Anterior corneal shapes and methods of providing the shapes

Information

  • Patent Grant
  • 10555805
  • Patent Number
    10,555,805
  • Date Filed
    Monday, March 17, 2014
    10 years ago
  • Date Issued
    Tuesday, February 11, 2020
    4 years ago
Abstract
Methods of treating presbyopia of an eye. A corneal inlay is inserted within the cornea such that the central thickness of the corneal inlay is 3 to 7 times a central elevation change.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Corneal procedures can be performed that reshape the anterior surface of the cornea, and therefore change the refraction of the cornea. While the initial procedure can cause an immediate change to the shape of the anterior surface of the cornea, the cornea, after some period of time following the procedure, may respond biologically to the procedure. The biological response can modify the shape relative to the immediate post-procedure shape. The final shape of the anterior surface of the cornea therefore depends on both the change induced by the procedure as well as the biological response of the cornea. When determining how to achieve a particular refraction correction for a patient, it is therefore not only important to understand the immediate effect the procedure will have on the anterior surface of the cornea, but also any biological response the cornea may have to the procedure.


One method of changing the curvature of the anterior surface of the lens is by implanting a corneal inlay within the cornea. Some inlays do not have intrinsic power because the index of refraction of the inlay material is the same, or substantially the same, as the cornea. Thus, there is no significant refraction of light at the inlay/cornea interface. For these inlays, the entire refractive effect on the eye is achieved due to the shape change to the anterior surface of the cornea. Reshaping the anterior corneal surface is very effective in altering the optical properties of the human eye because the index of refraction difference is large at the air/anterior corneal surface boundary, i.e., the difference is 1.376−1. Very strong “bending” of light occurs at the anterior corneal surface. However, the biological response of the cornea to the inlay must also be taken into account.


For some types of inlays it was originally thought that the profile of the change to the cornea was the same as the inlay profile. For example, it was thought that the anterior surface of the inlay would translate almost or substantially exactly and cause the cornea anterior surface to assume the same shape. For corneal inlays described in U.S. patent applications: 60/776,548, filed Feb. 24, 2006; Ser. No. 11/554,544, filed Oct. 30, 2006; 61/042,659, filed Apr. 4, 2008; 61/155,433, filed Feb. 25, 2009; Ser. No. 11/738,349, filed Apr. 20, 2007; and Ser. No. 12/418,325, filed Apr. 3, 2009, which are incorporated by reference herein, however, it has empirically been shown by the Applicants that the final anterior corneal shape is not, in fact, the same as the shape of the corneal inlay. For example, the cornea's biological response to an inlay's implantation was clinically observed in U.S. Pat. No. 8,057,541, filed Oct. 30, 2006 (the disclosure of which is incorporated herein by reference), where it was observed that the central anterior surface elevation change was less than the center thickness of the inlay. The cornea's biological response to the inlays was also discussed in U.S. Pub. No. 2008/0262610, filed Apr. 20, 2007, and in U.S. Pub. No. 2009/0198325, filed Apr. 3, 2009, the disclosures of which are incorporated by reference herein. Because the final shape of the anterior surface of the cornea will not simply be the same as the shape of the inlay, the question remains how to achieve the final anterior corneal surface shape.


SUMMARY OF THE DISCLOSURE

One aspect of the disclosure is a method of performing a vision correction procedure, comprising calculating an 8th order polynomial base shape for a central region of the patient's anterior corneal surface, wherein the base shape provides for near and distance vision within the pupil; selecting a corneal inlay for implantation within the cornea that will change the shape of the anterior cornea surface to the 8th order polynomial.


In some embodiments the method further comprises scaling the 8th order polynomial base shape to provide a desired amount of near and distance visual acuity for the patient, and wherein the selecting step comprises selecting an inlay for implantation that will change the shape of the anterior corneal surface to the scaled 8th order polynomial. Scaling can comprise changing the central height of the 8th order polynomial base shape. Scaling can comprise changing the radial dimension of the 8th order polynomial base shape. Scaling the 8th order base shape can enhance near visual acuity and reduce distance visual acuity. Scaling the 8th order base shape can enhance distance visual acuity and reduce near visual acuity.


In some embodiments selecting the inlay for implantation comprises selecting an inlay with an anterior surface with a shape that is not an 8th order polynomial.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 plots the mean change to the anterior corneal surface (height profile) for a 2.0 mm diameter inlay design, using the clinically measured height profiles for 31 subjects.



FIG. 2 demonstrates that height profile (P) for the 2.0 mm design is accurately given by the coefficients (an) of a symmetric 8th order polynomial.



FIG. 3 provides a comparison between the theoretical design targeting an add power of 2 Diopters and a maximum near image quality at 3 mm pupil (see Table 1), and the clinically derived “base” shape.



FIG. 4 presents the distance, intermediate and near visual acuity for 75 subjects in a clinical study.



FIG. 5 shows the base profile that is the average response to the 2 mm inlay, using the 8th order polynomial to fit.



FIG. 6 is a cross-sectional view of a cornea showing an inlay implanted in the cornea and a change in the anterior corneal surface induced by the inlay, including a drape region according to an embodiment of the invention.



FIG. 7 is a diagram of an eye illustrating the use of a small diameter inlay to provide near vision according to an embodiment of the invention.





DETAILED DESCRIPTION

The disclosure herein provides a method of determining a desired shape for the anterior surface of the cornea. The response of the corneal tissue to the inlay's shape and volume is first determined, especially of the stroma and epithelium anterior to the inlay. This response is reduced to a functional relationship predicting the change to the anterior corneal surface for a given inlay design. By other techniques, such as optical design analysis or empirical analysis of clinical data, the desired optical effect is then determined, and the targeted anterior corneal surface required is then calculated. Using the functional biological relationship from the previous step, the required inlay design (shape and volume) is then calculated.


The disclosure herein discloses the nominal shape of an anterior corneal surface that can be produced by implanting a corneal inlay in the corneal stroma using a LASIK flap or otherwise, and that provides good distance, intermediate and near vision. Nominal shapes are provided for an exemplary 2.0 mm diameter inlay design.


The method of determining the surface shape of the anterior surface of the cornea herein includes using clinical measurement of the anterior corneal surface change after a 2.0 mm diameter inlay was implanted to show that the anterior corneal surface change can be fit to an 8th order symmetric polynomial. Using a surface description constrained to an 8th order symmetric polynomial, a range of shapes optimal for near and distance vision is then derived by theoretical ray trace methods. This aspect is described in detail in US Pub. No. 2009/0198325, incorporated herein by reference. The average of the anterior corneal surface shape change for subjects with the 2 mm diameter design establishes the ideal corneal shape because the clinical data demonstrates good distance, intermediate, and near visual acuity in the treated eye. This inlay design also provides a shape that is within the range of the theoretically ideal shapes from ray-trace analysis. The method also illustrates that there is a nominal basic biomechanical “shape,” from which each individual subject's anterior corneal surface shape can be calculated, by a scaling of the central height change and the diameter of the anterior corneal surface effect.


Background and Methods. The disclosure describes the determination of a desired anterior corneal shape. The anterior corneal shape for a given corneal inlay subject is derived from wavefront measurements recorded with the Tracey aberrometer. The wavefront is a measure of the optical properties of any optical system. If the only change to the human eye is the presence of the inlay, then by subtracting the postoperative wavefront from the preoperative wavefront, one derives the change due to only the inlay. The wavefront (WF) difference map provides a 3D profile of the anterior corneal surface change. The 3D height profile is calculated from the WF difference map by dividing by the cornea-air index of refraction difference (1.376−1).


To calculate the mean radial anterior corneal surface height change profile (“height profile”), for a given subject, we average the three dimensional (“3D”) height profile in 32 radial meridians, around the full 3D profile, centered on the peak of the 3D height profile.


The data presented in this analysis was derived from clinical studies. FIGS. 2 and 3 show the mean response for implantation of the 2.0 mm diameter inlay, while FIG. 3 also shows the ideal curve from Table 1. Table 1 provides ideal anterior corneal surface changes for three spectacle ADD powers (1.5 diopters, 2.0 diopters, and 2.5 diopters) and for three pupil sizes (small, nominal and large) when using near vision, derived theoretically by ray-trace analysis, which is described below.


Parameterization of the Anterior Corneal Surface Change. Because the inlay is circularly symmetric, the change to the anterior corneal surface is substantially symmetric. It is of note that while the term “symmetric” is used herein, it is understood that this term or derivatives of it include surfaces or changes that are not perfectly symmetric, but are substantially symmetric. For example, corneal flaps are not perfectly symmetrical since they have a hinge, and thus the final shape change may not be perfectly symmetrical. These shape changes are still considered symmetric as that term is used herein. The functional representation of the anterior corneal surface is thus generally an even function of the radius. FIG. 1 plots the mean change to the anterior corneal surface (height profile) for a 2.0 mm diameter inlay design, using the clinically measured height profiles for 31 subjects. FIG. 2 demonstrates that height profile (P) for the 2.0 mm design is accurately given by the coefficients (an) of a symmetric 8th order polynomial. The parameterized anterior corneal shape formula is:

P(r)=[a0+a2(r)2+a4(r)4+a6(r)6+a8(r)8]


The first step in correcting the vision of a subject by altering the cornea is generally determining the desired post-operative shape of the anterior corneal surface which will provide the desired refractive power change (i.e., determining the shape change for the anterior surface of the cornea). The shape of the desired anterior surface may be the result of a biomechanical response as well as epithelial remodeling as a result of the vision correction procedure. Corneal epithelial remodeling will be described in more detail below. Based on a biomechanical response and an epithelial response, the vision correction procedure is performed (e.g., implanting an inlay) to induce the desired anterior surface change. This disclosure includes an exemplary method of determining a desired anterior corneal shape to provide for corrective vision. One particular embodiment in which the method includes implanting an inlay within the cornea to provide for a zone in the center of the cornea that provides near vision and a zone in the periphery that provides distance vision will be described. In some embodiments a central zone on the anterior corneal surface with a sharp transition is preferred (i.e., substantially without an outer effect zone). A sharp transition maximizes both the near and distance power efficiencies. In practice, the effects of epithelial remodeling typically prevent “sharp” transitions. Empirically, the anterior surface change induced by the inlay can be given by a symmetric polynomial of at least eighth order:

Elev(r)=a0+αar2+ar4+ar6+ar8

Where “Elev” is the change in anterior corneal surface elevation due to the inlay,

    • a0, a2, a4, a6 and a8 are the coefficients governing the shape
    • And “r” is the radial extent location from the center of the anterior surface change.


The elevation change discussed herein is azimuthally symmetric in plane perpendicular to the axis of the cornea. In other embodiments, however, orthogonal asymmetries may be included with more complex inlay designs, attempting to correct for corneal astigmatism, pre-existing in the subject's eye. Physically, there are useful restrictions on the form of the elevation expression. At r=0, the elevation change is maximal and is central height “hctr”. From the symmetry, at r=0, the first derivative of elevation expression must be zero. The extent of the inlay-induced change is limited to a maximal radius (rz), where Elev(rz)=0. And because the elevation smoothly transitions to the original cornea at rz, the first derivative is normally also zero; i.e., dElev(rz)/dr=0.


With these restrictions, the elevation change can be characterized by four independent parameters: hctr, rz, a6 and a8. And the remaining coefficients are given by:

a0=hctr
a2=2*alpha/rz^2−beta/2/rz
a4=beta/2/rz^3−alpha/rz^4
Where:
alpha=−hctr−a6*rz^6−a8*rz^8
beta=−6*a6*rz^5-8*a8*rz^7


Thus, the ideal anterior corneal elevation change can be expressed by four independent parameters: hctr, rz, a6 and a8.


Table 1 provides ideal anterior corneal surface changes for three spectacle ADD powers (1.5 diopters, 2.0 diopters, and 2.5 diopters) and for three pupil sizes (small, nominal and large) when using near vision, derived theoretically by ray-trace analysis, which is described below.


Performing the optical ray-trace optimization to derive the optimal anterior corneal elevation change (Elev) requires a model eye which mimics the key optical functions of the human eye. The finite eye model by Navarro (Accommodation dependent model of the human eye with aspherics, R. Navarro. Et al, JOSA Vol 2 No 8 1985 p. 1273-1281) provides one such model. For these design purposes, the Navarro model provides anatomically correct values for the corneal physical and optical properties and provides total eye properties such as normal values for the total eye spherical aberrations, chromatic aberration and Stiles-Crawford effect. Other model eyes can be also used.


To include the anterior corneal elevation change (Elev) in the Navarro eye model, the Elev surface is added to the anterior surface of the Navarro eye model. Calculations of the image quality created by the anterior surface change to the eye model are accomplished using any of many commercial ray-trace software packages. For the examples provided, the Zemax-EE Optical Design Program (2008) from the Zemax Development Corporation was used.


The objective of the ray-trace optimization is to find the elevation surface parameters (hctr, rz, a6 and a8) that maximize the optical performance for a given set of assumptions. There are many optical metrics of image quality used in optical design. Of these, the Modulation Transfer Function (MTF) is particularly useful for optical designs, using any combination of optical surfaces of any shape. The MTF is the efficiency of transferring the contrast of the original object to the contrast of the image of the object on the human retina. The MTF efficiency (modulation) is plotted as a function of the spatial frequency information in the image of the object. The spatial frequency can be thought of as one divided by the size of features in the image. Thus, large spatial frequencies represent very fine features in the object, and low spatial frequencies represent very large features in the object. The image quality is maximized when the MTF values at targeted spatial frequencies have their highest values.


The assumptions are derived from the inlay's design requirement to provide a good distance image from light rays passing mainly through the peripheral region between the pupil diameter and the inlay's effect zone (rz), and a good near image for light rays passing through the central effect zone. Thus, the ray-trace program is set with at least two configurations. In the first, the object for the eye model is set to infinity (e.g., looking at a distant object). In the second configuration, the object is set at a near distance. The typical distance of near work and ophthalmic prescription is 40 cm, which corresponds to a spectacle power requirement of 2.5 diopters.


For each configuration, the model eye's pupil size must be set. Of the many choices, two are the most logical. In the first, the pupil size is set the same for both configurations and the goal of the optimization is to find the elevation parameters which give equal distance and near image quality. The second choice is to set separate pupil sizes for the distance and near configurations. The near configuration pupil size is set to subject's pupil size in a well illuminated setting i.e., the peripheral distance zone is effectively zero. This condition provides the maximal near distance capability. The distance configuration pupil size is set to the subject's night-time or dim-light pupil size, where distance vision is maximized. For the examples provided herein, the latter method was used, using different pupil sizes for the distance and near configurations. Note that regardless of the method chosen, the same range of ideal elevation profiles (e.g., Table 1) will be found.


The human pupil size varies for a given set of illumination conditions, with two important trends. As an individual ages, the nighttime pupil size decreases. Additionally, when looking at a near object, the pupil diameter reduces by about 0.5 mm. Based on literature and clinical experience, the near configuration pupil in bright lighting is considered “small” if approximately 2.5 mm in diameter, “nominal” if approximately 3.0 mm, and “large” if approximately 3.5 mm in diameter. For the distance configuration, the nighttime pupil sizes vary greatly, and any loss of distance vision is compensated for by the fellow eye. Thus, one nighttime pupil size is sufficient for design purposes and a diameter of 5.0 mm is suggested by the literature/clinical experience.


The optimization tools of the ray-trace software program are now utilized. The elevation parameters (hctr, rz, a6 and a8) are varied until the MTF of the near configuration is maximized while simultaneously maximizing the MTF of the distance configuration. The ideal design is clearly a function of the assumed pupil sizes. In practice, subject may be screened preoperatively, allowing the surgeon to select the inlay design most appropriate for the subject's pupil size range and desired visual outcome.


Clinically Derived Optimal Anterior Corneal Surface Profile. Though the theoretical analysis provides a range of theoretical ideal optical designs (Table 1), for the assumptions noted, the analysis does not guarantee that the precise predicted anterior corneal shapes are realizable. For example, some 8th order polynomial shapes with a certain degree of steepness are not realizable. Biomechanics limit the combinations of coefficients that can be obtained. FIG. 3 provides a comparison between the theoretical design targeting an add power of 2 Diopters and a maximum near image quality at 3 mm pupil (see Table 1), and the clinically derived “base” shape. The base profile shown in FIG. 3 was derived from the implantation of 2.0 mm diameter inlays whose central thickness varied between about 32-36 microns. The figure demonstrates agreement between the two shapes, illustrating that the theoretical shape and the base profile are substantially the same. This comparison illustrates that the selection and use of the 2.0 mm diameter design provides a base shape that falls within the theoretically ideal shape. This type of comparison, which is made only after empirical data is obtained, allows a determination to be made about a preferred inlay design that will achieve the desired base shape, or scaled version thereof. Additionally, the 2.0 mm diameter design base profile provides an hctr value in the same 7-8 micron range of the ideal shape.



FIG. 1 provides the mean height profile for 31 subjects with the 2 mm design. And, again, the 2 mm clinical height profiles are within the theoretical ideal range in Table 1.


As shown in FIG. 3 the “hctr” value (the elevation change at its central height) is close to the center of the range of 5-10 microns, which covers the ideal hctr value for most ideal anterior corneal shapes, as shown in Table 1. Thus this range provides for good near vision while maintaining good distance vision for a variety of different preferred refractive adds and pupil size combinations. As there is some level of biological variation from patient to patient, being close to the center of this region, on average, is likely to be effective for a broad range of patients. The base profile shown in FIG. 3 was derived from the implantation of inlays whose central thickness varied between about 32-36 microns. For a 7 micron hctr value and a 35 micron inlay central thickness, for example, the inlay central thickness is five times the hctr. Understanding the relationship between a selected inlay thickness and the actual hctr value helps predict how the cornea will actually respond to the presence of the inlay. For example, if the desired hctr value is between about 5 and about 10 microns, the inlay to be implanted could be selected to have a central thickness that is about 5 times the desired hctr value but may be varied if other values of hctr are preferred.


The disclosure herein generally provides for methods of treating presbyopia by creating a central near vision zone while maintaining a peripheral distance vision zone (both within the pupil). There is a tradeoff between near and distance visual acuity. More near visual acuity generally results in less distance visual acuity, and likewise more distance visual acuity results in less near visual acuity. Depending on the patient and the specific type of vision correction, there may be instances where it is desirable to achieve more near vision acuity while sacrificing some distance vision. Similarly, in some instances it may be desirable to retain as much distance vision as possible, and thus limit the amount of reshaping that occurs to the anterior corneal surface. While the disclosure herein focuses on vision correction procedures that provide for both good near vision and good distance vision for a variety of different preferred refractive adds and pupil size combinations, it may be desirable to perform vision correction procedures that provide for either more near, and thus less distance, or more distance, and thus less near. Thus the disclosure herein describes methods of tailoring a vision correction to a particular patient, or to a group of patients, as opposed to using a single inlay for all vision correction procedures to treat presbyopia. By way of example, inlays with a diameter larger than 2.0 mm, such as between about 2.75 mm to about 3.25 mm (e.g., 2.8 mm, 2.9 mm, 3.0 mm, 3.1 mm, 3.2 mm), can be implanted in the cornea to provide more near visual acuity and less distance visual acuity than an inlay with a diameter of about 2.0 mm. The reason is that, generally, as the diameter of the inlay that is implanted increases in size, more of the anterior corneal surface changes shape, and thus more near visual acuity is provided while reducing the amount of distance visual acuity. Similarly, if more distance vision is desired, the inlay for implantation can be designed to be thinner in the central region. In general a thinner central height will act to reduce the shape change, thus reducing the near vision and maintaining more distance vision. The inlay can thus be selected based on the desired vision correction.


In some embodiments there could be a plurality of different inlays to be chosen from based on the individual needs of the patient. Alternatively, a patient-specific inlay could be designed and implanted.


For example, hctr values in the 2-5 micron range (i.e., less than the exemplary 5-10 micron range above) will, however, also provide vision correction. In these methods some near vision will still be provided to the patient, with less compromise to the distance vision than hctr values in the 5-10 micron range.


This 2 mm design response demonstrates good visual acuity. FIG. 4 presents the distance, intermediate and near visual acuity for 75 subjects in a clinical study. The distance, intermediate and near visual acuities achieve about 20/25 or better at 6 months.


Mean Biomechanical Corneal Response For Good Clinical Outcomes. Based on the observations above, it is apparent that a “base” anterior corneal height profile exists, representing the fundamental response of the cornea's stroma and epithelium to the inlay shape and volume. And the anterior height profile for each subject is a scaling in height and effect radius, from the base anterior corneal height profile. The individual subject response is a modification of the basic biomechanical response, due to more subtle changes between subjects. These changes include differences in the eye lid forces, differences in epithelial layer thicknesses, and possible differences in the structure of the stromal tissue, above the inlay.


A unique “base” profile exists with a set of coefficients (an), and individual subject profiles vary depending on two parameters: a scaling in the magnitude of the profile (δi) and a scaling in the radial direction (αi). The general form of the individual subject fit becomes:

Pi(r)=δi[a0+a2(αir)2+a4(αir)4+a6(αir)6+a8(air)8]

where each subject is “i”, and a0 to a8 are the coefficients of the basic shape. Each subject's anterior corneal shape is given by a specific combination of δi and αi. A statistical recursive fit analysis yielded the parameters for the base shape and the individual subject scaling parameters for the two inlay designs.


Table 2 lists the individual subject scaling parameters (δi and αi), and the base profile fit parameters (an) for the 2.0 mm diameter inlay design. The root mean square difference between the individual subject fit and the original clinical data, as a percentage of the base shape's central height (a0) is also provided. The majority of values are less than about 3%.


The base anterior height profile is shown in FIG. 3 by the black solid line.


In FIG. 5, the base profile is the average response to the 2 mm inlay, using the 8th order polynomial to fit. This is shown with the solid line. The dashed line is the refractive power that is calculated from the Base Profile.


While the disclosure herein describes the methods of determining and creating desired shapes by implanting an inlay within the cornea, other techniques can be used to create these shapes. For example, a LASIK procedure can be carried out to achieve the shapes herein. An example would be in the case of presby LASIK, a surgical technique for presbyopic visual correction using Excimer LASER ablation. Alternatively, the shapes can be achieved using INTRACOR, which uses a femtosecond laser to treat presbyopia. Other corneal reshaping methods include corneal thermoplasty (CT) and alteration of the corneal shape by cross-linking.


As set forth herein, it is useful to identify a nominal and/or range of anterior surface changes that provide good distance, intermediate and near vision for corneal inlay designs that are described as modifying the anterior corneal surface shape as described in U.S. patent applications: 60/776,548, filed Feb. 24, 2006; Ser. No. 11/554,544, filed Oct. 30, 2006; 61/042,659, filed Apr. 4, 2008; 61/155,433, filed Feb. 25, 2009; Ser. No. 11/738,349, filed Apr. 20, 2007; and Ser. No. 12/418,325, filed Apr. 3, 2009. If the design is to be changed, knowledge of the desired anterior corneal surface and the range of anterior surfaces allows prediction of acceptable new inlay designs. The methods herein of determining a desired shape of an anterior corneal surface can be used for other approaches, and are not limited to determining shapes due to the implantation of an inlay. For example, the methods can be used in determining shapes based on LASIK procedures. Additionally, the methods herein can be used for procedures that change the shape of the cornea following the removal of a lens-shaped portion of stromal tissue that may be cut by, for instance, a femtosecond laser. The shape of the lens can be modified to create a final corneal shape as described herein.


In FIG. 6, the portion of the anterior corneal surface directly above the inlay is altered by the physical shape of the inlay 49. Because of the finite edge thickness 55 of the inlay 49, the anterior corneal surface does not immediately return to its pre-implant shape for a diameter larger than the physical inlay 49. Eventually, the anterior corneal surface returns to the pre-implant corneal surface 52. Therefore, the draping effect produces a drape region 56 that extends the shape change of the anterior corneal surface induced by the inlay 49.


In some embodiments the inlay has a diameter between about 1 mm and about 3 mm, and in some particular embodiments the inlay is about 2 mm in diameter. In some embodiments the inlay central thickness (from anterior to posterior surfaces) is about 20 microns to about 40 microns, while in some particular embodiments the inlay central thickness is about 30 microns, and in some more particular embodiment the central thickness is about 32 microns. In some embodiments the inlay has an edge thickness of about 3 microns to about 16 microns, and in some particular embodiments the edge thickness is about 12 microns. In some embodiments the anterior surface radius of curvature is about 7 mm to about 13 mm, and in some particular embodiments the anterior surface radius of curvature is about 10 mm. In some embodiments the posterior surface radius of curvature is about 5 mm to about 12 mm, and in some particular embodiments the posterior surface radius of curvature is about 8.5 mm.



FIG. 7 shows an example of how a small inlay can provide near vision to a subject's eye while retaining some distance vision according to an embodiment of the invention. The eye 38 comprises the cornea 39, the pupil 40, the crystalline lens 41 and the retina 42. In this example, the small inlay (not shown) is implanted centrally in the cornea to create a small diameter “effect” zone 43. The small inlay has a smaller diameter than the pupil 40 so that the resulting “effect” zone 43 has a smaller diameter than the optical zone of the cornea. The “effect” zone 43 provides near vision by increasing the curvature of the anterior corneal surface, and therefore the diopter power within the “effect” zone 43. The region 44 of the cornea peripheral to the “effect” zone provides distance vision.


To increase the diopter power within the “effect” zone 43, the small inlay has a higher curvature than the pre-implant anterior corneal surface to increase the curvature of the anterior corneal surface within the “effect” zone 43. The inlay may further increase the diopter power within the “effect” zone 43 by having an index of refraction that is higher than the index of refraction of the cornea (ncornea=1.376). Thus, the increase in the diopter power within the “effect” zone 43 may be due to the change in the anterior corneal surface induced by the inlay or a combination of the change in the anterior cornea surface and the index of refraction of the inlay. For early presbyopes (e.g., about 45 to 55 years of age), at least 1 diopter is typically required for near vision. For complete presbyopes (e.g., about 60 years of age or older), between 2 and 3 diopters of additional power is required.


An advantage of the small intracorneal inlay is that when concentrating on nearby objects 45, the pupil naturally becomes smaller (e.g., near point miosis) making the inlay effect even more effective. Further increases in the inlay effect can be achieved by simply increasing the illumination of a nearby object (e.g., turning up a reading light).


Because the inlay is smaller than the diameter of the pupil 40, light rays 47 from distant objects 46 by-pass the inlay and refract using the region of the cornea peripheral to the “effect” zone to create an image of the distant objects on the retina 42, as shown in FIG. 7. This is particularly true with larger pupils. At night, when distance vision is most important, the pupil naturally becomes larger, thereby reducing the inlay effect and maximizing distance vision.









TABLE 1







Examples of Ideal Anterior Corneal Surface Change Designs













Design Type

ADD
“hctr”
rad zone




(mm)
Pupil Size
(diopters)
(microns)
(mm)
a6 (mm−5)
a8 (mm−7)
















MaxN @ 2.5
small
1.5
4.30
1.39
−4.500E−04
2.800E−04


MaxN @ 3.0
nominal
1.5
5.06
1.50
−2.830E−04
1.466E−04


MaxN @ 3.5
large
1.5
6.24
1.66
−3.374E−04
9.972E−05


MaxN @ 2.5
small
2.0
5.38
1.36
−2.450E−03
8.100E−04


MaxN @ 3.0
nominal
2.0
7.15
1.55
−1.830E−03
4.420E−04


MaxN @ 3.5
large
2.0
10.70
1.87
−6.014E−04
1.108E−04


MaxN @ 2.5
small
2.5
6.58
1.38
−2.247E−03
7.904E−04


MaxN @ 3.0
nominal
2.5
9.87
1.68
−7.639E−04
1.950E−04


MaxN @ 3.5
large
2.5
13.70
1.97
−3.658E−04
7.109E−05
















TABLE 2





Individual Subject Scaling Factors and Base Fit Parameters





















Verticle
Horizontal
% Fit







1
1.30
1.08
1.1%



2
0.92
1.15
0.3%



3
0.86
0.88
1.3%



4
0.84
1.12
0.3%



5
1.46
0.99
1.7%



6
1.40
0.82
1.9%



7
1.35
0.96
0.8%



8
0.83
0.92
1.0%



9
0.91
0.91
1.9%



10
1.20
1.01
0.7%



11
0.96
1.14
0.4%



12
1.12
0.85
2.3%



13
1.22
0.88
1.2%



14
1.17
1.02
0.4%



15
0.85
0.91
2.6%



16
0.63
1.09
0.4%



17
0.86
1.19
1.9%



18
1.30
0.76
3.3%



19
1.31
0.95
0.7%



20
1.01
1.00
1.1%



21
1.21
1.00
0.2%



22
0.92
1.07
0.7%



23
1.07
0.81
1.4%



24
0.74
0.89
5.1%



25
0.98
1.00
0.3%



26
1.01
1.17
1.5%



27
1.12
0.94
1.5%



28
0.80
0.94
0.3%



29
0.67
0.87
1.3%



30
1.71
0.66
2.7%



31
0.68
1.06
0.1%














Best Shape
(microns)







a0
7.6200



a2
−5.5276



a4
1.4694



a6
−0.1695



a8
0.0072









Claims
  • 1. A method of treatment for presbyopia of an eye, comprising: positioning a corneal inlay within the cornea, the corneal inlay having a diameter of about 1 mm to about 3 mm and smaller than a diameter of a pupil of the eye, the corneal inlay having an anterior surface comprising a corrective portion with a single radius of curvature, the corrective portion including an apex of the anterior surface; andaltering a shape of an anterior surface of a cornea with the corneal inlay, the altered shape including a central near region for near vision and an intermediate region for intermediate vision that is peripheral to the central near region; andmaintaining distance vision in a peripheral region that is peripheral to the intermediate region,wherein altering the shape of the anterior surface of a cornea with the corneal inlay comprises creating a central elevation change, and wherein the corneal inlay has a central thickness that is 3-7 times the central elevation change.
  • 2. The method of claim 1 wherein positioning a corneal inlay within the cornea comprises lifting a corneal flap, implanting the corneal inlay on exposed corneal tissue, and repositioning the corneal flap on top of the corneal inlay.
  • 3. The method of claim 1 wherein the intermediate region has an outer diameter greater than the diameter of the corneal inlay.
  • 4. The method of claim 1 wherein the positioning step comprises implanting the corneal inlay at a depth of approximately 250 microns or less deep in the cornea.
  • 5. The method of claim 1 further comprising, prior to altering the shape on the anterior surface of the cornea with the corneal inlay, performing a corrective procedure on the cornea.
  • 6. The method of claim 5 wherein performing a corrective procedure on the cornea comprises performing a LASIK procedure on the cornea.
  • 7. The method of claim 1 wherein the altering step further comprises increasing the curvature of the anterior surface of the cornea in the central near region.
  • 8. The method of claim 1 wherein the positioning step further comprises positioning the corneal inlay within the cornea, the corneal inlay having a diameter of about 1 mm to about 2 mm and smaller than a measured diameter of a pupil of the eye.
  • 9. The method of claim 1 wherein the positioning step further comprises positioning the corneal inlay having the diameter smaller than the diameter of the pupil to enable near vision and distance vision by the corrective portion with the single radius of curvature.
  • 10. The method of claim 1 wherein the positioning step further comprises positioning the corneal inlay centrally in the cornea to create an effect zone smaller than the optical zone of the cornea.
  • 11. The method of claim 9 wherein the positioning step further comprises positioning the corneal inlay having a higher curvature than the pre-implant anterior corneal surface to increase the curvature of the anterior corneal surface within the effect zone.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Prov. App. No. 61/799,847, filed Mar. 15, 2013, which is incorporated by reference herein. This application is also a continuation-in-part of U.S. application Ser. No. 12/877,799, filed Sep. 8, 2010, now abandoned, which is incorporated by reference herein. This application is also a continuation-in-part of pending U.S. application Ser. No. 12/418,325, filed Apr. 3, 2009, now U.S. Pat. No. 8,900,296. U.S. application Ser. No. 12/418,325 also claims priority to U.S. Prov. App. No. 61/042,659, filed Apr. 4, 2008 and U.S. Prov. App. No. 61/155,433, filed Feb. 25, 2009. All of the aforementioned applications are incorporated by reference herein. This application is related to and incorporates herein by reference the following U.S. patent applications: 60/776,548, filed Feb. 24, 2006; Ser. No. 11/554,544, filed Oct. 30, 2006; 61/042,659, filed Apr. 4, 2008; 61/155,433, filed Feb. 25, 2009; Ser. No. 11/738,349, filed Apr. 20, 2007; and Ser. No. 12/418,325, filed Apr. 3, 2009.

US Referenced Citations (434)
Number Name Date Kind
2714721 Stone, Jr. Aug 1955 A
3091328 Leonardos May 1963 A
3168100 Rich Feb 1965 A
3343657 Speshyock Sep 1967 A
3379200 Pennell Apr 1968 A
3482906 Volk Dec 1969 A
3743337 Crary Jul 1973 A
3770113 Thomas Nov 1973 A
3879076 Barnett Apr 1975 A
3950315 Cleaver Apr 1976 A
3996627 Deeg et al. Dec 1976 A
4030480 Meyer Jun 1977 A
4037604 Newkirk Jul 1977 A
4037866 Price Jul 1977 A
4039827 Zdrok et al. Aug 1977 A
4065816 Sawyer Jan 1978 A
4071272 Drdlik Jan 1978 A
4093291 Schurgin Jun 1978 A
4136406 Norris Jan 1979 A
4157718 Baehr Jun 1979 A
4184491 McGannon Jan 1980 A
4194814 Fischer et al. Mar 1980 A
4238524 LaLiberte et al. Dec 1980 A
4257521 Poler Mar 1981 A
4268133 Fischer et al. May 1981 A
4326306 Poler Apr 1982 A
4357940 Muller Nov 1982 A
4392569 Shoup Jul 1983 A
4418991 Breger Dec 1983 A
4423809 Mazzocco Jan 1984 A
4428746 Mendez Jan 1984 A
4452235 Reynolds Jun 1984 A
4466705 Michelson Aug 1984 A
4490860 Rainin Jan 1985 A
4504982 Burk Mar 1985 A
4521210 Wong Jun 1985 A
4525044 Bauman Jun 1985 A
4545478 Waldman Oct 1985 A
4554115 Neefe Nov 1985 A
4554918 White Nov 1985 A
4565198 Koeniger Jan 1986 A
4573998 Mazzocco Mar 1986 A
4580882 Nuchman et al. Apr 1986 A
4586929 Binder May 1986 A
4604087 Joseph Aug 1986 A
4607617 Choyce Aug 1986 A
4616910 Klein Oct 1986 A
4618227 Bayshore Oct 1986 A
4619256 Horn Oct 1986 A
4624664 Peluso et al. Nov 1986 A
4624669 Grendahl Nov 1986 A
4640595 Volk Feb 1987 A
4646720 Peyman et al. Mar 1987 A
4655774 Choyce Apr 1987 A
4662370 Hoffmann et al. May 1987 A
4663358 Hyon et al. May 1987 A
4671276 Reynolds Jun 1987 A
4676792 Praeger Jun 1987 A
4697697 Graham et al. Oct 1987 A
4702244 Mazzocco Oct 1987 A
4709697 Muller Dec 1987 A
4721124 Tuerkheimer et al. Jan 1988 A
4726367 Shoemaker Feb 1988 A
4750901 Molteno Jun 1988 A
4762496 Maloney et al. Aug 1988 A
4766895 Reynolds Aug 1988 A
4769033 Nordan Sep 1988 A
4772283 White Sep 1988 A
4778462 Grendahl Oct 1988 A
4798609 Grendahl Jan 1989 A
4806382 Goldberg et al. Feb 1989 A
4836201 Patton et al. Jun 1989 A
4840175 Peyman Jun 1989 A
4842599 Bronstein Jun 1989 A
4844242 Chen et al. Jul 1989 A
4851003 Lindstrom Jul 1989 A
4860885 Kaufman et al. Aug 1989 A
4865552 Maloney et al. Sep 1989 A
4886488 White Dec 1989 A
4888016 Langerman Dec 1989 A
4897981 Beck Feb 1990 A
4911715 Kelman Mar 1990 A
4919130 Stoy et al. Apr 1990 A
4923467 Thompson May 1990 A
4934363 Smith et al. Jun 1990 A
4936825 Ungerleider Jun 1990 A
4946436 Smith Aug 1990 A
4955903 Sulc et al. Sep 1990 A
4968296 Ritch et al. Nov 1990 A
4971732 Wichterle Nov 1990 A
4976719 Siepser Dec 1990 A
5019084 Aysta et al. May 1991 A
5019098 Mercier May 1991 A
5022414 Muller Jun 1991 A
5030230 White Jul 1991 A
5041081 Odrich Aug 1991 A
5063942 Kilmer et al. Nov 1991 A
5071276 Nielsen et al. Dec 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5098444 Feaster Mar 1992 A
5108428 Capecchi et al. Apr 1992 A
5112350 Civerchia et al. May 1992 A
5123905 Kelman Jun 1992 A
5123912 Kaplan et al. Jun 1992 A
5123921 Werblin et al. Jun 1992 A
5139518 White Aug 1992 A
5166712 Portney Nov 1992 A
5171213 Price, Jr. Dec 1992 A
5173723 Volk Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst et al. Jan 1993 A
5181053 Brown Jan 1993 A
5188125 Kilmer et al. Feb 1993 A
5190552 Kelman Mar 1993 A
5192317 Kalb Mar 1993 A
5196026 Barrett et al. Mar 1993 A
5211660 Grasso May 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5244799 Anderson Sep 1993 A
5258042 Mehta Nov 1993 A
5270744 Portney Dec 1993 A
5273750 Homiger et al. Dec 1993 A
5282851 Jacob-LaBarre Feb 1994 A
5300020 L'Esperance, Jr. Apr 1994 A
5300116 Chirila et al. Apr 1994 A
5312413 Eaton et al. May 1994 A
5318044 Kilmer et al. Jun 1994 A
5318046 Rozakis Jun 1994 A
5318047 Davenport et al. Jun 1994 A
5336261 Barrett et al. Aug 1994 A
5338291 Speckman et al. Aug 1994 A
5344448 Schneider et al. Sep 1994 A
5346464 Camras Sep 1994 A
5370607 Memmen Dec 1994 A
5372577 Ungerleider Dec 1994 A
5385582 Ommaya Jan 1995 A
5391201 Barrett et al. Feb 1995 A
5397300 Baerveldt et al. Mar 1995 A
5405384 Silvestrini Apr 1995 A
5407241 Harrison Apr 1995 A
5428412 Stoyan Jun 1995 A
5433701 Rubinstein Jul 1995 A
5454796 Krupin Oct 1995 A
5458819 Chirila et al. Oct 1995 A
5467149 Morrison et al. Nov 1995 A
5474562 Orchowski et al. Dec 1995 A
5476445 Baerveldt et al. Dec 1995 A
5487377 Smith et al. Jan 1996 A
5489301 Barber Feb 1996 A
5493350 Seidner Feb 1996 A
5502518 Lieberman Mar 1996 A
5512220 Roffman et al. Apr 1996 A
5520631 Nordquist et al. May 1996 A
5521656 Portney May 1996 A
5530491 Baude et al. Jun 1996 A
5533997 Ruiz Jul 1996 A
5570142 Lieberman Oct 1996 A
5591185 Kilmer et al. Jan 1997 A
5598234 Blum et al. Jan 1997 A
5616148 Eagles et al. Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5628794 Lindstrom May 1997 A
5630810 Machat May 1997 A
5634943 Villain et al. Jun 1997 A
5643276 Zaleski Jul 1997 A
5647865 Swinger Jul 1997 A
5657108 Portney Aug 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5715031 Roffman et al. Feb 1998 A
5716633 Civerchia Feb 1998 A
5722948 Gross Mar 1998 A
5722971 Peyman Mar 1998 A
5728155 Anello et al. Mar 1998 A
5732990 Yavitz et al. Mar 1998 A
5752928 de Roulhac et al. May 1998 A
5755785 Rowsey et al. May 1998 A
5766181 Chambers et al. Jun 1998 A
5772667 Blake Jun 1998 A
5779711 Kritzinger et al. Jul 1998 A
5785674 Mateen Jul 1998 A
5800442 Wolf et al. Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5805260 Roffman et al. Sep 1998 A
5810833 Brady et al. Sep 1998 A
5817115 Nigam Oct 1998 A
5824086 Silvestrini Oct 1998 A
5847802 Menezes et al. Dec 1998 A
5855604 Lee Jan 1999 A
5860984 Chambers et al. Jan 1999 A
5872613 Blum et al. Feb 1999 A
5873889 Chin Feb 1999 A
5876439 Lee Mar 1999 A
5888243 Silverstrini Mar 1999 A
5893719 Radow Apr 1999 A
5913898 Feingold Jun 1999 A
5919185 Peyman Jul 1999 A
5928245 Wolf et al. Jul 1999 A
5929968 Cotie et al. Jul 1999 A
5929969 Roffman Jul 1999 A
5935140 Buratto Aug 1999 A
5941583 Raimondi Aug 1999 A
5944752 Silvestrini Aug 1999 A
5945498 Hopken et al. Aug 1999 A
5964748 Peyman Oct 1999 A
5964776 Peyman Oct 1999 A
5968065 Chin Oct 1999 A
5976150 Copeland Nov 1999 A
5976168 Chin Nov 1999 A
5980549 Chin Nov 1999 A
6007510 Nigam Dec 1999 A
6010510 Brown et al. Jan 2000 A
6024448 Wu et al. Feb 2000 A
6033395 Peyman Mar 2000 A
6036714 Chin Mar 2000 A
6050999 Paraschac et al. Apr 2000 A
6055990 Thompson May 2000 A
6059775 Nielsen May 2000 A
6066170 Lee May 2000 A
6068642 Johnson et al. May 2000 A
6079826 Appleton et al. Jun 2000 A
6083231 Van Noy et al. Jul 2000 A
6086202 Chateau et al. Jul 2000 A
6090141 Lindstrom Jul 2000 A
6102946 Nigam Aug 2000 A
6110166 Juhasz et al. Aug 2000 A
6120148 Fiala et al. Sep 2000 A
6125294 Scholl et al. Sep 2000 A
6129733 Brady et al. Oct 2000 A
6139560 Kremer Oct 2000 A
6142969 Nigam Nov 2000 A
6143001 Brown et al. Nov 2000 A
6159241 Lee et al. Dec 2000 A
6171324 Cote et al. Jan 2001 B1
6175754 Scholl et al. Jan 2001 B1
RE37071 Gabrielian et al. Feb 2001 E
6183513 Guenthner et al. Feb 2001 B1
6197019 Peyman Mar 2001 B1
6197057 Peyman et al. Mar 2001 B1
6197058 Portney Mar 2001 B1
6203538 Peyman Mar 2001 B1
6203549 Waldock Mar 2001 B1
6203557 Chin Mar 2001 B1
6206919 Lee Mar 2001 B1
6210005 Portney Apr 2001 B1
6214015 Reich et al. Apr 2001 B1
6214044 Silverstrini Apr 2001 B1
6217571 Peyman Apr 2001 B1
6221067 Peyman Apr 2001 B1
6228113 Kaufman May 2001 B1
6228114 Lee May 2001 B1
6248111 Glick et al. Jun 2001 B1
6250757 Roffman et al. Jun 2001 B1
6251114 Farmer et al. Jun 2001 B1
6264648 Peyman Jul 2001 B1
6264670 Chin Jul 2001 B1
6264692 Woffinden et al. Jul 2001 B1
6267768 Deacon et al. Jul 2001 B1
6271281 Liao et al. Aug 2001 B1
6277137 Chin Aug 2001 B1
6280449 Blake Aug 2001 B1
6280470 Peyman Aug 2001 B1
6283595 Breger Sep 2001 B1
6302877 Ruiz Oct 2001 B1
6325509 Hodur et al. Dec 2001 B1
6325792 Swinger et al. Dec 2001 B1
6350272 Kawesch Feb 2002 B1
6361560 Nigam Mar 2002 B1
6364483 Grossinger et al. Apr 2002 B1
6371960 Heyman et al. Apr 2002 B2
6391230 Sarbadhikari May 2002 B1
6398277 McDonald Jun 2002 B1
6398789 Capetan Jun 2002 B1
6428572 Nagai Aug 2002 B2
6435681 Portney Aug 2002 B2
6436092 Peyman Aug 2002 B1
6447519 Brady et al. Sep 2002 B1
6447520 Ott et al. Sep 2002 B1
6458141 Peyman Oct 2002 B1
6461384 Hoffmann et al. Oct 2002 B1
6471708 Green Oct 2002 B2
6474814 Griffin Nov 2002 B1
6506200 Chin Jan 2003 B1
6511178 Roffman et al. Jan 2003 B1
6527389 Portney Mar 2003 B2
6537283 Van Noy Mar 2003 B2
6543610 Nigam Apr 2003 B1
6544286 Perez Apr 2003 B1
6551307 Peyman Apr 2003 B2
6554424 Miller et al. Apr 2003 B1
6554425 Roffman et al. Apr 2003 B1
6557998 Portney May 2003 B2
6581993 Nigam Jun 2003 B2
6582076 Roffman et al. Jun 2003 B1
6589057 Keenan et al. Jul 2003 B1
6589203 Mitrev Jul 2003 B1
6589280 Koziol Jul 2003 B1
6592591 Polla et al. Jul 2003 B2
6596000 Chan et al. Jul 2003 B2
6605093 Blake Aug 2003 B1
6607537 Binder Aug 2003 B1
6607556 Nigam Aug 2003 B1
6623522 Nigam Sep 2003 B2
6626941 Nigam Sep 2003 B2
6629979 Feingold et al. Oct 2003 B1
6632244 Nigam Oct 2003 B1
6641577 Bille Nov 2003 B2
6645246 Weinschenk, III et al. Nov 2003 B1
6648877 Juhasz et al. Nov 2003 B1
6657029 Vanderbilt Dec 2003 B2
6666887 Callahan et al. Dec 2003 B1
6673112 Nigam Jan 2004 B2
6702807 Peyman Mar 2004 B2
6709103 Roffman et al. Mar 2004 B1
6712848 Wolf et al. Mar 2004 B1
6723104 Ott Apr 2004 B2
6733507 McNicholas et al. May 2004 B2
6733526 Paul et al. May 2004 B2
6808262 Chapoy et al. Oct 2004 B2
6824178 Nigam Nov 2004 B2
6849090 Nigam Feb 2005 B2
6855163 Peyman Feb 2005 B2
6875232 Nigam Apr 2005 B2
6879402 Küchel Apr 2005 B2
6881197 Nigam Apr 2005 B1
6893461 Nigam May 2005 B2
6949093 Peyman Sep 2005 B1
6955432 Graham Oct 2005 B2
7128351 Nigam Oct 2006 B2
7585075 Marmo Sep 2009 B2
7699837 Cox et al. Apr 2010 B2
7776086 Miller Aug 2010 B2
7976577 Silvestrini Jul 2011 B2
7992906 Nigam Aug 2011 B2
8057541 Dishier et al. Nov 2011 B2
8162953 Dishier et al. Apr 2012 B2
8469948 Dishier et al. Jun 2013 B2
8540727 Dishier et al. Sep 2013 B2
8668735 Nigam et al. Mar 2014 B2
8685292 Mandler et al. Apr 2014 B2
20010027314 Peyman Oct 2001 A1
20010031959 Rozakis et al. Oct 2001 A1
20010051826 Bogaert et al. Dec 2001 A1
20020010510 Silvestrini Jan 2002 A1
20020055753 Silvestrini May 2002 A1
20020063068 Faxe May 2002 A1
20020101563 Miyamura et al. Aug 2002 A1
20020103538 Hughes et al. Aug 2002 A1
20020138069 Peyman Sep 2002 A1
20020156467 Tamayo Oct 2002 A1
20030014042 Juhasz et al. Jan 2003 A1
20030033010 Hicks et al. Feb 2003 A1
20030069637 Lynch et al. Apr 2003 A1
20030078487 Jeffries et al. Apr 2003 A1
20030208190 Roberts et al. Nov 2003 A1
20030220653 Perez Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20040019379 Glick et al. Jan 2004 A1
20040034413 Christensen Feb 2004 A1
20040054408 Glick et al. Mar 2004 A1
20040059320 Telandro et al. Mar 2004 A1
20040073303 Schanzlin Apr 2004 A1
20050080484 Marmo et al. Apr 2005 A1
20050080485 Nigam Apr 2005 A1
20050113844 Nigam May 2005 A1
20050119738 Nigam Jun 2005 A1
20050143717 Peyman Jun 2005 A1
20050178394 Slade Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050182488 Peyman Aug 2005 A1
20050203494 Holliday Sep 2005 A1
20050222679 Peyman Oct 2005 A1
20050246015 Miller Nov 2005 A1
20050246016 Miller et al. Nov 2005 A1
20050251115 Cox et al. Nov 2005 A1
20050261752 Chernyak Nov 2005 A1
20060020267 Marmo Jan 2006 A1
20060105309 Stoll et al. May 2006 A1
20060116762 Hong et al. Jun 2006 A1
20060134170 Griffith et al. Jun 2006 A1
20060142780 Pynson et al. Jun 2006 A1
20060142781 Pynson et al. Jun 2006 A1
20060173539 Shiuey Aug 2006 A1
20060235430 Le et al. Oct 2006 A1
20070027538 Aharoni et al. Feb 2007 A1
20070106318 McDonald May 2007 A1
20070106376 Roberts et al. May 2007 A1
20070129797 Lang et al. Jun 2007 A1
20070182920 Back et al. Aug 2007 A1
20070203577 Dishler et al. Aug 2007 A1
20070244559 Shiuey Oct 2007 A1
20070255401 Lang Nov 2007 A1
20070270945 Kobayashi et al. Nov 2007 A1
20070280994 Cunanan Dec 2007 A1
20080039825 Lai et al. Feb 2008 A1
20080228177 Moritz et al. Sep 2008 A1
20080262610 Lang et al. Oct 2008 A1
20080269771 Fulcher Oct 2008 A1
20080281304 Campbell Nov 2008 A1
20090005764 Knox et al. Jan 2009 A1
20090079940 Dai et al. Mar 2009 A1
20090198325 Holliday et al. Aug 2009 A1
20090216217 Odrich et al. Aug 2009 A1
20090326650 Zickler et al. Dec 2009 A1
20100069915 Shiuey Mar 2010 A1
20100241060 Roizman et al. Sep 2010 A1
20100331830 Bischoff et al. Dec 2010 A1
20100331831 Bischoff et al. Dec 2010 A1
20110029073 Liang Feb 2011 A1
20110149241 Dai Jun 2011 A1
20110208300 de Juan et al. Aug 2011 A1
20110218623 Dishler et al. Sep 2011 A1
20110256806 Monnoyeur Oct 2011 A1
20110290681 Nigam Dec 2011 A1
20120203238 Nigam Aug 2012 A1
20120231416 Drapeau et al. Sep 2012 A1
20120238806 Mangiardi et al. Sep 2012 A1
20120245592 Berner et al. Sep 2012 A1
20120245683 Christie et al. Sep 2012 A1
20130023892 Schneider et al. Jan 2013 A1
20130060255 Feingold et al. Mar 2013 A1
20130211523 Southard et al. Aug 2013 A1
20130231739 Dishler et al. Sep 2013 A1
20130253527 Schneider et al. Sep 2013 A1
20130253529 Walter et al. Sep 2013 A1
20130281993 Dishler et al. Oct 2013 A1
20130317605 Ide et al. Nov 2013 A1
20130324983 Liang Dec 2013 A1
20140128855 Wottke et al. May 2014 A1
20140288540 Bischoff et al. Sep 2014 A1
20160184085 Schneider et al. Jun 2016 A1
20170319329 Muller Nov 2017 A1
Foreign Referenced Citations (45)
Number Date Country
3208729 Sep 1983 DE
0308077 Mar 1989 EP
0420549 Apr 1991 EP
0729323 Jul 1998 EP
0668061 Sep 2000 EP
S5973622 Apr 1984 JP
01-195853 Aug 1989 JP
02-211119 Aug 1990 JP
5502811 May 1993 JP
H06510687 Dec 1994 JP
08-501009 Feb 1996 JP
9-504706 May 1997 JP
2000506056 May 2000 JP
2001091910 Apr 2001 JP
2002537895 Nov 2002 JP
03-508135 Mar 2003 JP
2006181269 Jul 2006 JP
2007500070 Jan 2007 JP
2010507814 Mar 2010 JP
2010220488 Oct 2010 JP
2012523854 Oct 2012 JP
2001-0013218 Feb 2001 KR
2294722 Mar 2007 RU
WO9208423 May 1992 WO
WO9305731 Apr 1993 WO
WO9626690 Sep 1996 WO
WO9808549 Mar 1998 WO
WO 9848715 Nov 1998 WO
WO 9917691 Apr 1999 WO
WO 9921513 May 1999 WO
WO 9930645 Jun 1999 WO
WO 0038594 Jul 2000 WO
WO 03041616 May 2003 WO
WO 03061518 Jul 2003 WO
WO 03101341 Dec 2003 WO
WO 2005020792 Mar 2005 WO
WO2005082265 Sep 2005 WO
WO 2005107648 Nov 2005 WO
WO 2006029316 Apr 2006 WO
WO 2006060363 Jun 2006 WO
WO2006083708 Aug 2006 WO
WO 2007101016 Sep 2007 WO
WO 2007132332 Nov 2007 WO
WO2010084595 Jul 2010 WO
WO2011069907 Jun 2011 WO
Non-Patent Literature Citations (46)
Entry
Spector, “Clinical Methods: The History, Physical, and Laboratory Examinations”, Butterworth Publishers, 3rd Edition, Chapter 58, The Pupils, (1990).
Patel et al.; Refractive index of human corneal epithelium and stroma; J. Refract. Surg.; 11(2); Abstract; Mar. 1995 (pubmed Abstract only).
Esguerra et al.; U.S. Appl. No. 14/463,355 entitled “Corneal implant storage, packaging, and delivery devices,” filed Aug. 19, 2014.
Alio, J. J., et al., “Intracorneal Inlay Complicated by Intrastomal Epithelial Opacification,” Arch Ophthalmol, Oct. 2004; vol. 122; 6 pages.
Cheng, et al.; “Predicting subjective judgment of best focus with objective image quality metrics”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 310-321.
Churms, P.W., “The Theory and Computation of Optical Modifications to the Cornea in Refractive Keratoplasty,” American Journal of Optometry & Physiological Optics, 56:2, pp. 67-74, Feb. 1979.
Huang et al.; Mathematical Model of Corneal Surface Smoothing After Laser Refractive Surgery; American Journal of Ophthalmology; Mar. 2003; pp. 267-278.
Lang, A.J. et al., “First order design of intracorneal inlays: dependence on keratometric flap and corneal properties,” ARVO Abstracts 2006, poster No. 3591, May 3, 2006.
Liou, H. L. et al., “Anatomically accurate, finite model eye for optical modeling”, Journal of the Optical Society of America, vol. 14, No. 8, Aug. 1997.
Marsack,et al.; “Metrics of optical quality derived from wave aberrations predict visual performance”; Journal of Vision; Apr. 23, 2004; vol. 4(4); pp. 322-328.
Navarro et al.; Accommodation-dependent model of the human eye with aspherics; J. Opt. Soc Am. A; vol. 2; No. 8; Aug. 1985; pp. 1273-1281.
Petroll et al.; Confocal assessment of the cornal response to intracorneal lens insertion and laser in situ keratomileusis with flap creation using IntraLase; J Cataract Refract Surg; vol. 32; pp. 1119-1128; Jul. 2006.
Reinstein et al.; Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound; J Refract Surg. Mar. 2012; 28(3):195-201.
Reinstein et al.; Epithelial thickness up to 26 years after radial keratotomy: three-dimensional display with Artemis very high-frequency digital ultrasound; J Refract Surg. Aug. 2011; 27(8):618-624.
Reinstein et al.; Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound; J Refract Surg. Apr. 2010; 26(4):259-71.
Reinstein et al.; Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound; J Refract Surg. Aug. 2010;26(8):555-64.
Reinstein et al.; Corneal epithelial thickness profile in the diagnosis of keratoconus; J Refract Surg. Jul. 2009; 25(7):604-10.
Reinstein et al.; Stability of LASIK in topographically suspect keratoconus confirmed non-keratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up; J Refract Surg. Jul. 2009; 25(7):569-77.
Reinstein et al.; Epithelial, stromal, and corneal pachymetry changes during orthokeratology; Optom Vis Sci. Aug. 2009; 86(8):E1006-14.
Reinstein et al.; Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound; J Refract Surg. May 2009; 25(5):444-50 (Author manusript).
Reinstein et al.; Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound; J Refract Surg. Jun. 2008; 24(6):571-81 (Author manusript).
Reinstein et al.; Epithelial and stromal changes induced by intacs examined by three-dimensional very high-frequency digital ultrasound; J Refract Surg. May-Jun. 2001; 17(3):310-8.
Reinstein et al.; Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing; Ophthalmology. Jan. 1994; 101(1):140-6.
Reinstein et al.; High-frequency ultrasound measurement of the thickness of the corneal epithelium; Refract Corneal Surg. Sep.-Oct. 1993;9(5):385-7.
Serrao et al.; Corneal epithelial healing after photorefractive keratectomy: analytical study; J. Cataract Refract Surg; vol. 31; pp. 930-937; May 2005.
Thoft et al.; The X, Y, Z Hypothesis of Corneal Epithelial Maintenance; Investigative Ophthalmology & Visual Science; vol. 24; pp. 1442-1443; Oct. 1983.
Watsky, M.A. et al., “Predicting Refractive Alterations with Hydrogel Keratophakia,” Investigative Opthalmology & Visual Science, vol. 26, pp. 240-243, Feb. 1985.
Nigam et al.; U.S. Appl. No. 14/160,438 entitled “Coreal Implant Applicators,” filed Jan. 21, 2014.
Sharma et al.; U.S. Appl. No. 14/211,714 entitled “Pre-treatment haze reduction for corneal inlays,” filed Mar. 14, 2014.
Plambeck et al.; U.S. Appl. No. 14/352,628 entitled “Corneal implant storage and delivery devices,” filed Apr. 17, 2014.
Holliday et al.; U.S. Appl. No. 14/547,931 entitled “Corneal inlay design and methods of correcting vision,” filed Nov. 19, 2014.
Collins et al.; U.S. Appl. No. 14/575,833 entitled “Integrated part fixturing for lathing processes,” filed Dec. 18, 2014.
Sharma; U.S. Appl. No. 14/427,510 entitled “Corneal implant edges and methods of use,” filed Mar. 11, 2015.
Holliday et al.; U.S. Appl. No. 14/656,621 entitled “Methods of correcting vision,” filed Mar. 12, 2015.
Esguerra et al.; U.S. Appl. No. 14/688,226 entitled “Corneal implant delivery devices and methods of use,” filed Apr. 16, 2015.
Dymax; UV curable optical assembly; 2 pages; retrieved Mar. 4, 2015 from the internet (http:www.dymax.com/index.php/adhesives/optical).
Jankov et al.; Laser intrastromal keratoplasty—case report; J. Refract.Surg.; 20(1); pp. 79-84; Jan.-Feb. 2004.
Winn et al.; Factors affecting light-adapted pupil size in normal human subjects; Investigative Ophthalmology and Visual Science; 35(3); pp. 1132-1137; Mar. 1994.
Walker et al.; Clinical Methods: The history, physical, and laboratory examinations; 3rd Edition; Chapter 58; Butterworth Publishers; Jul. 1990; 8 pages; retrieved from the internet (http://www.ncbi.nlm.nih.gov/books/NBK381).
Plambeck et al.; U.S. Appl. No. 15/163,610 entitled “Corneal implant storage and delivery devices,” filed May 24, 2016.
Dishler et al.; U.S. Appl. No. 15/219,130 entitled “Small diameter corneal inlays,” filed Jul. 25, 2016.
Holliday; U.S. Appl. No. 15/313,297 entitled “Corneal implants and methods of manufacturing,” filed Nov. 22, 2016.
Holliday et al.; U.S. Appl. No. 15/403,078 entitled “Methods of correcting vision,” filed Jan. 10, 2017.
Schneider et al.; U.S. Appl. No. 15/413,269 entitled “Corneal implant inserters and methods of use,” filed Jan. 23, 2017.
Le et al.; U.S. Appl. No. 15/508,499 entitled “Training cornea for refractive surgery training,” filed Mar. 3, 2017.
Daxer et al.; Collagen fibrils in the human corneal stroma: Structure and aging; Ivest Opthalmol & Vis Sci.; 39(3); pp. 644-648; Mar. 1998.
Related Publications (1)
Number Date Country
20140200665 A1 Jul 2014 US
Provisional Applications (4)
Number Date Country
61799847 Mar 2013 US
61155433 Feb 2009 US
61042659 Apr 2008 US
60776458 Feb 2006 US
Continuation in Parts (4)
Number Date Country
Parent 12877799 Sep 2010 US
Child 14217056 US
Parent 12418325 Apr 2009 US
Child 12877799 US
Parent 11738349 Apr 2007 US
Child 12418325 US
Parent 11554544 Oct 2006 US
Child 11554544 Oct 2006 US