Hereinafter, a best mode for carrying out the invention is described in detail. For facilitating description, a pedal apparatus for brakes is described below. Incidentally, the apparatus according to the invention is not limited to the pedal apparatus for brakes. The invention can be applied to a clutch, an accelerator, and the like. Also, the invention can be applied to boats and ships.
First, the configuration of an anteroposterior position variable pedal apparatus according to the present embodiment by appropriately referring to
A pedal apparatus 1 according to the present embodiment is mounted on a vehicle frame 20 through a pair of brackets 21a and 21b. A push link shaft 4 and a pedal link shaft 5, which are members constituting the pedal apparatus 1, are fixed to brackets 21a, 21b, respectively. A structure constituted by all the other members of the pedal apparatus 1 is attached to the push link shaft 4 and the pedal link shaft 5. Incidentally, the pedal link shaft 5 is fixed to the brackets 21a, and 21b, which are provided at a position rearwardly from the push link shaft 4.
The push link shaft 4 is joined with one end of each of the push links 2a and 2b. The push links 2a and 2b are adapted to be swingable around the push link shaft 4. The push links 2a and 2b swing around the push link shaft 4 in synchronization with each other. The push links 2a and 2b do not swing around the push link shaft 4 independently each other. Thus, a force received by one of the push links 2a and 2b is transmitted directly to the other of the push links 2a and 2b. One end of each of the pedal links 3 and 3 is swingingly joined with the pedal link shaft 5.
A piston 22a of a brake master cylinder 22 substantially horizontally disposed is swingingly joined with the push link 2b. When a force rotating clockwise, as viewed in
The other end of the push link 2a and end of the first connecting link 6a are mutually swingingly joined with each other. As shown in
Each of the pedal links 3 and 3 is substantially L-shaped. Each of the second connecting links 6b and 6b is swingingly joined with a same place of the middle portion of an associated one of the pedal links 3 and 3. The other ends of the pedal links 3 and 3 are connected to each other with two bolts 14 and 14, which penetrate through a slider rail 9 and pass from one of the pedal links 3 and 3 to the other pedal link 3. Head portions of the bolts 14 and 14 are fixed to one of the pedal links 3 and 3. Each of stoppers 14b and 14b used to fix the slider rail 9 is fixed to a middle portion of an associated one of the bolts 14 and 14 (only one of the stoppers 14b and 14b is shown in
A slider 8 is a member in which a punch hole having an inner shape coinciding with the outer shape of the slider rail 9 is formed. The slider 8 is engaged with the slider rail 9. Slider projection portions 8a and 8a provided on an upper portion and a lower portion of the slider 8 (only an upper one of the slider projection portions is shown in
A slider rail bracket 15b is screwed into and is fixed to a vehicle rear side end portion of the slider rail 9. A ball screw bracket 13 is fixed to a vehicle left side surface of the slider 8, as viewed in
A motor bracket 15a is screwed into and is fixed to the slider rail bracket 15b. Also, a motor M is fixed to the motor bracket 15a. A shaft (not shown) of the motor M is locked by a ball screw shaft 12. The ball screw shaft 12 passes through and is locked by a ball screw nut 13a provided in the ball screw bracket 13. Thus, when the motor M rotates, the ball screw shaft 12 rotates, so that the slider 8, to which the ball screw bracket 13 is fixed, moves along the slider rail 9. Accordingly, the slider 8 and the pedal arm 7 and a pedal 11, which are fixed to the slider 8, can be moved in the anteroposterior direction of the vehicle by driving the motor M to rotate. Also, the slider 8 is stopped at an arbitrary position on the slider rail 9 by stopping the rotation of the motor M. At that time, the rotation of the ball screw shaft 13 is restrained. Thus, the slider 8 is locked on the slider rail 9. The motor M, the ball screw shaft 12, and the ball screw nut 13a constitute the aforementioned actuator unit.
As shown in
As shown in
An application point shaft 10 joined with the second connecting links 6b and 6b at both ends thereof is disposed between the second connecting links 6b and 6b. The application point shaft 10 is joined with first connecting link 61 between the second connecting links 6b and 6b, and engages with the guide groove 7a. The first connecting link 6a is enabled to swing around the application point shaft 10. The guide groove 7a is formed so that the width thereof is larger than the diameter of the application point shaft 10 by a predetermined tolerance. Thus, the application point shaft 10 can move in the guide groove 7a.
Hereinafter, an operation and an advantage of the pedal apparatus 1 are described.
First, the movement of the pedal arm 7 in the anteroposterior direction of a vehicle is described with reference to
On the other hand, the second connecting links 6b and 6b joined with the application point shaft 10 can be swung with respect to the pedal links 3 and 3, respectively. Therefore, the application point shaft 10 can be swung with respect to the push link 2a and the pedal links 3 and 3 connected to the application point shaft 10 through the first connecting link 6a and the second connecting links 6b and 6b, respectively. The push link 2a, which is joined with the first connecting link 6a, can be swung with respect to the push link shaft 4. The pedal links 3 and 3 joined with the second connecting links 6b and 6b can be swung with respect to the pedal link shaft 5. Each of the swing of the first connecting link 6a with respect to the first connecting link 6a and the swing of second connecting
links 6b and 6b with respect to the pedal links 3 and 3 is not obstructed by the other swing. Therefore, the application point shaft 10 moves in the guide groove 7a in a case where the slider 8, to which the pedal arm 7 is fixed, moves along the slider rail 9. At that time, as described above, the guide groove 7a is formed to have a predetermined gradient with respect to the slider rail 9. Thus, the application point shaft 10 is changed in position in the up-down direction.
The up-down movement of the application point shaft 10 is described below with reference to
In a state (illustrated in
Next, an operation of moving the pedal 11 in the anteroposterior direction of a vehicle in the pedal apparatus 1 according to the present embodiment is described below with reference to
The motor M is control by, for example, a motor drive circuit 30 shown in
referred to as the “contact 32F”, the “contact 33F” and the “contact 34F”, respectively). The switch S includes a switch contact 31, a forward-movement-side contact 31F, and a backward-movement-side contact 31B (hereunder referred to as the “contact 31”, the “contact 31F”, and the “contact 31B”, respectively). The switch S is attached to a position where a driver can operate the switch S.
When the motor M is in a non-driven state, the relay RF is in a state in which the contacts 32F and 33F are shortcircuited. Also, the relay RB is in a state in which the contacts 32B and 33B are shortcircuited. Also, the switch S is in a neutral state. Thus, no electric current is fed to the motor M. Additionally, the motor M is connected to the earth at both ends. Accordingly, the motor M is restricted from rotating. When the driver moves the pedal 11 toward the front side of the vehicle, the driver operates the switch S to shortcircuit the contacts 31 and 31F. Then, electric current is fed to the coil 35F of the relay RF, so that the contacts 32F and 34F are shortcircuited. Subsequently, electric current is fed to the battery, the contact 34F, the contact 32F, the motor M, the contact 32B, and the contact 33B in this order. Thus, the counterclockwise (CCW) rotation of the motor M is performed. Consequently, the pedal arm 7 and the pedal 11, which are fixed to the slider 8, are moved toward the front side of the vehicle.
When the driver moves the pedal 11 toward the backward side of the vehicle, the driver operates the switch S to shortcircuit the contacts 31 and 31B. Then, electric current is fed to the coil 35B of the relay RF, so that the contacts 32B and 34B are shortcircuited. Subsequently, electric current is fed to the battery, the contact 34B, the contact 32B, the motor M, the contact 32F, and the contact 33F, and the earth in this order. Thus, the CW rotation of the motor M is performed. Consequently, the pedal arm 7 and the pedal 11, which are fixed to the slider 8, are moved toward the backward side of the vehicle. Consequently, the driver, who sits on the driver's seat, can change the position in the anteroposterior direction of the pedal 11 for operating the brake.
Next, the change of the lever ratio, which is caused when the pedal 11 is moved in the anteroposterior direction of the vehicle in the pedal apparatus 1 according to the present embodiment, is described below with reference to
On the other hand, the first connecting link 6a is swingingly joined with the application point shaft 10. Thus, the aforementioned clockwise swing of the application point shaft 10 around the pedal link shaft 5 of the pedal 11 is transmitted to the piston 22a of the brake master cylinder 22 through the application point shaft 10, the first connecting link 6a, and the push links 2a and 2b. Consequently, the piston 22a is pushed in the brake master cylinder 22 toward the front side of the vehicle. The piston 22a receives a reaction force F2 from the brake master cylinder 22. The reaction force F2 received by the piston 22a acts on the application point shaft 10 through the push links 2b and 2a and the first connecting link 6a.
On the other hand, in a case where a driver steps on the pedal tread surface 11a with a force F3 acting in a tangential direction of a swing circle centered at the pedal link shaft 5 of the pedal 11, a horizontal component F1 of the force F3 is applied to the application point shaft 10 through the pedal arm 7, the slider 8, the slider rail 9, the pedal links 3 and 3, and the second connecting links 6b and 6b. In a case where forces F1 and F2 applied to the application point shaft are equal in magnitude to each other, the pedal 11 is in a halting state. The piston 22a pushed by the push link 2b toward the front side of the vehicle is stopped in a state in which the piston 22a is pushed in the brake master cylinder 22. On the other hand, in a case where the force F1 is larger in magnitude than the force F2, the pedal 11 further swings around the pedal link shaft 5. The push links 2a and 2b swing clockwise around the push link shaft 4. The piston 22a is further pushed in the brake master cylinder 22.
Thus, in the state shown in
When the pedal 11 is moved toward the front side of the vehicle, as shown in
On the other hand, the position of the application point shaft 10 in the state shown in
As compared with the distance L1a shown in
As is apparent from the foregoing description of the operation and advantage, even when the pedal 11 is moved in the vehicle anteroposterior direction in the pedal apparatus 1 according to the present embodiment, the position of the pedal link 11 serving as the center of swing and the position of the piston 22a serving to push the brake master cylinder 22 do not change. Therefore, the pedal apparatus 1 according to the present embodiment is high in mechanical structure reliability, in comparison with the conventional pedal apparatus configured to maintain the lever ratio at a substantially constant value.
The anteroposterior position variable pedal apparatus according to the present invention is not limited to the aforementioned embodiment. The constituent elements of the anteroposterior position variable pedal apparatus can be changed without departing from the spirit or scope of the invention. For example, in the foregoing description of the present embodiment, a device including the motor M and the ball screw shaft 12 has been described as the actuator unit of the second pedal apparatus of the invention. However, the actuator unit of the pedal apparatus of the invention is not limited thereto. For example, an actuator unit including a feed screw mechanism adapted to move the slider 8 by manually swinging a feed screw is included by an embodiment of the invention.
While the invention has been described in connection with the exemplary embodiments, it will be obvious to those skilled in the art that various changes and modification may be made therein without departing from the present invention, and it is aimed, therefore, to cover in the appended claim all such changes and modifications as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-150113 | May 2006 | JP | national |