Example embodiments relate generally to antennas and devices, systems, and methods including the same.
Related art antennas (e.g., F-type antennas, patch antennas, etc.) have limited frequency bands and/or operating modes. Current solutions to these issues come at the cost of performance of the antenna (radiation efficiency, gain, etc.). Related art antennas may also require tuning and carefully controlled manufacturing processes in order to achieve a desired frequency band.
An antenna according to example embodiments allows for dual frequency band operation and a single wide band. This is achieved with a design that has little or no effect on antenna performance (gain, efficiency, etc.). For example, a T-antenna according to example embodiments has the ability to function in two distinct modes (e.g., even and odd modes) of resonant frequencies without modifying the structure of the antenna. The frequencies of those two modes can be controlled depending on design preferences. Depending on the frequency value of those modes, the T-antenna can either: resonate and function in two different frequency bands or combine those two modes in a single larger frequency band not possible with related art antenna designs.
The T-shaped concept can also be applied to patch antennas in order to increase the frequency bandwidth to a desired value. Benefits of the T-antenna dual frequency bands include improved radiation efficiency and improved return loss for the two distinct band. Additional benefits include that the T-antenna reduces process variation problems ensures that the desired frequency band is thoroughly covered, with margin to spare.
In view of the above and the following, it should be appreciated that an antenna according to example embodiments allows for the dual mode operation, each mode with its own distinctive frequency. By moving the frequencies of those modes (e.g., by varying the length of the short to ground), the antenna can be either: 1) dual band when the frequencies of the modes are quite far apart; or 2) single wide band when the frequencies of those modes are so close one to each other that they create a single wide band.
These and other needs are addressed by the various aspects, embodiments, and/or configurations of the present disclosure.
The communication device 105 may include an antenna 115 and an integrated circuit (IC) 120 that processes signals received and/or sent by the antenna 115. For example, when the antenna 115 is in the presence of the external device 110, the IC 120 may facilitate two-way communication between the communication device 105 and the external device 110 through the antenna 115. Although not explicitly shown, it should be understood that the external device 110 may include its own corresponding IC and antenna to communicate with the communication device 105. In this case, the external device 110 may have the same IC and the same antenna as the communication device 105. Details of the antenna 115 are discussed below with reference to
The communication device 105 and/or the external device 110 may be an active device or a passive device. If the communication device 105 and/or the external device 110 is an active device, then a power source (e.g., a battery) may be included in the respective device for providing power to a respective IC. If the communication device 105 and/or the external device 110 is a passive device, then the respective device does not include a power source and may rely on signals received at a respective antenna to power the respective IC. In at least one example embodiment, one of the communication device 105 or the external device 110 is an active device while the other of the communication device 105 or the external device 110 is a passive device. However, example embodiments are not limited thereto, and both devices 105/110 may be active devices if desired.
The IC 120 may comprise one or more processing circuits capable of controlling communication between the communication device 105 and the external device 110. For example, the IC 120 includes one or more of an application specific integrated circuit (ASIC), a processor and a memory (e.g., nonvolatile memory) including instructions that are executable by the processor, programmable logic gates, etc.
As shown in
The extension portion 215 may have a length B. In
In
As shown in
The length L and the distance B may be design parameters based on empirical evidence and/or preference (e.g., based on desired frequency band(s) for the antenna). These parameters are discussed in more detail below with reference to
As shown in
In view of
In
The size, density, and/or position of the conductive vias 915 may affect the effective length of B. In at least one example embodiment, the conductive vias 915 function similar to the extension portion 215B in that the effective length B is relatively short, thereby creating a single wide frequency band. For example, the more tightly packed the conductive vias 915 in a row, the shorter the effective length of B which brings Fe closer to Fo to create a single frequency band (e.g., at 10 db).
In view of
In at least one example embodiment, the structure of the leg 215 of the T-shape may be a linear structure (e.g., in
In at least one example embodiment, the structure of the leg 215 of the T-shape is a sinuous structure (e.g., in
In at least one example embodiment, the structure of the leg 215 of the T-shape is a U-shaped structure (e.g.,
In at least one example embodiment, the structure of the leg 215 of the T-shape includes a plurality of conductive vias 915 aligned with one another so that the antenna is operable for the single frequency bandwidth.
According to at least one example embodiment, the antenna structure includes a first insulating material 500 between the top 210 of the T-shape and the ground plate 220. Here, the leg 215 of the T-shape passes through the first insulating material 500 to electrically connect with the ground plate 220. At least one example embodiment includes a second insulating material 225 that supports the ground plate 220.
The antenna structure may include an injection port 230 disposed in the second insulating material 225 and that includes a conductive section that passes through the ground plate 220 and the first insulating material 500 to electrically connect with the top 210 of the T-shape. The injection port 230 is coupled to a transmit/receive line 235 of an integrated circuit 120 for the antenna structure.
In view of
Although not explicitly shown, it should be understood that the value of B may be adjustable by lengthening or shortening the extension portion 215. For example, the extension portion 215 may exist in segments with at least one of the segments being attached to one or more mechanisms that move (e.g., horizontally move) a respective segment in or out of alignment with other segments of the extension portion 215 electrically connected to the planar portion 210. Here, the substrate 225 may also be attached to one or more mechanisms so as to be movable in a vertical direction (e.g., further away from or closer to the extension portion 215) to allow for the exchange of extension portion segments and then re-connection. In view of the above, it should be appreciated that example embodiments provide a single antenna or resonator with multiple possible operating modes while maintaining high levels of radiation efficiency, desirable radiation pattern, high gain, improved bandwidth, etc.
Although example embodiments have been described with reference to specific elements in the figures, it should be understood that elements of some embodiments may be added or removed to/from other embodiments if desired.
According to at least one example embodiment, an antenna structure includes a first conductive element including a first planar portion, and an extension portion that extends away from the first planar portion at a center of the first planar portion. The antenna structure may include a second conductive element spaced apart from the first planar portion and electrically connected to the extension portion.
According to at least one example embodiment, the second conductive element includes a second planar portion, the first planar portion and the second planar portion extend in a first direction so as to be substantially parallel to one another, and the extension portion extends in a direction that is substantially perpendicular to the first direction.
According to at least one example embodiment, the extension portion is linear.
According to at least one example embodiment, the extension portion is sinuous.
According to at least one example embodiment, the extension portion includes a first part and a second part spaced apart from the first part in the first direction so that a gap exists between two sections of the first planar portion.
According to at least one example embodiment, the extension portion includes separable segments.
According to at least one example embodiment, the extension portion includes a plurality of conductive vias aligned in the first direction and that extend from one side of the first planar portion to an opposite side of the first planar portion.
According to at least one example embodiment, the antenna structure includes a first insulating material between the first planar portion and the second conductive element. The extension portion passes through the first insulating material to electrically connect with the second conductive element.
According to at least one example embodiment, the antenna structure includes a second insulating material that supports the second conductive element.
According to at least one example embodiment, the antenna structure includes an injection port disposed in the second insulating material and includes a conductive section that passes through the second conductive element and the first insulating material to electrically connect with the first planar portion. The injection port is coupled to a transmit/receive line of an integrated circuit for the antenna structure.
According to at least one example embodiment, the second conductive element is grounded.
According to at least one example embodiment, an antenna structure includes a ground plate, and an antenna having a T-shape that includes a top and a leg. The top of the T-shape is spaced apart from the ground plate, and the leg of the T-shape extends away from the top of the T-shape and is electrically connected to the ground plate. The leg of the T-shape has a structure such that i) the antenna is operable for a first frequency bandwidth and a second frequency bandwidth distinct from the first frequency bandwidth, or ii) the antenna is operable for a single frequency bandwidth that is wider compared to the first and second frequency bandwidths taken alone.
According to at least one example embodiment, the structure of the leg of the T-shape is a linear structure having a length that matches a distance between the ground plate and the top of the T-shape so that the antenna is operable for the first frequency bandwidth and the second frequency bandwidth.
According to at least one example embodiment, the structure of the leg of the T-shape is a sinuous structure having a length that is greater than a distance between the ground plate and the top of the T-shape so that the antenna is operable for the first frequency bandwidth and the second frequency bandwidth.
According to at least one example embodiment, wherein the structure of the leg of the T-shape is a U-shaped structure that creates a gap between two sections of the top of the T-shape so that the antenna is operable for the single frequency bandwidth.
According to at least one example embodiment, the structure of the leg of the T-shape includes a plurality of conductive vias aligned with one another so that the antenna is operable for the single frequency bandwidth.
According to at least one example embodiment, the antenna structure includes a first insulating material between the top of the T-shape and the ground plate, and the leg of the T-shape passes through the first insulating material to electrically connect with the ground plate.
According to at least one example embodiment, the antenna structure includes a second insulating material that supports the ground plate.
According to at least one example embodiment, the antenna structure includes an injection port disposed in the second insulating material and includes a conductive section that passes through the ground plate and the first insulating material to electrically connect with the top of the T-shape. he injection port being coupled to a transmit/receive line of an integrated circuit for the antenna structure.
According to at least one example embodiment, an antenna includes a ground plate and a T-shaped antenna structure in electrical contact with the ground plate and configured to operate in a first mode or a second mode. The first mode is a mode in which the T-shaped antenna structure is operable in a first frequency bandwidth and a second frequency bandwidth distinct from the first frequency bandwidth, and the second mode is a mode in which the T-shaped antenna structure is operable in an expanded frequency bandwidth that includes the first frequency bandwidth and the second frequency bandwidth.
The phrases “at least one”, “one or more”, “or”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C”, “A, B, and/or C”, and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material”.
The term “computer-readable medium” or “memory” as used herein refers to any computer-readable storage and/or transmission medium that participate in providing instructions to a processor for execution. Such a computer-readable medium can be tangible, non-transitory, and non-transient and take many forms, including but not limited to, non-volatile media, volatile media, and transmission media and includes without limitation random access memory (“RAM”), read only memory (“ROM”), and the like. Non-volatile media includes, for example, NVRAM, or magnetic or optical disks. Volatile media includes dynamic memory, such as main memory. Common forms of computer-readable media include, for example, a floppy disk (including without limitation a Bernoulli cartridge, ZIP drive, and JAZ drive), a flexible disk, hard disk, magnetic tape or cassettes, or any other magnetic medium, magneto-optical medium, a digital video disk (such as CD-ROM), any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, a solid state medium like a memory card, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. A digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. When the computer-readable media is configured as a database, it is to be understood that the database may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Accordingly, the disclosure is considered to include a tangible storage medium or distribution medium and prior art-recognized equivalents and successor media, in which the software implementations of the present disclosure are stored. Computer-readable storage medium commonly excludes transient storage media, particularly electrical, magnetic, electromagnetic, optical, magneto-optical signals.
A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. A computer readable signal medium may convey a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The terms “determine”, “calculate” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section(s) 112(f) and/or 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary, brief description of the drawings, detailed description, abstract, and claims themselves.
The term “module” as used herein refers to any known or later developed hardware, software, firmware, artificial intelligence, fuzzy logic, or combination of hardware and software that is capable of performing the functionality associated with that element.
Examples of the processors as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 610 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
Any of the steps, functions, and operations discussed herein can be performed continuously and automatically.
Although the present disclosure describes components and functions implemented in the aspects, embodiments, and/or configurations with reference to particular standards and protocols, the aspects, embodiments, and/or configurations are not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.
The present disclosure, in various aspects, embodiments, and/or configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations embodiments, sub combinations, and/or subsets thereof. Those of skill in the art will understand how to make and use the disclosed aspects, embodiments, and/or configurations after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and/or configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and/or configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more aspects, embodiments, and/or configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and/or configurations of the disclosure may be combined in alternate aspects, embodiments, and/or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspect, embodiment, and/or configuration. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description has included description of one or more aspects, embodiments, and/or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and/or configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application claims the benefits of and priority, under 35 U.S.C. § 119(e), to U.S. Provisional Application Ser. No. 62/712,778, filed on Jul. 31, 2018, the entire disclosure of which is hereby incorporated by reference, in its entirety, for all that it teaches and for all purposes.
Number | Date | Country | |
---|---|---|---|
62712778 | Jul 2018 | US |