This invention relates to antennas, and more particularly, to antenna structures and antennas for electronic devices.
Many modern electronic devices use antennas. For example, portable electronic devices are often provided with wireless communications capabilities. Portable electronic devices may use wireless communications to communicate with wireless base stations. As an example, cellular telephones may communicate using cellular telephone bands at 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz (e.g., the main Global System for Mobile Communications or GSM cellular telephone bands). Portable electronic devices may also use other types of communications links. For example, portable electronic devices may communicate using the Wi-Fi® (IEEE 802.11) bands at 2.4 GHz and 5.0 GHz and the Bluetooth® band at 2.4 GHz. Communications are also possible in data service bands such as the 3G data communications band at 2100 MHz band (commonly referred to as UMTS or Universal Mobile Telecommunications System).
To satisfy consumer demand for portable wireless devices, manufacturers are continually striving to reduce the size of components that are used in these devices. For example, manufacturers have made attempts to miniaturize the antennas used in portable electronic devices.
A typical antenna may be fabricated by patterning a metal layer on a circuit board substrate or may be formed from a sheet of thin metal using a foil stamping process. These techniques can be used to produce antennas that fit within the tight confines of a portable device. With conventional portable electronic devices, however, design compromises are made to accommodate compact antennas. These design compromises may include, for example, compromises related to antenna efficiency and antenna bandwidth.
It would therefore be desirable to be able to provide improved antenna structures for electronic devices such as portable electronic devices.
Wireless communications structures for computers or other electronic devices are provided. The wireless communications structures may include antennas and antenna support structures for antennas.
A portable electronic device such as a portable computer may have a base housing formed from a top case and bottom case. The base housing may be conductive and may serve as an antenna ground plane.
A display housing portion may be mounted to the base housing hinges. A dielectric housing portion that is rigidly connected to the base housing may be located between the base housing and the display housing. A two-shot molded interconnect device dielectric antenna support structure may be mounted within the dielectric housing portion. Three antenna resonating elements may be formed on the antenna support structure.
The antenna resonating elements on the antenna support structure and the antenna ground plane may form three separate antennas for the portable computer. Metal clips may be used to ground transmission lines to tabs associated with the antenna resonating elements. The antenna resonating elements may be connected to the ground plane using screws or other suitable fasteners.
The top case may have a top surface that lies in a plane. The dielectric antenna support structure may have a curved surface on which the antenna resonating elements are formed. The curved surface may protrude above the plane, thereby elevating the antenna resonating element so that the antenna performs well without interference from adjacent metal components.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
The present invention relates generally to electronic devices, and more particularly, to antennas for wireless electronic devices.
The wireless electronic devices may be any suitable electronic devices. As an example, the wireless electronic devices may be desktop computers or other computer equipment. The wireless electronic devices may also be portable electronic devices such as laptop computers, tablet computers, or small portable computers of the type that are sometimes referred to as ultraportables. Portable electronic devices may also be somewhat smaller devices. Examples of smaller portable electronic devices include wrist-watch devices, pendant devices, headphone and earpiece devices, and other wearable and miniature devices. With one suitable arrangement, the portable electronic devices may be handheld electronic devices.
Examples of portable and handheld electronic devices include cellular telephones, media players with wireless communications capabilities, handheld computers (also sometimes called personal digital assistants), remote controls, global positioning system (GPS) devices, and handheld gaming devices. The devices may also be hybrid devices that combine the functionality of multiple conventional devices. Examples of hybrid devices include a cellular telephone that includes media player functionality, a gaming device that includes a wireless communications capability, a cellular telephone that includes game and email functions, and a handheld device that receives email, supports mobile telephone calls, has music player functionality and supports web browsing. These are merely illustrative examples.
An illustrative electronic device such as a portable electronic device in accordance with an embodiment of the present invention is shown in
Device 10 may handle communications over one or more communications bands. For example, wireless communications circuitry in device 10 may be used to handle cellular telephone communications in one or more frequency bands and data communications in one or more communications bands. Typical data communications bands that may be handled by the wireless communications circuitry in device 10 include the 2.4 GHz band that is sometimes used for Wi-Fi® (IEEE 802.11) and Bluetooth® communications, the 5.0 GHz band that is sometimes used for Wi-Fi communications, the 1575 MHz Global Positioning System band, and 3G data bands (e.g., the UMTS band at 1920-2170). These bands may be covered by using single-band and multiband antennas. For example, cellular telephone communications can be handled using a multiband cellular telephone antenna and local area network data communications can be handled using a multiband wireless local area network antenna. As another example, device 10 may have a single multiband antenna for handling communications in two or more data bands (e.g., at 2.4 GHz and at 5.0 GHz). Two or more multiband antennas of this type may be used in an antenna diversity arrangement. Antenna arrangements with three or more antennas may also be used. For example, device 10 may have two dual-band Wi-Fi antennas and a Bluetooth antenna (as an example).
Device 10 may have housing 12. Housing 12, which is sometimes referred to as a case, may be formed of any suitable materials including plastic, glass, ceramics, metal, other suitable materials, or a combination of these materials. In some situations, portions of housing 12 may be formed from a dielectric or other low-conductivity material, so as not to disturb the operation of conductive antenna elements that are located in proximity to housing 12.
In general, however, housing 12 will be partly or entirely formed from conductive materials such as metal. An illustrative metal housing material that may be used is anodized aluminum. Aluminum is relatively light in weight and, when anodized, has an attractive insulating and scratch-resistant surface. If desired, other metals can be used for the housing of device 10, such as stainless steel, magnesium, titanium, alloys of these metals and other metals, etc. In scenarios in which housing 12 is formed from conductive elements, one or more of the conductive elements may be used as part of the antenna in device 10. For example, metal portions of housing 12 and metal components in housing 12 may be shorted together to form a ground plane in device 10 or to expand a ground plane structure that is formed from a planar circuit structure such as a printed circuit board structure (e.g., a printed circuit board structure used in forming antenna structures for device 10).
As shown in
Display housing portion 12C may be attached to housing base 12E (i.e., the portion of housing 12 that is formed from top case 12A and bottom case 12B) using hinges such as hinges 24.
Housing portion 25 may be located at the rear edge of base 12E between base 12E and display housing 12C. Hinges 24 and housing portion 25 of housing base 12E may have longitudinal axes that are aligned along longitudinal axis 28.
Device 10 may have one or more buttons such as buttons 14. Buttons 14 may be formed on any suitable surface of device 10. In the example of
Display 16 may be a liquid crystal diode (LCD) display, an organic light emitting diode (OLED) display, a plasma display, or any other suitable display. The outermost surface of display 16 may be formed from one or more plastic or glass layers. If desired, touch screen functionality may be integrated into display 16. Device 10 may also have a separate touch pad device such as touch pad 26. An advantage of integrating a touch screen into display 16 to make display 16 touch sensitive is that this type of arrangement can save space and reduce visual clutter. Buttons 14 may, if desired, be arranged adjacent to display 16. With this type of arrangement, the buttons may be aligned with on-screen options that are presented on display 16. A user may press a desired button to select a corresponding one of the displayed options.
Device 10 may have circuitry 18. Circuitry 18 may include storage, processing circuitry, and input-output components. Wireless transceiver circuitry in circuitry 18 may be used to transmit and receive radio-frequency (RF) signals. Transmission lines such as coaxial transmission lines and microstrip transmission lines may be used to convey radio-frequency signals between transceiver circuitry and antenna structures in device 10. As shown in
A schematic diagram of an embodiment of an illustrative electronic device such as a portable electronic device is shown in
As shown in
Processing circuitry 36 may be used to control the operation of device 10. Processing circuitry 36 may be based on a processor such as a microprocessor and other suitable integrated circuits. With one suitable arrangement, processing circuitry 36 and storage 34 may be used to run software on device 10, such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc. Processing circuitry 36 and storage 34 may be used in implementing suitable communications protocols. Communications protocols that may be implemented using processing circuitry 36 and storage 34 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as Wi-Fi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol, protocols for handling 3G data services such as UMTS, cellular telephone communications protocols, etc.
Input-output devices 38 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Display screen 16, keys 14, and touchpad 26 of
Input-output devices 38 may include user input-output devices 40 such as buttons, touch screens, joysticks, click wheels, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, speakers, tone generators, vibrating elements, etc. A user can control the operation of device 10 by supplying commands through user input devices 40.
Display and audio devices 42 may include liquid-crystal display (LCD) screens or other screens, light-emitting diodes (LEDs), and other components that present visual information and status data. Display and audio devices 42 may also include audio equipment such as speakers and other devices for creating sound. Display and audio devices 42 may contain audio-video interface equipment such as jacks and other connectors for external headphones and monitors.
Wireless communications devices 44 may include communications circuitry such as radio-frequency (RF) transceiver circuitry formed from one or more integrated circuits, power amplifier circuitry, passive RF components, one or more antennas (e.g., antenna structures such as antenna structure 20 of
Device 10 can communicate with external devices such as accessories 46 and computing equipment 48, as shown by paths 50. Paths 50 may include wired and wireless paths. Accessories 46 may include headphones (e.g., a wireless cellular headset or audio headphones) and audio-video equipment (e.g., wireless speakers, a game controller, or other equipment that receives and plays audio and video content).
Computing equipment 48 may be any suitable computer. With one suitable arrangement, computing equipment 48 is a computer that has an associated wireless access point or an internal or external wireless card that establishes a wireless connection with device 10. The computer may be a server (e.g., an internet server), a local area network computer with or without internet access, a user's own personal computer, a peer device (e.g., another portable electronic device 10), or any other suitable computing equipment.
The antenna structures and wireless communications devices of device 10 may support communications over any suitable wireless communications bands. For example, wireless communications devices 44 may be used to cover communications frequency bands such as the cellular telephone bands at 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, data service bands such as the 3G data communications band at 2100 MHz band (commonly referred to as UMTS or Universal Mobile Telecommunications System), Wi-Fi® (IEEE 802.11) bands (also sometimes referred to as wireless local area network or WLAN bands), the Bluetooth® band at 2.4 GHz, and the global positioning system (GPS) band at 1575 MHz. Wi-Fi bands that may be supported include the 2.4 GHz band and the 5.0 GHz bands. The 2.4 GHz Wi-Fi band extends from 2.412 to 2.484 GHz. Commonly-used channels in the 5.0 GHz Wi-Fi band extend from 5.15-5.85 GHz. Device 10 can cover these communications bands and/or other suitable communications bands with proper configuration of the antenna structures in wireless communications circuitry 44.
Antenna structures such as antenna structure 20 of
With one particularly suitable arrangement, which is described herein as an example, antenna structure 20 is located in housing portion 25 of housing base 12E. The remainder of housing base 12E may be formed from top case 12A and bottom case 12B. Top case 12A and bottom case 12B may be formed from aluminum or other conductive materials. If antenna structures 20 were located within such conductive structures, proper antenna operation would be disrupted due to the electromagnetic shielding effects of the conductive sidewalls of base 12E.
With an arrangement of the type shown in
By locating antenna structure 20 within a dielectric housing portion such as portion 25, the antenna resonating elements of device 10 are located at a sufficient distance from the metals and other conductive materials of housing base 12E and display housing portion 12D to ensure that the antennas in device 10 function properly. An advantage of locating antenna structure 20 and dielectric housing portion 25 on a portion of base housing 12E is that this helps to minimize the length of the transmission lines that are used to convey signals between radio-frequency transceiver circuitry (e.g., circuitry 18 of
As shown in
Radio-frequency transceiver circuitry 52 may include switches or passive signal combiners and dividers that allow one or more radio-frequency transmitters and receivers (sometimes referred to as radios) to be coupled to the antennas formed from antenna resonating elements 56. In the example of
In the illustrative configuration of
Antenna resonating elements 56 may be mounted on any suitable mounting structure. With one suitable arrangement, which is sometimes described herein as an example, antenna resonating elements 56 are formed from conductive traces on a dielectric support structure. As shown in
Support structure 64 may have a longitudinal axis that is aligned with longitudinal axis 28. In device 10, support structure 64 and resonating elements 56 may be mounted within housing portion 25 (
As shown in the illustrative configuration of
The meandering conductive trace shape shown in the illustrative antenna resonating element 56 of
In general, the shape that is chosen for each antenna resonating element 56 may be determined based on the desired operating frequencies for the antennas of device 10. For example, in a dual-band antenna arrangement, it may be desirable to configure the shape of the antenna's resonating element 56 so that the antenna's fundamental operating frequency corresponds to a first frequency band of interest (e.g., 2.4 GHz) and so that the antenna's second harmonic operating frequency corresponds to a second frequency band of interest (e.g., 5.0 GHz). The antenna resonating element's length may be adjusted to be approximately equal to a quarter of a wavelength at the fundamental frequency. Bends, notches, protruding stubs, and other features may be incorporated into a given antenna resonating element to adjust its resonant frequencies and its bandwidth in each band of interest. As an example, folded shapes may be incorporated into the antenna resonating element. The folded shapes may help an antenna designer optimize antenna performance in situations in which it is desired to modify the frequency of the second harmonic resonance without significantly affecting the location of the fundamental antenna resonance. This is because folds may add reactances that affect the harmonic resonance more than the fundamental resonance. If desired, the length of an antenna fold may be adjusted to correspond to an additional secondary resonance that is configured to resonate in band.
When selecting a layout for a given antenna resonating element, it is also generally desirable to take into account the influence of structures that enclose the antenna resonating element (e.g., nearby conductive structures such as housing walls). The impact of nearby conductive structures can affect the frequency response of an antenna resonating element. An antenna resonating element will typically perform differently when mounted inside of an enclosure as opposed to being mounted in an unenclosed arrangement. This is because a given antenna resonating element will tend to excite resonances in its enclosure that are tuned via the antenna resonating element.
These techniques or other suitable techniques may be used to select a shape for an antenna resonating element that satisfies design goals (e.g., frequency band coverage, efficiency, etc.).
Examples of suitable patterns that may be used for the three antenna resonating elements 56 of
A perspective view of the underside of an illustrative support structure 64 and top case 12A showing how support structure 64 and antenna resonating element 56 may be electrically and mechanically connected to top case 12A is shown in
A cross-sectional side view of an illustrative portion of antenna structure 20 is shown in
Any suitable technique may be used to form conductive structures for antenna resonating element 56. For example, conductive structures for antenna resonating element 56 may be formed from stamped metal foil, flexible printed circuit board structures (e.g., polyimide-based structures of the type that are sometimes referred to as flex circuits), etc. With one suitable arrangement, antenna support structure 64 may be formed using a molded interconnect device (MID) manufacturing process such as a two-shot molded interconnect device process.
In a two-shot MID process, a plastic may be formulated to repel or attract conductive coatings by selective incorporation of chemical additives. When a first set of additives is incorporated into the plastic, the resulting formulation will attract conductive coatings. When a second set of additives is incorporated into the plastic, the plastic will repel conductive coatings. The different coating behaviors of these two types of plastic allow patterns to be defined for an antenna resonating element (i.e., by patterning the attractive plastic appropriately). An example of a conductive coating that may be used for coating portions of antenna support structure 64 is wet-plated copper. Other suitable coating materials include gold, chrome, nickel, tin, other suitable metals, alloys of these metals, etc. These materials may be deposited using electrochemical deposition (e.g., wet plating techniques) or other suitable techniques.
With a two-shot process, portions of antenna support structure 64 that are to be maintained free of conductor may be constructed from a first “shot” using a plastic blend that repels copper (or other conductor). Portions of MID antenna support structure 64 on which antenna resonating elements 56 are to be formed are constructed from a second “shot” using a plastic blend that attracts copper (or other conductor). During a subsequent plating process, only those portions of antenna support structure that were formed from the copper-attracting blend of plastic will be plated with copper. Portions of the antenna support structure that were formed from the copper-repelling blend of plastic will remain uncoated.
In the example of
The two portions of the antenna support structure (i.e., the portion to be coated by conductor and the portion that remains uncoated) may be formed using separate MID tool pieces called cavities. In a two-shot process, two cavities are used. In general, any suitable number of shots may be used in forming antenna support structure 64. The use of a two-shot process is merely illustrative.
If desired, other techniques may be used for forming antenna support structures such as support structure 64. For example, a plastic having portions that are selectively activated by exposure to laser light may be used in forming the antenna support structure. The plastic may be, for example, a thermoplastic that has a organo-metallic additive that is sensitive to light at the wavelengths produced by a laser. The antenna resonating element pattern may be imposed on the plastic of the support structure by exposing the plastic to laser light only in areas in which conductive antenna structures are desired. After exposing desired portions of the plastic to laser light to activate those portions, the plastic may be plated with a suitable conductor such as copper. During plating operations, the laser-activated portions of the plastic attract the plating conductor (e.g., copper), thereby forming conductive antenna resonating element 56. Techniques in which laser light is used to imprint a desired plating pattern on a plastic support are sometimes referred to as laser direct structuring (LDS) techniques. Laser direct structuring services for forming molded interconnect devices in this way are available from LPKF Laser & Electronics AG of Garbsen, Germany.
In general, antenna resonating element structures may be formed on any suitable support structure. The foregoing examples, in which conductive antenna resonating element structures are formed by coating plastic support structures with patterns of metal (e.g., by plating) are merely illustrative.
A cross-sectional view of a portion of device 10 in the vicinity of housing portion 25 is shown in
Any suitable attachment mechanism may be used when attaching ground conductor 94 of transmission line 62 to the portion of electrical conductor on tab 70. As an example, ground conductor 94 may be connected to tab 70 using solder, fasteners (e.g., screws), welding, etc.
As shown in
As shown in the cross-sectional view of
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
This patent application is a continuation of patent application Ser. No. 12/142,744, filed Jun. 19, 2008, now U.S. Pat. No. 8,264,412 which claims the benefit of provisional patent application No. 61/019,218, filed Jan. 4, 2008, each of which is hereby incorporated by reference herein in its entirety. This application claims the benefit of and claims priority to patent application Ser. No. 12/142,744, filed Jun. 19, 2008 and to provisional patent application No. 61/019,218, filed Jan. 4, 2008.
Number | Name | Date | Kind |
---|---|---|---|
5258892 | Stanton et al. | Nov 1993 | A |
5608413 | Macdonald | Mar 1997 | A |
6272356 | Dolman et al. | Aug 2001 | B1 |
6307512 | Geeraert | Oct 2001 | B1 |
6380899 | Madsen et al. | Apr 2002 | B1 |
6392605 | Anterow | May 2002 | B2 |
6392610 | Braun et al. | May 2002 | B1 |
6414643 | Cheng et al. | Jul 2002 | B2 |
6421029 | Tanabe | Jul 2002 | B1 |
6448942 | Weinberger et al. | Sep 2002 | B2 |
6539608 | McKinnon et al. | Apr 2003 | B2 |
6570538 | Vaisanen et al. | May 2003 | B2 |
6636181 | Asano et al. | Oct 2003 | B2 |
6667719 | LaKomski | Dec 2003 | B2 |
6781546 | Wang et al. | Aug 2004 | B2 |
6791506 | Suganthan et al. | Sep 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6861989 | Morningstar et al. | Mar 2005 | B2 |
7181172 | Sullivan et al. | Feb 2007 | B2 |
7183983 | Ozden | Feb 2007 | B2 |
7339530 | Ying et al. | Mar 2008 | B2 |
7447530 | Iwai et al. | Nov 2008 | B2 |
7705789 | Suzuki et al. | Apr 2010 | B2 |
7916089 | Schlub et al. | Mar 2011 | B2 |
8264412 | Ayala et al. | Sep 2012 | B2 |
20010040529 | Cheng | Nov 2001 | A1 |
20020024469 | Masaki | Feb 2002 | A1 |
20020163473 | Koyama | Nov 2002 | A1 |
20030222823 | Flint et al. | Dec 2003 | A1 |
20040219956 | Iwai et al. | Nov 2004 | A1 |
20040257283 | Asano et al. | Dec 2004 | A1 |
20050062657 | Lin | Mar 2005 | A1 |
20060158379 | Ishimiya | Jul 2006 | A1 |
20070126651 | Snyder et al. | Jun 2007 | A1 |
20070140072 | Agrawal et al. | Jun 2007 | A1 |
20080018542 | Yamazaki et al. | Jan 2008 | A1 |
20080166004 | Sanford et al. | Jul 2008 | A1 |
20090153411 | Chiang et al. | Jun 2009 | A1 |
20090174611 | Schlub et al. | Jul 2009 | A1 |
20090243943 | Mumbru et al. | Oct 2009 | A1 |
20090273529 | Liu | Nov 2009 | A1 |
20100073242 | Ayala Vazquez et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
1 739 785 | Jan 2007 | EP |
2005 120164 | Dec 2005 | WO |
Entry |
---|
“AirPort Product-Specific Details”, AirPort Developer Note, [Online], Updated: Apr. 28, 2008, Retrieved: Sep. 25, 2008, <http://developer.apple.com/documentation/HardwareDrivers/Conceptual/HWTech—Airport/Articles/AirP—implementation.html>. |
Bancroft, “A Commercial Perspective on the Development and Integration of an 802.11albig HiperLanNVLAN Antenna into Laptop Computers” Centurion Wireless Technologies, IEEE: ArtOntlas end Propagvtion itlarreeino. vol. 48. No. 4, Aug. 2005. |
Wikipedia contributors, “MacBook Pro,” Wikipedia, The Free Encyclopedia, [online] <http://en.wikipedia.org/w/index.php?title=MacBook—Pro&oldid=506131750>, retrieved Aug. 7. |
Eisenman, Ben, “Installing MacBook Pro 15” Core 2 Duo Model A1211 Antenna Cables, ifixit, [online], Nov. 2009, retrieved Aug. 7, 2012, links below. |
<http://www.ifixit.com/Guide/Installing-MacBook-Pro-15-Inch-Core-2-Duo-Model-A1211-Antenna-Cables/1438/1>. |
<http://www.ifixit.com/Guide/Installing-MacBook-Pro-15-Inch-Core-2-Duo-M odel-A1211-Antenna-Cables/1438/2>. |
<http://www.ifixit.com/Guide/Installing-MacBook-Pro-15-Inch-Core-2-Duo-Model-A1211-Antenna-Cables/1438/3>. |
<http://www.ifixit.com/Guide/Installing-MacBook-Pro-15-Inch-Core-2-Duo-Model-A1211-Antenna-Cables/1438/4>. |
<http://www.ifixit.com/Guide/Installing-MacBook-Pro-15-Inch-Core-2-Duo-Model-A1211-Antenna-Cables/1438/5>. |
<http://guide-images.ifixit.net/igi/UjjNajFKmnEfamTb.huge>. |
<http://guide-images.ifixit.net/igi/WjZpe3MQt6AEMgne.huge>. |
Number | Date | Country | |
---|---|---|---|
20130002494 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61019218 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12142744 | Jun 2008 | US |
Child | 13607575 | US |