Anterior lesser tuberosity fixed angle fixation device and method of use associated therewith

Information

  • Patent Grant
  • 9254154
  • Patent Number
    9,254,154
  • Date Filed
    Monday, March 5, 2012
    12 years ago
  • Date Issued
    Tuesday, February 9, 2016
    9 years ago
Abstract
A fixation device serves in facilitating reduction and repair of a fractured humerus. The fixation device includes a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft. The bone plate includes at least a body portion overlying the humeral shaft, and an end portion overlying a portion of the proximal humerus. The end portion can facilitate attachment of the bone plate to the lesser tuberosity of the proximal humerus.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to a fixation device used to facilitate reduction and repair of a fractured bone. More particularly, the present invention relates to a bone plate for creating a mechanically stronger connection between the bone plate and portions of a fractured humerus including the proximal humerus and the humeral shaft. More specifically, the present invention relates to a bone plate configured to provide optimal angles for bone screws received therethrough to decrease the incidence of penetration of the bone screws through the articular surface of the humeral head.


2. Description of the Prior Art


Current state of the art in surgical fracture fixation of the proximal humerus requires the application of a bone plate to the greater tuberosity of the proximal humerus. To attach the bone plate to the proximal humerus, bone screws (threadably or non-threadably engaging the bone plate) are inserted through the bone plate into the proximal humerus. In attaching the bone plate to the proximal humerus, the bone screws are ultimately received under the surface of the humeral head.


The bone screws used to attach the bone plate to the proximal humerus will likely be disposed at a significantly perpendicular angle with respect to the articular surface of the humeral head. This attachment orientation provides insufficient mechanical strength to maintain rigid attachment of the bone plate to the proximal humerus when subjected to joint reaction forces. As such, there remains a significant incidence of loss of fracture reduction and fracture fixation. In order to maximize stability of the connection, it is necessary to utilize long bone screws, so as to maximize the purchase thereof. However, given the significantly perpendicular angle of the bone screws relative to the articular surface, if there is any collapse or subsidence of the humeral head relative to the bone plate, the tips of the bone screws will penetrate the articular surface. Accordingly, there also remains a significant incidence of joint penetration.


Therefore, there is a need for a fixation device and method of use associated therewith that provides more optimal screw angles with respect to the articular surface of the humeral head and a mechanically stronger connection between the bone plate and the humerus. Such a fixation device can insure that bone screws are disposed at varying angles that are more tangential to the articular surface to prevent loss of fracture fixation and fracture reduction, and/or prevent penetration of the bone screws through the articular surface of the humeral head.


SUMMARY OF THE INVENTION

The present invention in a preferred embodiment contemplates a fixation device for facilitating reductions and repair of a fractured humerus, the fixation device including a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, the bone plate having a body portion, a neck portion, and a first end portion, the body portion including a first end, a second end opposite the first end, a longitudinal axis extending between the first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of the body portion being adapted to be substantially aligned with the humeral shaft when the bone plate is attached to the humerus, the neck portion extending from the body portion, the neck portion being adapted to bridge the biceps groove of the proximal humerus when the bone plate is attached to the humerus, the first end portion being contiguous to the neck portion, the first end portion including a second contact surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, the at least two bone screw receiving apertures each including an axis, the axes of the at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus; at least a first set of bone screws, a first bone screw of the first set of bone screws being received through a first of the plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of the first set of bone screws being received through a second of the plurality of bone screw receiving apertures and into the humeral shaft, the first and second bone screws of the first set of bone screws facilitating attached of the bone portion to the humeral shaft; and at least a second set of bone screws, each bone screw of the at least a second set of bone screws having a longitudinal axis, a first bone screw of the second set of bone screws being received through a first of the at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of the second set of bone screws being received through a second of the at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of the first and second bone screws of the second set of bone screws being aligned with the axes of the first and second bone screw receiving apertures and being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus.


The present invention in a further preferred embodiment contemplates A fixation device for facilitating reductions and repair of a fractured humerus, the fixation device including a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, the bone plate having a body portion, a neck portion, and a first end portion, the body portion including a first end, a second end opposite the first end, a longitudinal axis extending between the first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adjacent the second end and adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of the body portion being adapted to be substantially aligned with the humeral shaft when the bone plate is attached to the humerus, and the plurality of bone screw receiving apertures being positioned from adjacent a midpoint of and the second end of the body portion, the neck portion extending from between the first and second ends of the body portion, the neck portion being adapted to bridge the biceps groove of the proximal humerus when the bone plate is attached to the humerus, the neck portion terminating in the first end portion, the first end portion including a second contact surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, the at least two bone screw receiving apertures each including an axis, the axes of the at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus; at least a first set of bone screws, a first bone screw of the first set of bone screws being received through a first of the plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of the first set of bone screws being received through a second of the plurality of bone screw receiving apertures and into the humeral shaft, the first and second bone screws of the first set of bone screws facilitating attached of the bone portion to the humeral shaft; and at least a second set of bone screws, each bone screw of the at least a second set of bone screws having a longitudinal axis, a first bone screw of the second set of bone screws being received through a first of the at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of the second set of bone screws being received through a second of the at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of the first and second bone screws of the second set of bone screws being aligned with the axes of the first and second bone screw receiving apertures and being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus.


It is understood that both the foregoing general description and the following detailed description are exemplary and exemplary only, and are not restrictive of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention. Together with the description, they serve to explain the objects, advantages and principles of the invention. In the drawings:



FIG. 1 is a perspective view of a left proximal humerus;



FIG. 2 is a top view of the left proximal humerus depicted in FIG. 1;



FIG. 3 is a perspective view of a bone plate of a first embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;



FIG. 3A is a perspective view of the fixation device of FIG. 3 depicting the placement of bone screws used in the fixation device;



FIG. 4 is a perspective view of a bone plate of a second embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;



FIG. 4A is a perspective view of the fixation device of FIG. 4 depicting the placement of bone screws used in the fixation device;



FIG. 5 is a perspective view of a bone plate of a third embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;



FIG. 5A is a perspective view of the fixation device of FIG. 5 depicting the placement of bone screws used in the fixation device; and



FIG. 6 is a top cross-sectional view of the fixation device depicted in FIG. 5A taken through the greater tuberosity, the lesser tuberosity, and a portion of the fixation device.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description is intended to be representative only and not limiting, and many variations can be anticipated according to these teachings. Reference will now be made in detail to the preferred embodiments of this invention, examples of which are illustrated in the accompanying drawings.



FIGS. 1 and 2 depict the portions of a left proximal humerus generally indicated by the numeral 10. Proximal humerus 10 is joined to humeral shaft 12 (FIG. 1), and includes greater tuberosity 14, lesser tuberosity 16, biceps groove 18, humeral head 20, and an articular surface 22 of humeral head 20. Biceps groove 18 is disposed between greater tuberosity 14 and lesser tuberosity 16. Thus, as depicted in FIG. 2, greater tuberosity 14 is disposed laterally of biceps groove 18, and lesser tuberosity 16 is disposed medially of biceps groove 18. Furthermore, in FIGS. 3-5A, lesser tuberosity 16 is partially covered by the fixation devices of the present invention. Thus, the lead line associated with numeral 16 in FIGS. 3-5A points to proximal humerus 10 adjacent where fixation devices of the present invention are positioned.


As discussed above, to facilitate fracture fixation and fracture reduction, a bone plate typically has been attached to greater tuberosity 14. However, the placement of bone screws by the bone plate attached solely to greater tuberosity 14 is less than optimal. The bone screws will likely be disposed at a significantly perpendicular angle with respect to articular surface 22 of humeral head 20, and thus, cause a significant incidence of penetration of articular surface 22.


A first embodiment of a fixation device according to the present invention is generally indicated by the numeral 30 in FIGS. 3 and 3A. Fixation device 30 includes a “dogleg-shaped” bone plate 31 and various bone screws inserted therethrough and into bone.


Bone plate 31 has a body portion 32, a neck portion 34, and an end portion 36. Body portion 32 includes apertures 40 spaced therealong, and is attached to humeral shaft 12 and portions of proximal humerus 10 using bone screws 41 (FIG. 3A) inserted through apertures 40 and into the bone. As depicted in FIGS. 3 and 3A, neck portion 34 extends from body portion 32 over biceps groove 18, and terminates at end portion 36. End portion 36 includes apertures 42 spaced apart thereon, and is attached to lesser tuberosity 16 using bone screws 43 (FIG. 3A) inserted through apertures 42 and into proximal humerus 10. Apertures 40 and 42 extend between an upper surface 44 and a lower surface (not shown) of bone plate 31. The lower surface of bone plate 31 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.


Apertures 42 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 31 adjacent thereto, and the longitudinal axes of bone screws 43 received therein are ultimately aligned with the axes of apertures 42. The angles of the longitudinal axis of apertures 42 serve to orient bone screws 43 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 42 serve to position bone screws 43 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. Accordingly, the axes of apertures 42 and the longitudinal axes of bone screws 43 received therein can be oriented away from and avoid intersection with articular surface 22, thereby decreasing the incidence of penetration of bone screws 43 through articular surface 22, while also preventing a loss of fracture fixation and fracture reduction.


A second embodiment of a fixation device according to the present invention is generally indicated by the numeral 50 in FIGS. 4 and 4A Fixation device 50 includes an “h-shaped” bone plate 51 and various screws inserted therethrough and into bone.


Bone plate 51 has a body portion 52, a neck portion 54, a first end portion 56, and a second end portion 58. Body portion 52 includes apertures 60 spaced therealong, and is attached to humeral shaft 12 and portions of proximal humerus 10 using bone screws 61 (FIG. 4A) inserted through apertures 60 and into the bone. As depicted in FIGS. 4 and 4A, first end portion 56 is contiguous with body portion 52, and includes apertures 62 spaced apart thereon. First end portion 56 is attached to greater tuberosity 14 using bone screws 63 (FIG. 4A) inserted through apertures 62 and into proximal humerus 10. As depicted in FIGS. 4 and 4A, neck portion 54 extends from between body portion 52 and first end portion 56 over biceps groove 18, and terminates at second end portion 58. Second end portion 58 includes apertures 64 spaced apart thereon, and is attached to lesser tuberosity 16 using bone screws 65 (FIG. 4A) inserted through apertures 64 and into proximal humerus 10. Apertures 60, 62, and 64 extend between an upper surface 66 and a lower surface (not shown) of bone plate 51. The lower surface of bone plate 51 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.


Apertures 62 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 51 adjacent thereto, and the longitudinal axes of bone screws 63 received therein are ultimately aligned with the axes of apertures 62. As discussed below, use of second end portion 58 to facilitate attachment of bone plate 51 to proximal humerus 10 affords use of shorter bone screws 63 in apertures 62 than those typically used to secure attachment to greater tuberosity 14.


Like apertures 62, apertures 64 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 51 adjacent thereto, and the longitudinal axes of bone screws 65 received therein are ultimately aligned with the axes of apertures 64. The angles of the axes of apertures 64 serve to orient bone screws 65 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 64 serve to position bone screws 65 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. As such, the axes of apertures 64 and the longitudinal axes of bone screws 65 received therein can be oriented away from and avoid intersection with articular surface 22. Accordingly, such an orientation allows bone screws 63 inserted into lesser tuberosity 16 to share (with bone screws 63) in resisting the joint forces applied in a direction perpendicular to articular surface 22, thereby decreasing the incidence of penetration of bone screws 63 through articular surface 22, while also increasing the overall mechanical strength of the connection, preventing a loss of fracture fixation and fracture reduction.


Because bone plate 51 is attached using (1) first end portion 56 to greater tuberosity 14, and (2) using second end portion 58 to lesser tuberosity 16, bone screws 63 used with apertures 62 can be shorter than those typically used to attach a bone plate solely to greater tuberosity 14. Thus, given that shorter bone screws 63 are used, the incidence of shorter bone screws 63 (inserted through greater tuberosity 14) penetrating articular surface 22 of humeral head 20 can be significantly lessened. That is, even if the orientations of the axes of apertures 62 and the longitudinal axes of bone screws 63 received therein intersect articular surface 22, the lengths of bone screws 63 received in apertures 62 do not afford penetration of articular surface 22.


A third embodiment of a fixation device according to the present invention is generally indicated by the numeral 70 in FIGS. 5, 5A, and 6. Fixation device 70 includes a “y-shaped” bone plate 71 and various screws inserted therethrough and into bone.


Bone plate 71 has a body portion 72, a neck portion 74, and an end portion 76. As depicted in FIGS. 5 and 5A, body portion 72 extends along greater tuberosity 14 and humeral shaft 12. Body portion 72 includes first apertures 80 and second apertures 82 formed therein. First apertures 80 are spaced apart from one another at one end of body portion 72 (ultimately adjacent greater tuberosity 14), and second apertures 82 are spaced along body portion 72 from adjacent first apertures 80 to the other end of body portion 72 (ultimately adjacent humeral shaft 12).


Furthermore, as depicted in FIG. 5, neck portion 74 extends from body portion 72 over biceps groove 18, and terminates at end portion 76. Neck portion 74 can be formed integrally with body portion 72 (as depicted in FIG. 5), or neck portion 74 can be formed separately from body portion 72. When body portion 72 and neck portion 74 are formed separately, body portion 72 and neck portion 74 can be attached to one another before or during surgery. Furthermore, neck portion 74 can be positioned to overlap body portion 72, and then body portion 72 and neck portion 74 can be attached to one another; or body portion 72 can be positioned to overlap neck portion 74, and then body portion 72 and neck portion 74 can be attached to one another.


When formed separately from one another, body portion 72 and neck portion 74 can be attached to one another using one or more fasteners such as screws (not shown). Furthermore, to facilitate attachment of one another, body portion 72 and neck portion 74 can each include one or more corresponding apertures (not shown) formed therein and configured to receive the associated fastener or fasteners. Accordingly, during surgery, body portion 72, for example, can be attached to proximal humerus 10 first, and then neck portion can 74 can be attached to proximal humerus 10 and body portion 72, or neck portion 74 can attached to proximal humerus 10 first, and then body portion 72 can be attached to proximal humerus 10 and neck portion 74.


End portion 76 includes apertures 84 spaced apart from one another thereon (ultimately adjacent lesser tuberosity 16). Apertures 80, 82, and 84 extend between an upper surface 86 and a lower surface (not shown) of the bone plate 71. The lower surface of bone plate 71 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.


First apertures 80 are configured to receive bone screws 81 (FIGS. 5A and 6) and second apertures 82 are configured to receive bone screws 83 (FIG. 5A) to facilitate attachment of body portion 72 to greater tuberosity 14 and humeral shaft 12, respectively. Furthermore, apertures 84 are configured to receive bone screws 85 (FIG. 5A and 6) therethrough to attach end portion 76 to lesser tuberosity 16.


Apertures 80 each include an axis substantially perpendicular to at least one of upper and lower surfaces of bone plate 71 adjacent thereto, and the longitudinal axes of bone screws 81 received therein are ultimately aligned with the axes of apertures 80. As discussed below, use of end portion 76 to facilitate attachment of bone plate 71 to proximal humerus 10 affords use of shorter bone screws 81 in apertures 80 than those typically used to secure attachment to greater tuberosity 14.


Like apertures 80, apertures 84 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 71 adjacent thereto, and the longitudinal axes of bone screws 85 received therein are ultimately aligned with the axes of apertures 84. The angles of the axes of apertures 84 serve to orient bone screws 85 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 84 serve to position bone screws 85 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. As such, the axes of apertures 84 and the longitudinal axes of bone screws 85 received therein can be oriented away from and avoid intersection with articular surface 22, and are substantially perpendicular to the longitudinal axes of bone screws 81. Accordingly, such an orientation allows bone screws 85 to share (with bone screws 81) in resisting the joint forces applied in a direction perpendicular to articular surface 22, thereby decreasing the incidence of penetration of bone screws 85 through articular surface 22, while also increasing the overall mechanical strength of the connection, preventing a loss of fracture fixation and fracture reduction. Furthermore, as discussed below, the right angle construct formed by the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 provides significant mechanical advantages.


Because the bone plate 71 is attached using (1) apertures 80 and bone screws 81 to greater tuberosity 14, and (2) using apertures 84 (of end portion 76) and bone screws 85 to lesser tuberosity 16, bone screws 81 can be shorter than those typically used to attach a bone plate solely to greater tuberosity 14. Thus, given that bone screws 81 are shorter than those typically used, the incidence of bone screws 81 (inserted through greater tuberosity 14) penetrating articular surface 22 of humeral head 20 can be significantly lessoned. That is, even if the orientations of the axes of apertures 80 and the longitudinal axes of bone screws 81 received therein intersect articular surface 22, the lengths of bone screws 81 received in apertures 80 do not afford penetration of articular surface 22.


The right angle construct formed by the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 provides significant mechanical advantages that reinforce the connection between proximal humerus 10 and bone plate 71. That is, in addition to affording shorter bone screws 81, the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 serves in stabilizing proximal humerus 10.


To further stabilize proximal humerus 10, bone screws 81 and 85 can be configured to engage one another within proximal humerus 10. For example, bone screws 85 inserted into lesser tuberosity 16 (via end portion 76) can engage bone screws 81 inserted into greater tuberosity 14 (via body portion 72). Bone screws 85 can impinge on bone screws 81, or bone screw 81 can include apertures (not shown) for receiving bone screws 85. Either way, the engagement of bone screws 81 and 85 forms a lattice structure within proximal humerus 10. In doing so, bone screws 81 and 85 strengthen proximal humerus 10, and further prevent a loss of fracture fixation and fracture reduction thereof. The structure and formation of lattice structures (such as that form by bone screws 81 and 85) is described in pending U.S. application Ser. Nos. 11/050,304 and 13/253,564, which are herein incorporated by reference.


Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Accordingly, it is intended that the specification and examples be considered as exemplary only.

Claims
  • 1. A fixation device for facilitating reductions and repair of a fractured humerus, the humerus including at least a proximal humerus, a humeral shaft, a humeral head, a biceps groove, a lesser tuberosity, a greater tuberosity, and an articular surface, the fixation device comprising: a bone plate configured to overlie and contact portions of the proximal humerus and the humeral shaft, said bone plate including a body portion and a first neck portion, said body portion having a proximal end configured to be placed proximate the humeral head, and a distal end opposite said proximal end, said body portion defining a first mid-longitudinal axis extending through said proximal end and said distal end thereof, and said body portion having a maximum width perpendicular to the first mid-longitudinal axis thereof, said first neck portion extending from said proximal end of said body portion, said first neck portion defining a second mid-longitudinal axis generally transverse to the first mid-longitudinal axis, said first neck portion having a first portion connected to said proximal end of said body portion, and said first neck portion having a second portion terminating in a first end portion of said bone plate, the second mid-longitudinal axis extending through said first portion of said first neck portion, and through said first end portion of said bone plate;said body portion including a plurality of bone screw receiving apertures configured to overlie the humeral shaft, and a first contact surface configured to contact the exterior surface of the humeral shaft, the first mid-longitudinal axis of said body portion being configured to be substantially aligned with the humeral shaft when said bone plate is attached to the humerus;said first neck portion being configured to bridge the biceps groove of the proximal humerus when said bone plate is attached to the humerus, said first end portion including a second contact surface configured to contact the exterior surface of the lesser tuberosity of the proximal humerus, and said second portion of said first neck portion including at least two bone screw receiving apertures configured to overlie the lesser tuberosity, said at least two bone screw receiving apertures each including an axis, the axes of said at least two bone screw receiving apertures being oriented away from the articular surface of the proximal humerus when said bone plate is attached to the humerus;at least a first set of bone screws, a first bone screw of said first set of bone screws configured to be received through a first of said plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of said first set of bone screws configured to be received through a second of said plurality of bone screw receiving apertures and into the humeral shaft, said first and second bone screws of said first set of bone screws facilitating attachment of said bone portion to the humeral shaft; andat least a second set of bone screws, each bone screw of said at least a second set of bone screws having a longitudinal axis, a first bone screw of said second set of bone screws configured to be received through a first of said at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of said second set of bone screws configured to be received through a second of said at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of said first and second bone screws of said second set of bone screws being aligned with the axes of said first and second bone screw receiving apertures and being oriented away from the articular surface of said proximal humerus when said bone plate is attached to the humerus;wherein said first neck portion has a first side and a second side, said first portion of said first neck portion has a first width between said first and second sides, said first width being adjacent said body portion and perpendicular to the second mid-longitudinal axis, and said second portion of said first neck portion has a second width and a third width between said first and second sides, said second width being adjacent said first end portion and between said first end portion and said at least two bone screw receiving apertures of said second portion of said first neck portion, said second width being perpendicular to the second mid-longitudinal axis, said second width being greater than said first width, said third width, and said maximum width of said body portion, said second portion being continuous across said third width between said first and second sides.
  • 2. The fixation device of claim 1, wherein said bone plate includes a second neck portion extending from said body portion and terminating in a second end portion, said second end portion being spaced apart from said first end portion, said second end portion including a third contact surface configured to contact the exterior surface of the greater tuberosity of the proximal humerus, and at least two bone screw receiving apertures configured to overlie the greater tuberosity.
  • 3. The fixation device of claim 2, further comprising at least a third set of bone screws, a first bone screw of said third set of bone screws configured to be received through a first bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity, and a second bone screw of said third set of bone screws configured to be received through a second bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity.
  • 4. The fixation device of claim 3, wherein the lengths of each bone screw of said third set of bone screws do not afford penetration of the articular surface of the proximal humerus.
  • 5. The fixation device of claim 1, wherein said body portion and said first neck portion are substantially perpendicular to one another.
  • 6. The fixation device of claim 1, wherein at least said first bone screw of said second set of bone screws, and at least said second bone screw of said second set of bone screws are oriented to define a lattice structure.
  • 7. The fixation device of claim 1, wherein the width of said first neck portion increases gradually from said first width to said second width.
  • 8. The fixation device claim 2, wherein a shape of the bone plate substantially defines an upside-down lower-case letter h.
  • 9. The fixation device claim 2, wherein a shape of the bone plate substantially defines a lower-case letter y.
  • 10. A fixation device for facilitating reductions and repair of a fractured humerus, the humerus including at least a proximal humerus, a humeral shaft, a biceps groove, a lesser tuberosity, a greater tuberosity, and an articular surface, the fixation device comprising: a bone plate configured to overlie and contact portions of the proximal humerus and the humeral shaft, said bone plate including a body portion and at least one neck portion, said body portion having a proximal end configured to be placed proximate the humeral head, and a distal end opposite said proximal end, said body portion defining a first mid-longitudinal axis extending through said proximal end and said distal end thereof, and said body portion having a maximum width perpendicular to the first mid-longitudinal axis thereof, said at least one neck portion extending from said proximal end of said body portion, said at least one neck portion defining a second mid-longitudinal axis generally transverse to said first mid-longitudinal axis, said at least one neck portion terminating in an end portion, the second mid-longitudinal axis extending through said end portion of said at least one neck portion and said proximal end of said body portion, said at least one neck portion having a first side and a second side, said at least one neck portion having a first width between said first and second sides and proximate said proximal end of said body portion, and said at least one neck portion having a second width and a third width between said first and second sides and proximate said end portion, said first width, said second width, and said third width being perpendicular to the second mid-longitudinal axis, said second width being greater than said first width, said third width, and said maximum width of said body portion, said at least one neck portion being continuous across said third width between said first and second sides;said body portion including a plurality of bone screw receiving apertures configured to overlie the humeral shaft, and a first contact surface adjacent said distal end and configured to contact the exterior surface of the humeral shaft, the first mid-longitudinal axis of said body portion being configured to be substantially aligned with the humeral shaft when said bone plate is attached to the humerus, and said plurality of bone screw receiving apertures being positioned from adjacent a midpoint of to adjacent said distal end of said body portion;said at least one neck portion being configured to bridge the biceps groove of the proximal humerus when said bone plate is attached to the humerus, said end portion including a second contact surface configured to contact the exterior surface of the lesser tuberosity of the proximal humerus, and said at least one neck portion adjacent said end portion including at least two bone screw receiving apertures configured to overlie the lesser tuberosity, said second width of said at least one neck portion being positioned between said at least two bone screw receiving apertures and said end portion, said at least two bone screw receiving apertures each including an axis, the axes of said at least two bone screw receiving apertures being oriented away from the articular surface of the proximal humerus when said bone plate is attached to the humerus;at least a first set of bone screws, a first bone screw of said first set of bone screws configured to be received through a first of said plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of said first set of bone screws configured to be received through a second of said plurality of bone screw receiving apertures and into the humeral shaft, said first and second bone screws of said first set of bone screws facilitating attachment of said bone plate to the humeral shaft; andat least a second set of bone screws, each bone screw of said at least a second set of bone screws having a longitudinal axis, a first bone screw of said second set of bone screws configured to be received through a first of said at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of said second set of bone screws configured to be received through a second of said at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of said first and second bone screws of said second set of bone screws being aligned with the axes of said first and second bone screw receiving apertures and being oriented away from the articular surface of said proximal humerus when said bone plate is attached to the humerus;wherein the width of said at least one neck portion gradually widens from said first width to said second width.
  • 11. The fixation device of claim 10, wherein, when said bone plate is attached to the humerus, said proximal end of said body portion is positioned adjacent said greater tuberosity.
  • 12. The fixation device of claim 11, wherein said body portion includes a third contact surface adjacent said proximal end and configured to contact the exterior surface of the greater tuberosity of the proximal humerus, and at least two bone screw receiving apertures configured to overlie the greater tuberosity.
  • 13. The fixation device of claim 12, further comprising at least a third set of bone screws, a first bone screw of said third set of bone screws configured to be received through a first bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity, and a second bone screw of said third set of bone screws configured to be received through a second bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity.
  • 14. The fixation device of claim 13, wherein the lengths of each bone screw of said third set of bone screws do not afford penetration of the articular surface of the proximal humerus.
Parent Case Info

The present application claims the benefit of provisional Application No, 61/449,012, filed Mar. 3, 2011; which is incorporated by reference herein.

US Referenced Citations (244)
Number Name Date Kind
1950799 Jones Mar 1934 A
2500370 McKibbin Mar 1950 A
2555291 Poupitch May 1951 A
2682265 Collison Jun 1954 A
2853114 Barry Sep 1958 A
2875663 Wieber Mar 1959 A
3489143 Halloran Jan 1970 A
3552389 Allgower et al. Jan 1971 A
3579831 Stevens et al. May 1971 A
3716050 Johnston Feb 1973 A
3791380 Dawidowski Feb 1974 A
3900025 Barnes, Jr. Aug 1975 A
4263904 Judet Apr 1981 A
4535768 Hourahane et al. Aug 1985 A
4683878 Carter Aug 1987 A
4733654 Marino Mar 1988 A
4776330 Chapman et al. Oct 1988 A
4790302 Colwill et al. Dec 1988 A
4794919 Nilsson Jan 1989 A
4796612 Reese Jan 1989 A
4838264 Bremer et al. Jun 1989 A
4858602 Seidel et al. Aug 1989 A
4870957 Goble et al. Oct 1989 A
5003969 Azer et al. Apr 1991 A
5015248 Burstein et al. May 1991 A
5041113 Biedermann et al. Aug 1991 A
5041114 Chapman et al. Aug 1991 A
5180383 Haydon Jan 1993 A
5190544 Chapman et al. Mar 1993 A
5324291 Ries et al. Jun 1994 A
5356410 Pennig Oct 1994 A
5364399 Lowery et al. Nov 1994 A
5423860 Lizardi et al. Jun 1995 A
5437667 Papierski et al. Aug 1995 A
5443516 Albrektsson et al. Aug 1995 A
5458654 Tepic Oct 1995 A
5462547 Weigum Oct 1995 A
5472444 Huebner et al. Dec 1995 A
5505734 Caniggia et al. Apr 1996 A
5578035 Lin Nov 1996 A
5584835 Greenfield Dec 1996 A
5586985 Putnam et al. Dec 1996 A
5601553 Trebing et al. Feb 1997 A
5620449 Faccioli et al. Apr 1997 A
5658287 Hofmann et al. Aug 1997 A
5665088 Gil et al. Sep 1997 A
5674222 Berger et al. Oct 1997 A
5676667 Hausman Oct 1997 A
5681311 Foley et al. Oct 1997 A
5709686 Talos et al. Jan 1998 A
5749872 Kyle et al. May 1998 A
5766174 Perry Jun 1998 A
5776194 Mikol et al. Jul 1998 A
5779704 Kim Jul 1998 A
5785712 Runciman et al. Jul 1998 A
5840078 Yerys Nov 1998 A
5868749 Reed Feb 1999 A
5931839 Medoff Aug 1999 A
5976139 Bramlet Nov 1999 A
5980575 Albrektsson et al. Nov 1999 A
6030389 Wagner et al. Feb 2000 A
6096040 Esser Aug 2000 A
6149653 Deslauriers Nov 2000 A
6152927 Farris et al. Nov 2000 A
6200330 Benderev et al. Mar 2001 B1
6206881 Frigg et al. Mar 2001 B1
D443060 Benirschke et al. May 2001 S
6270499 Leu et al. Aug 2001 B1
D449692 Michelson Oct 2001 S
6302887 Spranza et al. Oct 2001 B1
6331179 Freid et al. Dec 2001 B1
6348052 Sammarco Feb 2002 B1
6358250 Orbay Mar 2002 B1
6364881 Apgar et al. Apr 2002 B1
6364882 Orbay Apr 2002 B1
6379359 Dahners Apr 2002 B1
6398783 Michelson Jun 2002 B1
6406478 Kuo Jun 2002 B1
6409768 Tepic et al. Jun 2002 B1
6413259 Lyons et al. Jul 2002 B1
6440135 Orbay et al. Aug 2002 B2
6468278 Muckter Oct 2002 B1
6572620 Schon et al. Jun 2003 B1
6620195 Goble et al. Sep 2003 B2
6623486 Weaver et al. Sep 2003 B1
6663669 Reiley Dec 2003 B1
6669701 Steiner et al. Dec 2003 B2
6695844 Bramlet et al. Feb 2004 B2
6706046 Orbay et al. Mar 2004 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730090 Orbay et al. May 2004 B2
6776781 Uwaydah Aug 2004 B1
6863671 Strobel et al. Mar 2005 B1
6866665 Orbay Mar 2005 B2
6916323 Kitchens Jul 2005 B2
6945973 Bray Sep 2005 B2
7001388 Orbay et al. Feb 2006 B2
7063701 Michelson Jun 2006 B2
7128744 Weaver et al. Oct 2006 B2
D536453 Young et al. Feb 2007 S
7220246 Raulerson May 2007 B2
7229445 Hayeck et al. Jun 2007 B2
7235079 Jensen et al. Jun 2007 B2
7354441 Frigg Apr 2008 B2
7500983 Kaiser et al. Mar 2009 B1
7563263 Orbay et al. Jul 2009 B2
7582107 Trail et al. Sep 2009 B2
7591823 Tipirneni Sep 2009 B2
7604657 Orbay et al. Oct 2009 B2
7637908 Gonzalez-Hernandez Dec 2009 B1
7651517 Konieczynski et al. Jan 2010 B2
7655029 Niederberger et al. Feb 2010 B2
7695472 Young Apr 2010 B2
7722653 Young et al. May 2010 B2
7740648 Young et al. Jun 2010 B2
7744638 Orbay Jun 2010 B2
7776076 Grady, Jr. et al. Aug 2010 B2
7780667 Watanabe et al. Aug 2010 B2
7780710 Orbay et al. Aug 2010 B2
7896886 Orbay et al. Mar 2011 B2
7909859 Mosca et al. Mar 2011 B2
7914532 Shaver et al. Mar 2011 B2
7927341 Orbay et al. Apr 2011 B2
7938850 Orbay et al. May 2011 B2
7951176 Grady et al. May 2011 B2
7951178 Jensen May 2011 B2
7955364 Ziolo et al. Jun 2011 B2
D643121 Milford et al. Aug 2011 S
8021402 Martin et al. Sep 2011 B2
D646785 Milford Oct 2011 S
8062296 Orbay et al. Nov 2011 B2
8062367 Kirschman Nov 2011 B2
8100953 White et al. Jan 2012 B2
8182485 Gonzalez-Hernandez May 2012 B1
8317842 Graham et al. Nov 2012 B2
8523902 Heaven et al. Sep 2013 B2
8574234 Gonzalez-Hernandez Nov 2013 B2
8597363 Liverneaux et al. Dec 2013 B2
8690916 Gonzalez-Hernandez Apr 2014 B2
8728126 Steffen May 2014 B2
8764808 Gonzalez-Hernandez Jul 2014 B2
8961573 Gonzalez-Hernandez Feb 2015 B2
20020091391 Cole et al. Jul 2002 A1
20030135212 Chow Jul 2003 A1
20030135216 Sevrain Jul 2003 A1
20030208210 Dreyfuss et al. Nov 2003 A1
20040097939 Bonutti May 2004 A1
20040193278 Maroney et al. Sep 2004 A1
20040210220 Tornier Oct 2004 A1
20050004574 Muckter Jan 2005 A1
20050015089 Young et al. Jan 2005 A1
20050021033 Zeiler et al. Jan 2005 A1
20050038513 Michelson Feb 2005 A1
20050085819 Ellis et al. Apr 2005 A1
20050182405 Orbay et al. Aug 2005 A1
20050240187 Huebner et al. Oct 2005 A1
20050267476 Chervitz et al. Dec 2005 A1
20050288681 Klotz et al. Dec 2005 A1
20060015072 Raulerson Jan 2006 A1
20060015101 Warburton et al. Jan 2006 A1
20060106385 Pennig May 2006 A1
20060161156 Orbay Jul 2006 A1
20060217722 Dutoit et al. Sep 2006 A1
20060229623 Bonutti et al. Oct 2006 A1
20060235400 Scheider Oct 2006 A1
20060241617 Holloway et al. Oct 2006 A1
20060264947 Orbay et al. Nov 2006 A1
20060264956 Orbay et al. Nov 2006 A1
20060271105 Foerster et al. Nov 2006 A1
20070005074 Chudik Jan 2007 A1
20070016205 Beutter et al. Jan 2007 A1
20070083207 Ziolo et al. Apr 2007 A1
20070123880 Medoff May 2007 A1
20070123885 Kirschman May 2007 A1
20070162015 Winquist et al. Jul 2007 A1
20070167953 Prien et al. Jul 2007 A1
20070233114 Bouman Oct 2007 A1
20070233115 Sixto et al. Oct 2007 A1
20080015593 Pfefferle et al. Jan 2008 A1
20080045960 Bruecker et al. Feb 2008 A1
20080119895 Manceau May 2008 A1
20080132955 Frigg Jun 2008 A1
20080140130 Chan et al. Jun 2008 A1
20080154311 Staeubli Jun 2008 A1
20080161853 Arnold et al. Jul 2008 A1
20080161860 Ahrens et al. Jul 2008 A1
20080161863 Arnold et al. Jul 2008 A1
20080221577 Elghazaly Sep 2008 A1
20080234749 Forstein Sep 2008 A1
20080234752 Dahners Sep 2008 A1
20080249572 Tandon Oct 2008 A1
20090012571 Perrow et al. Jan 2009 A1
20090024173 Reis, Jr. Jan 2009 A1
20090048681 Vlachos Feb 2009 A1
20090069851 Gillard Mar 2009 A1
20090076554 Huebner et al. Mar 2009 A1
20090105838 Russo et al. Apr 2009 A1
20090125070 Sixto, Jr. et al. May 2009 A1
20090171399 White et al. Jul 2009 A1
20090192550 Leung et al. Jul 2009 A1
20090216270 Humphrey Aug 2009 A1
20090228010 Gonzalez-Hernandez et al. Sep 2009 A1
20090254089 Tipirneni et al. Oct 2009 A1
20090254189 Scheker Oct 2009 A1
20090264936 Gonzalez-Hernandez Oct 2009 A1
20090275987 Graham et al. Nov 2009 A1
20090275991 Medoff Nov 2009 A1
20090281577 Graham et al. Nov 2009 A1
20090281578 Spencer Nov 2009 A1
20090299369 Orbay et al. Dec 2009 A1
20090306711 Stone et al. Dec 2009 A1
20090312758 Petit et al. Dec 2009 A1
20090312760 Forstein et al. Dec 2009 A1
20090312802 Dasilva Dec 2009 A1
20090326591 Spencer, Jr. Dec 2009 A1
20100030276 Huebner et al. Feb 2010 A1
20100057086 Price et al. Mar 2010 A1
20100145339 Steffen Jun 2010 A1
20100145397 Overes et al. Jun 2010 A1
20100198258 Heaven et al. Aug 2010 A1
20100217393 Theofilos Aug 2010 A1
20100262194 Wagner et al. Oct 2010 A1
20100274245 Gonzalez-Hernandez Oct 2010 A1
20100324602 Huebner et al. Dec 2010 A1
20100331844 Ellis et al. Dec 2010 A1
20110152943 Gonzalez-Hernandez Jun 2011 A1
20110160730 Schonhardt et al. Jun 2011 A1
20120083848 Gonzalez-Hernandez Apr 2012 A1
20120109322 Gonzalez-Hernandez May 2012 A1
20120197305 Gonzalez-Hernandez Aug 2012 A1
20120197308 Gonzalez-Hernandez Aug 2012 A1
20120226321 Gonzalez-Hernandez Sep 2012 A1
20120226322 Gonzalez-Hernandez Sep 2012 A1
20130096629 Rollinghoff et al. Apr 2013 A1
20130116734 Gonzalez-Hernandez May 2013 A1
20130338780 Berchoux et al. Dec 2013 A1
20140121709 Gonzalez-Hernandez May 2014 A1
20140121779 Gonzalez-Hernandez May 2014 A1
20140172020 Gonzalez-Hernandez Jun 2014 A1
20140180344 Gonzalez-Hernandez Jun 2014 A1
20140277177 Gonzalez-Hernandez Sep 2014 A1
20150045898 Gonzalez-Hernandez Feb 2015 A1
20150164566 Gonzalez-Hernandez Jun 2015 A1
Foreign Referenced Citations (18)
Number Date Country
86 28 766 Dec 1986 DE
89 07 443 Sep 1989 DE
43 43 117 Jun 1995 DE
198 57 279 Jun 2000 DE
299 07 161 Aug 2000 DE
0 551 588 Nov 1992 EP
1 132 052 Sep 2001 EP
1 468 655 Oct 2004 EP
2 606 268 May 1988 FR
2 680 673 Mar 1993 FR
2 712 173 May 1995 FR
4-138152 May 1992 JP
WO 9938448 Aug 1999 WO
WO 02071963 Sep 2002 WO
WO 2005037117 Apr 2005 WO
WO 2008007194 Jan 2008 WO
WO 2008007196 Jan 2008 WO
WO 2012003884 Jan 2012 WO
Non-Patent Literature Citations (40)
Entry
U.S. Appl. No. 10/993,723, filed Nov. 2004, Gonzalez-Hernandez.
U.S. Appl. No. 11/050,304, filed Feb. 2005, Gonzalez-Hernandez.
U.S. Appl. No. 11/079,350, filed Mar. 2005, Gonzalez-Hernandez.
U.S. Appl. No. 11/366,676, filed Mar. 2006, Gonzalez-Hernandez.
U.S. Appl. No. 11/493,122, filed Jul. 2006, Gonzalez-Hernandez.
U.S. Appl. No. 11/526,331, filed Sep. 2006, Gonzalez-Hernandez.
U.S. Appl. No. 11/707,775, filed Feb. 2007, Gonzalez-Hernandez.
U.S. Appl. No. 13/253,564, filed Oct. 2011, Gonzalez-Hernandez.
U.S. Appl. No. 13/282,810, filed Oct. 2011, Gonzalez-Hernandez.
U.S. Appl. No. 13/411,069, filed Mar. 2012, Gonzalez-Hernandez.
U.S. Appl. No. 13/411,100, filed Mar. 2012, Gonzalez-Hernandez.
Acumed; ACU-LOC Wrist Plating System; Jul. 2009; 20 pages.
Acumed; The Mayo Clinic Congruent Elbow Plates (catalog); 2003; 19 pages.
Acumed, The Mayo Clinic Congruent Elbow Plate System (catalog): Apr. 2006; 20 pages.
Christie, J., C.R. Howie and P.C. Armour, Fixation of displaced subcapital femoral fractures. Compression screw fixation versus double divergent pins. J Bone Joint Surg [Br] 1988; 70-B: 199-201.
Cross, W.M. et al., “Achieving stable fixation: biomechanical designs for fracture healing,” AAOS Now (2008) 3 pages.
Guha, AR, et al.; “A New Technique of Fixation of Radial Head Fractures Using a Modified Tubular Plate,” Journal of Postgraduate Medicine; Jul. 2004; vol. 50, Issue 2; pp. 113-114; Accessed Aug. 6, 2008 at: http://www.jpgmonline.com/article.asp?issn=0022-3859;year=2004;volume=50;issue=2;spage=113;epage=114;aulast=Guha.
Hand innovations, LLC; DVR Anatomic, Volar Plating System; 2007; 4 pages.
Hussain M., R.N. Natarajan, A.H. Fayyazi, B.R. Braaksma, G.B. Andersson and H.S. An, Screw angulation affects bone-screw stresses and bone graft laod sharing in an anterior cervical corpectomy fusion with a rigid screw-plate construct: a finite element model study; Spine Journal, vol. 9, Issue 12, Dec. 2008; pp. 1016-1023 (published online Oct. 12, 2009).
Lakatos, R. et al.; “General principles of internal fixation”; eMedicine; Aug. 2006; 51 pages.
“MIS Technique,” published by Zimmer®, 1 page (undated).
Robert, III, K.Q., R. Chandler, R,V, Barratta, K.A. Thomas and M.V. Harris, The effect of divergent screw placement on the intial strength of plate-to-bone fixiation. J Trauma. Dec. 2003;55(6):1139-44.
Synthes; 3.5 mm LCP Periarticular Humerus Plate; Apr. 2010; 22 pages.
Synthes; Locking Compression Plate (LCP) System (brochure); 2003; 6 pages.
Synthes; Locking Compression Plate (LCP) System (brochure); Jan. 2007; 6 pages.
Written Opinion of the International Searching Authority; International Application No. PCT/2009/036211; Sep. 23, 2010; 8 pages.
“Zimmer® Universal Looking System,” The Journal of Bone and Joint Surgery, vol. 39, No. 7, Jul. 2007, 1 page.
Zimmer, Inc.; “Zimmer Universal Locking System;” brochure; 2009, 2 pages.
Zimmer, Inc. “Zimmer Holdings to Launch Innovative Locking Plate System at Orthopaedic Trauma Association Meeting,” Sep. 14, 2006; 3 pages.
Zimmer, Inc.; “Zimmer Small Fragment Universal Locking System;” Surgical Technique; 2010; 16 pages.
Zimmer; Zimmer Periarticular Plating System-Low-Profile Fixation (catalog); 2003; 8 pages.
Postak, Paul D.; “Biomechanical Properties of Fixed-Angle Volar Distal Radius Plates Under Dynamic Loading;” 2007; 6 pages.
Synthes, “Large Fragment LCP Instrument and Implant Set;” technique guide; 2003; 31 pages.
Synthes, “Locking Compression Plate (LCP) System. Locking screw technology and conventional plating in one system;” 2003; 6 pages.
Synthes; Modular Mini Fragment LCP System (brochure); 2007; 12 pages.
Synthes; Small Fragment Locking Compression Plate (LCP) System (brochure); 2002; 43 pages.
Zimmer, Inc. “Zimmer® Universal Locking System,” brochure (2006), 4 pages.
U.S. Appl. No. 13/840,194, filed Mar. 2013, Gonzalez-Hernandez.
U.S. Appl. No. 14/189,681, filed Feb. 2014, Gonzalez-Hernandez.
U.S. Appl. No. 14/213,310, filed Mar. 2014, Gonzalez-Hernandez.
Related Publications (1)
Number Date Country
20120226323 A1 Sep 2012 US
Provisional Applications (1)
Number Date Country
61449012 Mar 2011 US