The present invention relates to the field of terminal technologies, and in particular, to an antenna.
An antenna is a converter that converts a guided electromagnetic wave propagated on a transmission line into an electromagnetic wave propagated in an unbound medium (usually free space) or performs reverse conversion. The antenna is a component configured to transmit or receive an electromagnetic wave in a wireless device.
Currently, widely used antennas include directional antennas and omnidirectional antennas. A directional antenna has strong radiation in one or more specific directions, but extremely weak radiation in another direction. The directional antenna has a relatively high gain only in a specific direction. An omnidirectional antenna implements 360-degree even radiation on a horizontal plane, but has a relatively small gain.
However, in many scenarios, the antenna is required to implement 360-degree high-gain radiation on the horizontal plane. For example, in a smart home system, user terminals may be distributed in any position in a house. To ensure that all the user terminals can implement communication, an antenna disposed in a router needs to provide full coverage on the horizontal plane. In addition, because an obstacle such as a wall may be disposed between the user terminals, the antenna also requires a high gain to ensure reliability of communication. Therefore, designing an antenna having 360-degree high-gain radiation on the horizontal plane becomes a popular research.
Embodiments of the present invention disclose an antenna, so as to implement 360-degree high-gain radiation on a horizontal plane.
According to a first aspect, an embodiment of the present invention provides an antenna. The antenna includes a main element and at least one director-reflector unit; the main element is configured to transmit and receive a signal; the director-reflector unit includes a first radiation element, a second radiation element, and a switch, where total electrical length of the first radiation element and the second radiation element is greater than one half of a wavelength corresponding to an operating frequency band of the antenna, and both electrical length of the first radiation element and electrical length of the second radiation element are less than one half of the wavelength corresponding to the operating frequency band of the antenna; when the switch is switched on, one end of the first radiation element is connected to one end of the second radiation element by using the switch, and the director-reflector unit is used as a reflector and configured to reflect the signal transmitted and received by the main element; and when the switch is switched off, the first radiation element is disconnected from the second radiation element, and the director-reflector unit is used as a director and configured to direct the signal transmitted and received by the main element. When the director-reflector unit is used as the director, a gain of the antenna in a pointed-to direction can be enhanced. When the director-reflector unit is used as the reflector, the gain of the antenna in a reflection direction can be enhanced. That is, when the director-reflector unit is in a different state, the gain of the antenna in a different direction can be enhanced. In addition, a status of the director-reflector unit is variable (that is, the director-reflector unit may be controlled by using the switch to act as the director or the reflector); therefore, the antenna can implement 360-degree high-gain coverage on a horizontal plane by switching the status of the director-reflector unit.
In a possible design, a distance between the director-reflector unit and the main element is less than five-sixteenths of the wavelength corresponding to the operating frequency band of the antenna, and the distance is greater than three-sixteenths of the wavelength corresponding to the operating frequency band of the antenna. Setting the distance between the director-reflector unit and the main element in this way can better improve a 360-degree gain effect of the antenna on the horizontal plane. When the distance between the director-reflector unit and the main element of the antenna is equal to a quarter of the wavelength corresponding to the operating frequency band of the antenna, an effect of improving the 360-degree gain effect of the antenna on the horizontal plane is relatively good.
In a possible design, the antenna includes n director-reflector units that are disposed around the main element, where n is an integer greater than 1. Disposing the director-reflector units around the main element helps improve the 360-degree gain effect of the antenna on the horizontal plane.
In a possible design, there is an equal distance between each of the n director-reflector units and the main element, and there is an equal distance between adjacent director-reflector units. Setting the equal distance between each director-reflector unit and the main element and the equal distance between adjacent director-reflector units can achieve a relatively good gain effect of the antenna. Optionally, there may be a different distance between each director-reflector unit and the main element, or there may be a different distance between adjacent director-reflector units. This can also increase the gain of the antenna.
In a possible design, the switch is connected to a signal control chip, and the signal control chip is configured to control switch-on or switch-off of the switch. This manner can help control switch-off or switch-on of the switch. Optionally, the antenna may further include an infrared sensor. The infrared sensor is configured to detect whether there is a user in each direction on the horizontal plane. When it is detected that there is a user in a direction or that a quantity of users in a direction exceeds a preset value, the signal control chip controls a corresponding switch to be switched on or off, so as to increase a gain in the direction. Optionally, the antenna may further include a distance sensor. When it is detected, by using the distance sensor, that a user moves towards a direction or that a quantity of users moving towards a direction is greater than a preset value, the signal control chip controls a corresponding switch to be switched on or off, so as to implement dynamical monitoring and flexibly change gain of the antenna in a specific direction.
In a possible design, the main element is a dipole or a loop antenna. The dipole or the loop antenna itself can implement 360-degree full coverage on the horizontal plane. In this way, with the help of the director-reflector unit, the gain of the antenna on the horizontal plane can be more significantly increased.
In a possible design, the first radiation element and the second radiation element are capable of implementing electromagnetic conversion.
In a possible design, the first radiation element and the second radiation element are in a rectangular or serpentine shape.
In a possible design, the switch is a radio frequency switch and operates on an operating frequency band of the main element.
To describe the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and persons of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
To make the objectives, technical solutions, and advantages of the embodiments of the present invention clearer, the following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are some but not all of the embodiments of the present invention. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.
An antenna provided in the embodiments of the present invention may be used in various terminals that require wireless communication, for example, a router, a home gateway, a set-top box, an in-vehicle device, or the like. The terminal may include a central processing unit, a baseband circuit, a radio frequency circuit, and the like. Using an example in which the terminal sends a signal, the baseband circuit transmits, to the radio frequency circuit, a signal that needs to be sent, the radio frequency circuit performs steps of filtering, modulation, matching, and so on, and feeds the signal to an input end of the antenna, and the antenna performs radiation towards free space. A process of receiving a signal by the terminal is a process opposite to the foregoing sending process, and details are not described herein.
For a better understanding of the embodiments of the present invention, the following describes a director and a reflector included in the embodiments of the present invention with reference to
In an actual application, the director is disposed in a maximum radiation direction of a main element (the main element refers to a component, configured to receive and transmit a signal, of an antenna, and the main element is electrically connected to a signal feed-in source), and is configured to direct a signal received or transmitted by the main element, so as to enhance a gain of the antenna in the maximum radiation direction. The reflector is disposed in an opposite direction of the maximum radiation direction of the main element, and is configured to reflect the signal received or transmitted by the main element, so as to enhance the gain of the antenna in the maximum radiation direction. The gain is used to measure a capability of the antenna in receiving and transmitting a signal in a specific direction. Therefore, a higher gain in a direction indicates a stronger capability of the antenna in receiving and transmitting a signal in the direction.
For example,
In an actual application, in an antenna that includes a radiation element (the radiation element refers to an object capable of implementing electromagnetic conversion) and the main element, when a distance between the radiation element and the main element is properly set, whether the radiation element is used as the director or the reflector may be determined according to electrical length of the radiation element. When the electrical length of the radiation element is slightly less than one half of a wavelength corresponding to an operating frequency band of the antenna, the radiation element may be used as the director. When the electrical length of the radiation element is slightly greater than one half of the wavelength corresponding to the operating frequency band of the antenna, the radiation element may be used as the reflector.
The following further describes this embodiment of the present invention in detail based on the foregoing descriptions of the director and the reflector.
An embodiment of the present invention provides an antenna.
In this embodiment of the present invention, the director-reflector unit 302 is not electrically connected to a signal feed-in source.
In this embodiment of the present invention, the first radiation element 3021 and the second radiation element 3022 are capable of implementing electromagnetic conversion, and the first radiation element 3021 and the second radiation element 3022 are capable of radiating an electromagnetic wave.
In this embodiment of the present invention, whether the director-reflector unit 302 is used as the director or the reflector may be set by controlling switch-on or switch-off of the switch 3023. When the switch 3023 is switched on, one end of the first radiation element 3021 is connected to one end of the second radiation element 3022 by using the switch 3023, and the total electrical length of the first radiation element 3021 and the second radiation element 3022 is greater than one half of the wavelength corresponding to the operating frequency band of the antenna 300. Therefore, at this time, electrical length of the director-reflector unit 302 is greater than one half of the wavelength corresponding to the operating frequency band of the antenna 300, and the director-reflector unit 302 is used as the reflector. When the switch 3023 is switched off, the first radiation element 3021 is disconnected from the second radiation element 3022, and both the electrical length of the first radiation element 3021 and the electrical length of the second radiation element 3022 are less than one half of the wavelength corresponding to the operating frequency band of the antenna 300. Therefore, at this time, the electrical length of the director-reflector unit 302 is less than one half of the wavelength corresponding to the operating frequency band of the antenna 300, and the director-reflector unit 302 is used as the director.
In an optional implementation, the switch 3023 is connected to a signal control chip, and the signal control chip is configured to control switch-on or switch-off of the switch. This manner can help control switch-off or switch-on of the switch. Optionally, the switch 3023 is a radio frequency switch and operates on an operating frequency band of the main element 301. For example, the switch 3023 may be specifically a PIN diode switch or a single pole double throw switch. Optionally, the antenna 300 may further include an infrared sensor. The infrared sensor is configured to detect whether there is a user in each direction on the horizontal plane. When it is detected that there is a user in a direction or that a quantity of users in a direction exceeds a preset value, the signal control chip controls a corresponding switch 3023 to be switched on or off, so as to increase a gain in the direction. Optionally, the antenna 300 may further include a distance sensor. When it is detected, by using the distance sensor, that a user moves towards a direction or that a quantity of users moving towards a direction is greater than a preset value, the signal control chip controls a corresponding switch 3023 to be switched on or off, so as to increase a gain in the direction.
In this embodiment of the present invention, when the director-reflector unit 302 is used as the director, a gain of the antenna 300 in a pointed-to direction can be enhanced. When the director-reflector unit 302 is used as the reflector, the gain of the antenna 300 in a reflection direction can be enhanced. That is, when the director-reflector unit 302 is in a different state, the gain of the antenna 300 in a different direction can be enhanced. In addition, a status of the director-reflector unit 302 is variable (that is, the director-reflector unit 302 may be controlled by using the switch 3023 to act as the director or the reflector); therefore, the antenna can implement 360-degree high-gain coverage on the horizontal plane by switching the status of the director-reflector unit 302.
The following uses an antenna shown in
In an actual application, a state of the director-reflector unit 302 may be switched according to a location relationship between a user terminal and the antenna, so that the user terminal receives a high-quality signal, or a signal sent by the user terminal can be better received. For example, when the user terminal is in an area 1 shown in
In this embodiment of the present invention, more director-reflector units may be further disposed to increase a minimum gain of a horizontal-plane directivity pattern and improve non-circularity of the directivity pattern. For example, six director-reflector units may be disposed around the main element. Adjacent two director-reflector units are used as directors, and the other four are used as reflectors. Then, there are a total of six antenna states, corresponding to six radiation directivity patterns. 360-degree high-gain full coverage on the horizontal plane can be implemented by switching between the six antenna states.
It should be noted that the antenna directivity patterns shown in
In an optional implementation, the distance between the director-reflector unit and the main element of the antenna is less than five-sixteenths of the wavelength corresponding to the operating frequency band of the antenna, and the distance between the director-reflector unit and the main element is greater than three-sixteenths of the wavelength corresponding to the operating frequency band of the antenna. Setting the distance between the director-reflector unit and the main element in this way can better improve a 360-degree gain effect of the antenna on the horizontal plane. When the distance between the director-reflector unit and the main element of the antenna is equal to a quarter of the wavelength corresponding to the operating frequency band of the antenna, an effect of improving the 360-degree gain effect of the antenna on the horizontal plane is the best.
For example, for the antenna 400 shown in
In an optional implementation, the antenna includes n director-reflector units that are disposed around the main element, where n is an integer greater than 1. For the antenna 400 shown in
In an optional implementation, there is an equal distance between each of the n director-reflector units and the main element, and there is an equal distance between adjacent director-reflector units. For the antenna 400 shown in
In an optional implementation, the main element may be a dipole or a loop antenna. The dipole or the loop antenna itself can implement 360-degree full coverage on the horizontal plane. In this way, with the help of the director-reflector unit, the gain of the antenna on the horizontal plane can be more significantly increased.
Referring to
Referring to
A joint between the director-reflector unit 702 and the dielectric plate 703 may be secured by means of wave soldering or manual soldering. A control signal line 804 is connected to the dielectric plate 703 by using a solder joint and is connected to a main board by using a flat cable. A reference ground cable 805 is connected to the dielectric plate 703 by using a solder joint and is connected to the main board by using a flat cable.
In this embodiment of the present invention, the director-reflector unit 702 does not need to be grounded by using the dielectric plate 703. The dielectric plate plays a role of securing the main element 701 and the three director-reflector units 702 and routing a control line.
It should be noted that
Finally, it should be noted that the foregoing embodiments are merely intended for describing the technical solutions of the present invention, but not for limiting the present invention. Although the present invention is described in detail with reference to the foregoing embodiments, persons of ordinary skill in the art should understand that they may still make modifications to the technical solutions described in the foregoing embodiments or make equivalent replacements to some or all technical features thereof, without departing from the scope of the technical solutions of the embodiments of the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/086287 | 6/17/2016 | WO | 00 |