BACKGROUND
Our previous applications and provisional applications, including, but not limited to, U.S. patent application Ser. No. 12/018,069, filed Jan. 22, 2008, entitled “Wireless Apparatus and Methods”, the disclosure of which is herewith incorporated by reference, describe wireless transfer of power.
The transmit and receiving antennas are preferably resonant antennas, which are substantially resonant, e.g., within 10% of resonance, 15% of resonance, or 20% of resonance. The antenna is preferably of a small size to allow it to fit into a mobile, handheld device where the available space for the antenna may be limited.
An embodiment describes a high efficiency antenna for the specific characteristics and environment for the power being transmitted and received.
Antenna theory suggests that a highly efficient but small antenna will typically have a narrow band of frequencies over which it will be efficient. The special antenna described herein may be particularly useful for this kind of power transfer.
One embodiment uses an efficient power transfer between two antennas by storing energy in the near field of the transmitting antenna, rather than sending the energy into free space in the form of a travelling electromagnetic wave. This embodiment increases the quality factor (Q) of the antennas. This can reduce radiation resistance (Rr) and loss resistance (Rl)
SUMMARY
The present application describes the way in which the “antennas” or coils interact with one another to couple wirelessly the power therebetween.
BRIEF DESCRIPTION OF THE DRAWINGS
In the Drawings:
FIG. 1 shows a diagram of a wireless power circuit;
FIG. 2 shows an equivalent circuit;
FIG. 3 shows a diagram of inductive coupling;
FIG. 4 shows a plot of the inductive coupling; and
FIG. 5 shows geometry of an inductive coil.
DETAILED DESCRIPTION
FIG. 1 is a block diagram of an inductively coupled energy transmission system between a source 100, and a load 150. The source includes a power supply 102 with internal impedance Zs 104, a series resistance R4 106, a capacitance C1108 and inductance L1110. The LC constant of capacitor 108 and inductor 110 causes oscillation at a specified frequency.
The secondary 150 also includes an inductance L2152 and capacitance C2154, preferably matched to the capacitance and inductance of the primary. A series resistance R2156. Output power is produced across terminals 160 and applied to a load ZL 165 to power that load. In this way, the power from the source 102 is coupled to the load 165 through a wireless connection shown as 120. The wireless communication is set by the mutual inductance M.
FIG. 2 shows an equivalent circuit to the transmission system of FIG. 1. The power generator 200 has internal impedance Zs 205, and a series resistance R1210. Capacitor C1215 and inductor L1210 form the LC constant. A current I1215 flows through the LC combination, which can be visualized as an equivalent source shown as 220, with a value U1.
This source induces into a corresponding equivalent power source 230 in the receiver, to create an induced power U2. The source 230 is in series with inductance L2240, capacitance C2242, resistance R2244, and eventually to the load 165.
Considering these values, the equations for mutual inductance are as follows:
U2=jωMI1
U1=jωMI2
where:
The Mesh equations are:
where:
Source power:
P
1=Re{Us·I*1}=Us·Re{I*1} for avg{Us}=0
Power into load:
P
2
=I
2
·I*
2Re{zL}=|I2|2·Re{zL}=|I2|2·RL
Transfer efficiency:
Overall transfer Efficiency is therefore:
A Transfer efficiency equation can therefore be expressed as:
Which reduces in special cases as follows:
- A) when ω=ω0=1/√{square root over (L2C2)}, XL=0 or where
- C) when ω=ω0, Rs=0 RL=R2:
- D) when ω=ω0, Rs=0 RL=R2 2R1R2>>ω02M2:
where:
Mutual inductance:
M=k√{square root over (L1L2)} where k is the coupling factor
Loaded Q factors:
Therefore, the transfer efficiency in terms of these new definitions:
- C) when ω=ω0, RL=R2, (Rs=0):
QUL: Q unloaded
This shows that the output power is a function of input voltage squared
Definitions:
Therefore, when at or near the resonance condition:
Showing that the power transfer is inversely proportional to several variables, including series resistances.
Mutual inductance in terms of coupling factors and inductions:
The power output is proportional to the square of the input power, as described above. However, there is a maximum input power beyond which no further output power will be produced. These values are explained below. The maximum input power P1max is expressed as:
Rin,min: min. permissible input resistance
Efficiency relative to maximum input power:
Under resonance condition ω=ω1=ω2=ω0:
Equation for input power (P1) under the resonance condition is therefore:
The current ratio between input and induced currents can be expressed as
Weak coupling: R1+R2>|jωM|
- →I2<I1
Strong coupling: R1+R2<|jωM|
- →I2>I1
Input current I1: (under resonance condition)
Output current I2: (under resonance condition)
Maximizing transfer efficiency and output power (P2) can be calculated according to the transfer efficiency equation:
After reviewing this equation, an embodiment forms circuits that are based on observations about the nature of how to maximize efficiency in such a system.
Conclusion 1)
- η(L2, C2, XL) reaches maximum for
- That is, efficiency for any L, C, X at the receiver is maximum when that equation is met.
Transfer efficiency wide resonance condition:
Conclusion 2)
- To maximise η RS should be RS<<R1
- That is, for maximum efficiency, the source resistance RS needs to be much lower than the series resistance, e.g., 1/50, or 1/100th or less
Transfer efficiency under resonance and weak coupling condition:
Maximising η(RL):
Conclusion 3)
- η reaches maximum for RL=R2 under weak coupling condition.
- That is, when there is weak coupling, efficiency is maximum when the resistance of the load matches the series resistance of the receiver.
- Transfer efficiency under resonance condition.
- Optimizing RL to achieve max. η
Weak coupling condition ω02M2<<(Rs+R1)R2
R
L,opt
≅R
2
Conclusion 4)
- There exists an optimum RL>R2 maximising η
Output power P2:
Conclusion 5)
- Output power P2(X1, X2) reaches maximum for
that is, when there is a resonance condition at both the primary and the secondary.
Output power P2 wide resonance condition:
Conclusion 6)
- To maximize P2, RS should be RS<<R1
Output power P2 for the wide resonance and weak coupling condition:
Conclusion 7)
- P2(RL) reaches maximum for RL=R2 (see conclusion 3)
- For each of the above, the >> or << can represent much greater, much less, e.g., 20× or 1/20 or less, or 50× or 1/50th or less or 100× or 1/100th or less.
The value RL can also be optimized to maximize P2:
Conclusion 8)
- There exists an optimum RL>R2 maximizing P2. This R1opt differs from the R1,opt maximizing η.
- One embodiment operates by optimizing one or more of these values, to foam an optimum value.
Inductive coupling is shown with reference to FIGS. 3, 4
FIG. 5 illustrates the Inductance of a multi-turn circular loop coil
In standard form:
The inductance of a single-turn circular loop is given as:
where:
Rm: mean radius in m
b: wire radius in m,
For a Numerical example:
R1=0.13 m
R0=0.14 m
ω=0.01 m
N=36
→L=0.746 mH
The measured inductance
Lmeas=0.85 mH
The model fraction of Wheeler formula for inductors of similar geometry, e.g, with similar radius and width ratios is:
Using a known formula from Goddam, V. R., which is valid for w>(R0−R1)
1w H,m units:
EXAMPLE 1
From [Terman, F.]
EXAMPLE 2
Given in [Goddam, V. R.]
where Goddam, V. R. is the Thesis Masters Louisiana State University, 2005, and Terman, F. is the Radio Engineers Handbook, McGraw Hill, 1943.
Any of these values can be used to optimize wireless power transfer between a source and receiver.
From the above, it can be seen that there are really two different features to consider and optimize in wireless transfer circuits. A first feature relates to the way in which efficiency of power transfer is optimized. A second feature relates to maximizing the received amount of power—independent of the efficiency.
One embodiment, determines both maximum efficiency, and maximum received power, and determines which one to use, and/or how to balance between the two.
In one embodiment, rules are set. For example, the rules may specify:
Rule 1—Maximize efficiency, unless power transfer will be less than 1 watt. If so, increase power transfer at cost of less efficiency.
Rule 2—Maximize power transfer, unless efficiency becomes less than 30%.
Any of these rules may be used as design rules, or as rules to vary parameters of the circuit during its operation. In one embodiment, the circuit values are adaptively changes based on operational parameters. This may use variable components, such as variable resistors, capacitors, inductors, and/or FPGAs for variation in circuit values.
Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art. For example, other sizes, materials and connections can be used. Other structures can be used to receive the magnetic field. In general, an electric field can be used in place of the magnetic field, as the primary coupling mechanism. Other kinds of antennas can be used. Also, the inventors intend that only those claims which use the-words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims.
Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.