the distance between the antenna and the reflector must be one quarter wave, which is about 8 cm in the 800-900 MHz band. To implement this solution with a monopole antenna is cumbersome, since the reflecting element must be located between the user and the antenna, meaning that the antenna itself must be at least 8 cm from the user's head.
In view of the known drawbacks of conductive reflectors, there have been attempts to improve their performance by addition of other electrical elements. For example, U.S. Pat. No. 6,114,999, whose disclosure is incorporated herein by reference, describes an antenna device for a mobile phone, wherein a distance between a miniaturized radiator and a miniaturized reflector is shortened by means of an introduced dielectric material. As an additional means for reducing the field directed toward the user, at least two thin isolated metal strips run parallel to the edges of the reflector element to form chokes at the back of the reflector, so as to concentrate the near-field to an area between the chokes. European Patent Application EP 0 588 271 A1, whose disclosure is likewise incorporated herein by reference, describes an antenna for a portable transceiver having an asymmetric radiation pattern. At least one reflector can be placed in a back zone of the antenna radiator. It is suggested that the reflector can be made of tuned dipoles operating in a passive manner, or by a vertical reflecting screen composed of densely-spaced horizontal turns.
Other antenna designs, such as patch antennas and variants on the loop antenna, permit more design flexibility without resorting to cumbersome reflector elements. These designs, however, have not shown the necessary near-field behavior to reduce SAR in the head. Another practice known in the art is to generate a quasi-directional far-field free-space pattern, rather than an omni-directional pattern. For example, U.S. Pat. No. 6,031,495, whose disclosure is incorporated herein by reference, describes an antenna system for reducing SAR that uses a pair of phased radiating elements to create a bi-directional radiation pattern with high attenuation perpendicular to the user's head. In the near field, however, the RF power density toward the user is not necessarily reduced by such an approach.
It is an object of the present invention to provide improved structures and methods for directing a radiated electromagnetic field. It is a further object of some aspects of the present invention to provide antennas with enhanced near-field directional characteristics.
It is yet a further object of some aspects of the present invention to provide devices and methods for reducing the SAR in the head of a user of RP radiation emitted by personal communication devices, such as cellular telephones.
It is still a further object of some aspects of the present invention to provide antennas for use with personal communication devices that reduce the overall device power budget.
In preferred embodiments of the present invention, a virtual magnetic wall (VMW) is interposed between an antenna on a personal communication device, such as a cellular telephone, and the head of a user. The VMW reflects radiation emitted by the antenna, thus generating a near-field radiation pattern that is directed preferentially away from the user's head. Electrically-conductive reflectors, as described above, must cancel the incident electric field at their surface and thus reflect the radiated electric field with reversed phase. The VMW, on the other hand, acts as a “magnetic conductor,” in the sense that it cancels the magnetic field while reflecting the electric field in phase with the incident field. As a result, unlike electrically-conductive reflectors, the VMW generates constructive interference of the electric field. It can therefore be positioned as close as is desired to the antenna and still give efficient control of the antenna's near-field radiation pattern.
Perfect magnetic conductors are not known to exist in nature. Instead, the VMW comprises a structure that approximates the behavior of such a magnetic conductor for a particular frequency range and polarization of the incident field. The VMW is preferably designed and constructed so that in response to the field of the antenna incident on the surface of the VMW, an equivalent magnetic current flows at the surface in the proper phase with the electric current so as to create radiation in the direction away from the user's head. In preferred embodiments of the present invention, the VMW comprises one or more of the following elements exhibiting such behavior:
The VMW is thus able to redirect the radiation pattern of the antenna on a cellular telephone or other personal communication device so that the radiation is emitted preferentially in a direction away from the user's head. Because the VMW can be placed arbitrarily close to the antenna, it can be made small in size, with minimal impact on the mechanical design of the communication device. Furthermore, since the VMW is itself substantially non-absorbing of radiation, and it reduces absorption of radiation from the antenna in the user's head, it increases the efficiency of radiation of the antenna and improves the overall device power budget.
Although preferred embodiments described herein are directed to personal communication devices, and particularly to protecting users of such devices from RF radiation emitted by device antennas, the usefulness of the present invention is by no means limited to such applications. Rather, the principles and techniques of the present invention may be applied to produce electromagnetic reflectors and directional antenna assemblies for other uses, as well.
There is therefore provided, in accordance with a preferred embodiment of the present invention, a radiation shield including a virtual magnetic wall (VMW), which is adapted to be placed between a radiating antenna and an object so as to reflect electromagnetic radiation emitted from the antenna in a given frequency band and having an electric field with a given polarization, away from the object, such that the electric field of the radiation reflected by the VMW is substantially in phase with the electric field of the emitted radiation incident on the VMW.
Preferably, the VMW is adapted to emulate a perfect magnetic conductive surface, such that a tangential component of a magnetic field of the radiation reflected by the VMW is out of phase with the tangential component of the magnetic field of the radiation incident on the VMW by approximately 180°.
In a preferred embodiment, the VMW includes a front surface and a back surface, which define at least one cavity therebetween, having a resonance in a vicinity of the given frequency. Preferably, at least one slot is formed in the front surface of the VMW, opening into the cavity. Most preferably, the at least one slot includes a plurality of slots, which are oriented responsive to the polarization of the emitted radiation. In a further preferred embodiment, the VMW also includes one or more lumped circuit elements coupled across the at least one slot. Preferably, the at least one cavity includes a plurality of cavities.
Preferably, the VMW includes one or more fins, positioned in the at least one cavity so as to enhance a capacitance of the cavity. Most preferably, at least one of the one or more fins is oriented in a direction generally perpendicular to the surfaces of the VMW or, alternatively, in a direction generally parallel to the surfaces of the VMW.
Further preferably, the VMW includes a dielectric or magnetic material, which is contained in the at least one cavity.
In another preferred embodiment, the VMW includes an array of inductors and capacitors, arranged to form one or more circuits having a resonance in a vicinity of the given frequency. Preferably, the array includes one or more inductive coils, having gaps therein that define the capacitors.
In still another preferred embodiment, the VMW includes a surface having periodic corrugations therein, which are configured to block electric currents from flowing over the surface.
In yet another preferred embodiment, the VMW includes a surface and one or more shorted transmission lines having input terminals at the surface and configured to exhibit an open circuit at the input terminals. Preferably, the transmission lines include folded transmission lines or, alternatively or additionally, meandered transmission lines. Most preferably, the transmission lines are approximately one quarter wave in length in the given frequency band.
Preferably, the VMW includes a structure having a resonance in the given frequency band, which is configured to respond to the incident radiation as an open-circuited resonant circuit. Most preferably, the given frequency band is between approximately 800 and 900 MHz or between approximately 1800 and 1900 MHz.
There is also provided, in accordance with a preferred embodiment of the present invention, an antenna assembly for a personal communication device, including:
an antenna, coupled to be driven by the device so as to emit electromagnetic radiation in a given frequency band and with a given polarization; and
a virtual magnetic wall (VMW), positioned between the antenna and a head of a user of the device so as to reflect the radiation emitted by the antenna away from the head, such that an electric field of the radiation reflected by the VMW is substantially in phase with the electric field of the emitted radiation incident on the VMW.
Preferably, the VMW is positioned at a distance from the antenna that is substantially less than one quarter of a wavelength of the radiation. Typically, the antenna includes a monopole antenna. Alternatively or additionally, the antenna may include an array of antennas.
There is additionally provided, in accordance with a preferred embodiment of the present invention, a method for shielding an object from radiation emitted by an antenna in a given frequency band and having a given polarization, the method including positioning a virtual magnetic wall (VMW) between the antenna and the object so as to reflect the radiation emitted by the antenna away from the object, such that an electric field of the radiation reflected by the VMW is substantially in phase with the electric field of the emitted radiation incident on the VMW.
The present invention will be more fully understood from the following detailed description of the preferred embodiments thereof, taken together with the drawings in which:
5
Reference is now made to
Whereas electrical conductor 20 short-circuits the incident field (giving a tangential electric field E=0 at the surface of the conductor), magnetic conductor 22 behaves as an “open circuit” plane. Therefore, unlike an electrically-conductive reflector, which must be spaced from an antenna by a quarter wave in order to give efficient reflection, the magnetic conductor can be placed very close to the antenna and still perform the same finction. At the surface of magnetic conductor 22, the tangential magnetic field Htan, rather than the electric field, becomes very small. (A zero magnetic field would imply a perfect open circuit). The image of the antenna is thus in phase with the antenna current, which serves to redirect the radiation away from the surface. In other words, regardless of how close magnetic conductor 22 is to the antenna, it reflects the radiation of the antenna away from the user's head, while nulling the radiation in the direction of the head.
As described further hereinbelow, virtual magnetic walls (VMWs) are structures that emulate, approximately, the behavior of a perfect magnetic conductor for electromagnetic radiation within a specified frequency range and polarization. The operation of a VMW can be described physically by any of the following models:
Various structures can be used to create VMW 36. In preferred embodiments of the present invention, these structures include:
Reference is now made to
In the embodiment of
Table I below lists typical dimensions for an exemplary design of VMW 50 consisting of three cavities 44, which are filled with a dielectric material having a dielectric constant of 4. The dimensions in the table are given in units of the radiation wavelength of antenna 34.
In this configuration, the far-field radiation pattern of the antenna assembly is stronger by 3 dB relative to a standard monopole antenna. The structure also aids in matching the antenna to its feed line. In addition, the enhanced antenna efficiency also reduces the power budget of telephone 32, so that its battery life is prolonged.
In this configuration, as in the configuration represented by Table I, the far-field radiation pattern of the antenna assembly is stronger by 3 dB relative to a standard monopole antenna, and the antenna is matched to its feed line.
Although preferred embodiments are described herein with specific reference to cellular telephones, the principles of the present invention are similar applicable to the construction of elements for shielding and redirection of radiation from devices of other types. It will thus be appreciated that the preferred embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This application claims the benefit of U.S. Provisional Patent Application No. 0/255,570, filed Dec. 14, 2000, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL01/01126 | 12/6/2001 | WO |
Number | Date | Country | |
---|---|---|---|
60255570 | Dec 2000 | US |