The present invention concerns spinal instrumentation systems, most particularly for use in fixation of the cervical spine. More particularly, the invention pertains to a plating system for use in the treatment of various spinal pathologies.
As with any bony structure, the spine is subject to various pathologies that compromise its load bearing and support capabilities. The spine is subject to degenerative diseases, the effects of tumors and, of course, fractures and dislocations attributable to physical trauma. Throughout the last century, spinal surgeons have tackled the thorny problems associated with addressing and correcting these pathologies using a wide variety of instrumentation and a broad range of surgical techniques. For many years, the use of elongated rigid plates has been helpful in the stabilization and fixation of the lower spine, most particularly the thoracic and lumbar spine. These same plating techniques have found a tougher road towards acceptance by surgeons specializing in treatment of the cervical spine.
The cervical spine can be approached either anteriorly or posteriorly, depending upon the spinal disorder or pathology to be treated. Many of the well known surgical exposure and fusion techniques of the cervical spine are described in a publication entitled Spinal Instrumentation, edited by Drs. Howard An and Jerome Cotler. This text also describes instrumentation that has been developed in recent years for application to the cervical spine, most frequently from an anterior approach.
The anterior approach to achieving fusion of the cervical spine has become the most popular approach. During the early years of cervical spine fusion, the fusions occurred without internal instrumentation, relying instead upon external corrective measures such as prolonged recumbent traction, the use of halo devices or minerva casts, or other external stabilization. However, with the advent of the elongated plate customized for use in the cervical spine, plating systems have become predominant for this type of spinal surgery.
It has been found that many plate designs allow for a uni-cortically or bi-cortically intrinsically stable implant. It has also been found that fixation plates can be useful in stabilizing the upper or lower cervical spine in traumatic, degenerative, tumorous or infectious processes. Moreover, these plates provide the additional benefit of allowing simultaneous neural decompression with immediate stability.
During the many years of development of cervical plating systems, particularly for the anterior approach, various needs for such a system have been recognized. For instance, the plate must provide strong mechanical fixation that can control movement of each vertebral motion segment in six degrees of freedom. The plate must also be able to withstand axial loading in continuity with each of the three columns of the spine. The plating system must be able to maintain stress levels below the endurance limits of the material, while at the same time exceeding the strength of the anatomic structures or vertebrae to which the plating system is engaged.
Another recognized requirement for a plating system is that the thickness of the plate must be small to lower its prominence, particularly in the smaller spaces of the cervical spine. The screws used to connect the plate to the vertebrae must not loosen over time or back out from the plate. Preferably the plate should be designed to contact the vertebrae for greater stability.
On the other hand, while the plate must satisfy certain mechanical requirements, it must also satisfy certain anatomic and surgical considerations. For example, the cervical plating system must minimize the intrusion into the patient and reduce the trauma to the surrounding soft tissue. In the Spinal Instrumentation text, as well as in other documentation in this field, it is stressed that complications associated with any spinal procedure, and most particularly within the tight confines of cervical procedures, the complications can be very devastating, such as injury to the brain stem, spinal cord or vertebral arteries. It has also been found that optimum plating systems permit the placement of more than one screw in each of the instrumented vertebrae.
Many spinal plating systems have been developed in the last couple of decades that address some of the needs and requirements for cervical fixation systems. However, even with the more refined plating system designs, there still remains a need for a system that has universal applicability to all pathologies that can be faced by a spinal surgeon in treating the spine. For example, it has been demonstrated that different degrees of fixation of a bone screw relative to the plate are more advantageous for treating certain pathologies as opposed to other pathologies.
More specifically, it is known that bone screws can be supported in a spinal plate in either a rigid or a semi-rigid fashion. In a rigid fashion, the bone screws are not permitted any micro-motion or angular movement relative to the plate. In the case of a semi-rigid fixation, the bone screw can move somewhat relative to the plate during the healing process of the spine. It has been suggested that semi-rigid fixation is preferable for the treatment of degenerative diseases of the spine. In cases where a graft is implanted to replace the diseased vertebral body, the presence of a screw capable of some rotation ensures continual loading of the graft. This continual loading avoids stress shielding of the graft, which in turn increases the rate of fusion and incorporation of the graft into the spine.
Similarly, rigid screw fixation is believed to be preferable in the treatment of tumors or trauma to the spine, particularly in the cervical region. It is believed that tumor and trauma conditions are better treated in this way because the rigid placement of the bone screws preserves the neuro-vascular space and provides for immediate stabilization. It can certainly be appreciated in the case of a burst fracture or large tumorous destruction of a vertebra that immediate stabilization and preservation of the disc space and neuro space is essential. On the other hand, the semi-rigid fixation is preferable for degenerative diseases because this type of fixation allows for a dynamic construct. In degenerative conditions, a bone graft is universally utilized to maintain either the disc space and/or the vertebral body itself. In most cases, the graft will settle or be at least partially resorbed into the adjacent bone. A dynamic construct, such as that provided by semi-rigid bone screw fixation, will compensate for this phenomenon.
At present, no plating system is known that allows for the placement of bone screws in either a semi-rigid or a rigid construct with a single plate. While some plates will provide for either one of these screw fixations, no plating system allows the surgeon to use a single plate and to select which of the two types of fixation is desired for the particular spinal pathology and anatomy.
In order to address the needs left unfulfilled by prior systems, the present invention contemplates a novel system for anterior fixation of the spine utilizing an elongated fixation plate. In one aspect of the invention, the fixation plate is provided with a plurality of holes through which bone screws extend for engagement into a number of vertebrae. In the preferred embodiment, the screw holes include a spherical portion to receive a complementary formed spherical head of the bone screw. The screw holes further include a cylindrical portion integral with the cylindrical portion and opening to the bottom of the plate.
The flexibility of the present invention anterior fixation plating system is accomplished by the provision of a fixed angle and a variable angle screw that can be supported within the same screw hole in the plate. Each of the screws includes a threaded shank for screwing into a vertebra and a spherical head to seat within the spherical recess. Both screws include an intermediate portion between the spherical head and the threaded shank that is configured to reside within the cylindrical portion of the screw hole when the screw is fixed to the plate. The intermediate portion of the fixed angle screw preferably is cylindrical and has an outer diameter sized for a close fit within the cylindrical portion of the screw hole. In this manner, the fixed angle screw is prevented from rotating or pivoting within the screw hole.
The variable angle bone screw includes an intermediate portion that is also preferably cylindrical. However, the cylindrical intermediate portion of the variable angle screw has an outer diameter that is significantly smaller than the diameter of the cylindrical portion of the screw hole. This relative difference in diameters between the screw intermediate portion and the screw hole allows the screw to assume a range of angles relative to the bottom surface of the plate, even when the screw is locked in position in the plate.
In a further aspect of the invention, a locking assembly is provided for locking the bone screws in the plate, thereby preventing screw back-out. In one embodiment of the invention, the locking assembly includes a washer that resides within a recess in the plate. The recess overlaps at least one screw hole in the plate so that the washer can be seated above the head of the bone screw to hold the screw in place. The locking assembly further includes a threaded set screw that is engaged within a tapered bore concentrically situated within the washer recess. The locking washer is itself configured with a recess so that the head of the locking screw can reside essentially flush within the locking washer.
In a further embodiment, the locking assembly includes a locking washer having cut-outs formed in its outer surface facing the bone screw head. The cut-outs preferably correspond to the shape of the screw hole so that the washer does not overlap the screw hole in the region of the cut-out. The washer is held to the plate by a set screw to permit rotation of the washer from a first position in which the cut-outs are aligned with the screw holes, to a second position in which the outer surface of the washer overlaps the screw holes to lock the screw heads in position. In a further aspect, the washer includes a number of keys projecting from its underside that are configured to mate within corresponding notches formed in the locking washer recess. The notch and key configuration essentially locks the washer in its position overlapping the screw holes.
The fixation plate assembly of the present invention further contemplates various screw hole arrangements that permit clamping of multiple screws by a single locking assembly. Other hole arrangements are provided that offer several screw fixation options to the surgeon when instrumenting one or more vertebrae. For instance, a four hole arrangement is set forth in which four screw holes are spaced at 90° intervals around a single locking washer and screw assembly. The surgeon can insert either fixed or variable angle screws into any one or more of the four screw holes depending upon the vertebral anatomy.
It is one object of the invention to provide a fixation plate assembly that accommodates either fixed or variable angle screw fixation in a single plate. Another object resides in the provision of a locking assembly that can lock one or more bone screws within the plate.
One benefit achieved by the present invention is that the fixation plate and locking assembly maintain a low profile within the spine. A further benefit is accomplished by the ability to select either a fixed angle or a variable angle screw at any instrumented level and within a single fixation plate.
Other objects and benefits of the invention will become apparent upon consideration of the following written description of the invention, together with the accompanying figures.
a)-3(g) are top elevational views of a fixation plate in accordance with the present invention provided in different sizes and configuration.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described device, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
An anterior plating system or fixation assembly 30 is depicted in
The plate 31 preferably includes a rounded upper edge 36 that would be in contact with the soft tissue surrounding the spine. The rounded edge 36 reduces the amount of trauma that would be experienced by the surrounding soft tissue. The bottom surface 37 of the plate 31 is preferably configured to contact and engage the vertebral bodies at each of the instrumented levels of the spine. In some embodiments, the bottom surface can be textured to enhance its grip on the vertebral body.
Referring now to
A modification of the plate 31b is depicted in
In accordance with the present invention, the elongated plates 31a-31g provide a variety of hole patterns at each of the vertebral level nodes 35a-35g. These hole patterns provide, at a minimum, for at least two bone screws to be engaged into each respective vertebra. As discussed above, it has been found that the placement of two or more screws in each vertebral body improves the stability of the construct. It is one object of the present invention not only to provide for multiple screw placement in each vertebral body, but also to provide means for locking the screws to the elongated plate to prevent backout or loosening of the bone screws. Consequently, in a further aspect of the invention, various hole patterns are provided that address these objects. One pattern is an end hole pattern 38, as shown at the ends of plate 31 in
The present invention contemplates a plate carrying four-hole patterns. The four-hole pattern 40 illustrated in
A further arrangement for screw holes 34 is provided by the four-hole cluster 41 depicted in
A similar arrangement is found in the plate 31C which includes a four-hole cluster 42. In this case, it can be seen that the four-hole cluster 42 includes two hole pairs 42a and 42b, in a manner similar to the four-hole cluster 41 of
The invention further contemplates a three-hole pattern, such as pattern 43 provided in the plate 31f in
In one important aspect of the present invention, the bone screw 32 can either constitute a fixed angle screw 50, as shown in
The head 54 of the fixed angle screw 50 includes a tool recess 55 that is configured to receive a driving tool. In one specific embodiment, the tool recess 55 can be a hex recess, or in an alternative embodiment, a TORX* type recess. The head 54 includes a truncated or flattened top surface 56 and a spherical surface 57 between the top surface 56 and the intermediate portion 52. The head 54 includes a height H1 between the top surface 56 and the intermediate portion 52.
In one specific embodiment, the intermediate portion 52, and more specifically the segment between the thread run-out 53 and the head 54, has a height of 1.2 mm and a diameter of 4.05 mm. The height H1 of the head 54 in this specific embodiment has a dimension of 2.6 mm. In this specific embodiment, the dimensions of the head 54 and intermediate portion 52 are calibrated for length of the threaded shank 51 of between 10 mm and 20 mm. In this specific embodiment, the bone screws are preferably configured for engagement in the cervical spine. In another aspect of the specific embodiment, the root diameter of the threaded shank 51 is tapered over the last few convolutions from the initial root diameter to the final root diameter which is 4.05 mm which is about 2.43 mm in the specific embodiment.
Turning to
The variable angle screw 60 also includes a head 64 having a tool recess 65 defined from the truncated top surface 66. The head 64 also includes a spherical surface 67 disposed between the top surface 66 and the intermediate portion 62. The head 64 of the variable angle screw 60 has a height H2 between the top surface and the intermediate portion that is greater than the height H1 of the head 54 of the fixed angle screw 50.
In the specific embodiment of the variable angle screw 60, the head 64 has a height H2 of about 3.3 mm. This greater height is attributable to the smaller diameter D2 of the intermediate portion 64 relative to the diameter D1 of the intermediate portion 52 of the fixed angle screw 50. Both the head 54 and the head 64 of the respective screws have a comparable outer diameter, which is 4.88 mm in the specific embodiment. In the case of the variable angle screw, the diameter of the spherical surface 67 continues around a greater arc because the intermediate portion 62 has a smaller diameter. In one specific embodiment, the intermediate portion 62 has a diameter D2 of 2.9 mm, compared to the 4.05 mm diameter D1 for the fixed angle screw 50.
Like the fixed angle screw 50, the variable angle screw 60 can be preferably provided in lengths between 10 mm and 20 mm, for use at different locations in the spine.
The engagement of the bone screws 50 and 60 to the elongated plate 31 require further discussion of the details of the plate itself. These details can be discerned with reference to
To accommodate the anterior application of this fixation plate assembly 30, the plate is curved medial laterally to approximate the curvate of the vertebral body and longitudinally to approximate the normal lordosis of the cervical spine. Specifically, the bottom surface 37 of the plate can be curved along a large radius R, as shown in
The screw holes 34 in the plate 31a are defined by a spherical recess 75 (see
In one specific embodiment, the spherical recess 75 is defined at a diameter of 5.0 mm, which is slightly larger than the diameter of the heads 54, 64 of the bone screws 50, 60. The cylindrical portion of the screw holes 34 is defined at a diameter of 4.1 mm, in the specific embodiment, which is again slightly larger than the diameter D1 of the intermediate portion 52 of the fixed angle screw 50. It should be understood, of course, that the diameter of the cylindrical bore 77 is significantly larger than the diameter D2 of the intermediate portion 62 of the variable angle screw 60.
Again in the specific embodiment, the axis 75a of both spherical recess 75, the cylindrical bore 77 and the flared recess 79 is oriented generally normal to the bottom surface 37 of the plate 31a, when viewed in the direction of the longitudinal axis of the plate. In other words, the axis 75a is normal to the plate in the direction of the medial/lateral curvature L of the plate. On the other hand, the orientation of the screw holes 34 can vary between the vertebral level nodes 35, and most particularly when considering the end hole patterns 38. In this specific embodiment, the flared recess 79, is colinear with the axis 75a of the recess 75, for the hole patterns in the interior and end of the elongated plate 31a. For example, as shown in
The details of the locking assembly 33 can be gleaned from consideration of
The locking assembly 33 also includes a washer 90 having an outer surface 91. In the specific preferred embodiment, the outer surface 91 is defined by a curved convex surface 92. The washer 90 also includes a screw bore 93 extending therethrough in communication with a tapered bore 94. The tapered bore 94 has a complementary mating configuration relative to the conical surface 88 of the head 87 of locking screw 85. The mating conical features between the locking screw and washer provides a self-centering capability for the washer as the locking screw is tightened onto the plate. The screw bore 93 is sized to receive the machine threads 86 therethrough for engagement with the tapped bore 70 of the plate 31a, as shown in
Referring now to
In order to ensure secure fixation of the screw 50 within plate 31, the locking assembly 33 is tightened onto the heads 54 of the two bone screws 50. In particular, the locking screw 85 is threaded into the tapped bore 70 to draw the washer 90 into contact with the screw heads. The convex surface 92 seats against the spherical surface 57 of the bone screw heads 54 to firmly seat the screw heads within the plate spherical recess 75. In some embodiments, the locking washer 90 can advance sufficiently far into the locking recess 71 to rest substantially flush with the top surfaces 56 of the bone screws 50.
In a further aspect of the invention, the locking assembly 33 is loosely fixed on the plate 31 so that the surgeon need not fiddle with the locking assembly when the plate is engaged to a vertebra. In particular, the locking screw 85 is pre-threaded through the locking washer 90 and into the tapped bore 70 until about three or fewer threads of the locking screw project below the bottom surface 37 of the plate. The locking screw 85 is then staked at the thread furthest from the plate so that the screw cannot be removed or backed out through the tapped bore 70. Of course, the locking screw 85 can be advanced further through the bore 70—when it is necessary to enable the locking assembly 33. As previously mentioned, the sharp point 86a of the locking screw 85 is preferably configured to penetrate the cortical bone. With the locking screw staked to the plate, the sharp point 86a will penetrate the vertebra V when the plate 31 is initially positioned on the bone. In this instance, the locking screw 85 helps locate and temporarily stabilize the plate on the vertebra V as the bone screws 50 are implanted into the bone. This temporary location feature provided by the locking screw 85 can also be used when a drill guide is used to drill and tap the vertebra to receive the bone screws 50.
The locking assembly 33 is configured so that the washer 90 can be moved clear of the screw holes 34 when the locking screw 85 is staked to the plate 31. Thus, even with the locking assembly 33 in its loosened position, the bone screws 50, 60 can still be inserted into the screw holes 34.
The use of the variable angle bone screw 60 is depicted in
During implantation, the variable angle capability of the screw 60 allows the surgeon to place the bone screw within the vertebra at any angle within the defined angulation limits (20° in one specific embodiment). Thus, the variable angle screw 60 provides greater flexibility than does the fixed angle screw 50 for orienting the bone screw relative to the anatomy of the vertebra. Moreover, this variable angle capability allows a limited degree of micro-motion between the screw and the plate when the fixation assembly 30 is implanted within a patient. In other words, as the spine is loaded and as load is transmitted through the screws and plate, the plate and vertebra may translate relative to each other. The variable angle screw 60 accommodates this relative movement by pivoting within the spherical recess 75. On the other hand, the fixed angle screw 50 prevents this relative movement. The choice between using a fixed or a variable angle screw can be left to the surgeon depending upon the pathology being treated. The fixation plate assembly 30 according to the present invention allows this choice to be made at any point during the surgical procedure.
A further embodiment of the present invention is depicted in
In accordance with this embodiment, the plate further includes a tapped bore and concentric locking recess 107 disposed adjacent the spherical recess 105 for the bone screw. The spherical and locking recess contact at a locking overlap 108. A notch 110 extends transversely across the locking recess 107 in this embodiment.
The locking assembly 103 includes a locking washer 120 and locking screw 121. Like the prior locking screw, the screw 121 includes machine threads 122 and an enlarged head 123. The head sits within a recess 124 in the washer 120, with the machine threads 122 projecting through a bore 125. The machine threads 122 are configured to engage the tapped bore 106 of the plate 101. The locking screw 121 can be staked onto the plate 101 as discussed with respect to the prior embodiment.
The locking washer 120, while functioning similar to the washer of the prior embodiment offers a different construction than the previous washer. Like the washer 90, the locking washer 120 includes an outer circumferential surface 127 that is preferably convex to mate with a spherical head of the bone screw 102. However, in one modification, the washer 120 includes cut-outs 128 in the circumferential surface 127. The cut-outs 128 are arranged to coincide with the screw recesses 105 when the locking washer is in a first position, as illustrated in
In certain embodiments, the washer 120 is provided with two such cut-outs at diametrically opposite positions on the washer. Most preferably, the cut-outs 128 are aligned with the relative orientation of screw holes 105 in the plate 101. For example, a washer 120 adapted for a three hole pattern 43, as depicted in
Once the bone screws have been implanted through the appropriate screw recesses 105, the locking washer 120 can be rotated into its locking position shown in
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application is a continuation of U.S. patent application Ser. No. 10/713,949 filed on Nov. 13, 2003, and now issued as U.S. Pat. No. 7,001,387; which is a continuation of U.S. patent application Ser. No. 09/723,317 filed on Nov. 27, 2000, and now issued as U.S. Pat. No. 6,669,700; which is a continuation of U.S. patent application Ser. No. 09/399,525 filed on Sep. 20, 1999, and now issued as U.S. Pat. No. 6,152,927; which is a continuation of U.S. patent application Ser. No. 08/856,902 filed on May 15, 1997, now abandoned. The reference applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3659595 | Haboush | May 1972 | A |
3741205 | Markolf et al. | Jun 1973 | A |
4334599 | Ritsema et al. | Jun 1982 | A |
4388921 | Sutter et al. | Jun 1983 | A |
4488543 | Tornier | Dec 1984 | A |
4493317 | Klaue | Jan 1985 | A |
4503848 | Caspar et al. | Mar 1985 | A |
4716893 | Fischer et al. | Jan 1988 | A |
4754749 | Tsou | Jul 1988 | A |
4776330 | Chapman et al. | Oct 1988 | A |
4794918 | Wolter | Jan 1989 | A |
4946458 | Harms et al. | Aug 1990 | A |
5041113 | Biedermann et al. | Aug 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5057111 | Park | Oct 1991 | A |
5108395 | Laurain | Apr 1992 | A |
5113685 | Asher et al. | May 1992 | A |
5127912 | Ray et al. | Jul 1992 | A |
5147361 | Ojima et al. | Sep 1992 | A |
5169400 | Muhling et al. | Dec 1992 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5261910 | Warden et al. | Nov 1993 | A |
5304179 | Wagner | Apr 1994 | A |
5324290 | Zdeblick et al. | Jun 1994 | A |
5326206 | Moore | Jul 1994 | A |
5334204 | Clewett et al. | Aug 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5380323 | Howland | Jan 1995 | A |
5382248 | Jacobson et al. | Jan 1995 | A |
5397363 | Gelbard | Mar 1995 | A |
5423826 | Coates et al. | Jun 1995 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5527310 | Cole et al. | Jun 1996 | A |
5534032 | Hodorek | Jul 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5569247 | Morrison | Oct 1996 | A |
5578034 | Estes | Nov 1996 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5616144 | Yapp et al. | Apr 1997 | A |
5620443 | Gertzbein et al. | Apr 1997 | A |
5647872 | Gilbert et al. | Jul 1997 | A |
5653708 | Howland | Aug 1997 | A |
5676666 | Oxland et al. | Oct 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5709686 | Talos | Jan 1998 | A |
5735850 | Baumgartner et al. | Apr 1998 | A |
5735853 | Olerud | Apr 1998 | A |
5797912 | Runciman et al. | Aug 1998 | A |
5800433 | Benzel et al. | Sep 1998 | A |
5807396 | Raveh | Sep 1998 | A |
5843082 | Yuan et al. | Dec 1998 | A |
5868749 | Reed | Feb 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5951558 | Fiz | Sep 1999 | A |
5954722 | Bono | Sep 1999 | A |
5976141 | Haag et al. | Nov 1999 | A |
5984924 | Asher et al. | Nov 1999 | A |
6022350 | Ganem | Feb 2000 | A |
6030389 | Wagner et al. | Feb 2000 | A |
6132434 | Sherman et al. | Oct 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6235034 | Bray | May 2001 | B1 |
6261291 | Talaber et al. | Jul 2001 | B1 |
6290703 | Ganem | Sep 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
20050059971 | Michelson | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
0 251 583 | Jun 1988 | EP |
0 455 255 | Nov 1991 | EP |
0 471 418 | Feb 1992 | EP |
0 599 640 | Jun 1994 | EP |
2 519 857 | Jul 1983 | FR |
2 556 583 | Jun 1985 | FR |
2 740 321 | Apr 1997 | FR |
WO 9103994 | Apr 1991 | WO |
WO 9417744 | Aug 1994 | WO |
WO 9629948 | Oct 1996 | WO |
WO 9834553 | Aug 1998 | WO |
WO 9834556 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060189990 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10713949 | Nov 2003 | US |
Child | 11329850 | US | |
Parent | 09723317 | Nov 2000 | US |
Child | 10713949 | US | |
Parent | 09399525 | Sep 1999 | US |
Child | 09723317 | US | |
Parent | 08856902 | May 1997 | US |
Child | 09399525 | US |