This application is related to commonly owned copending application Ser. No. 13/027,878, filed on the same day as this application, and titled “MACERATING APPARATUS AND METHOD,” the disclosure of which is incorporated herein by reference.
1. Field of the Invention
Centrifugal and other liquid pumps, and provisions to prevent air locking of such pumps.
2. Description of Related Art
A pump is a device used to transport liquid from a lower to a higher elevation, or from a lower pressure state to a higher pressure state. Typically, an electric motor is used to spin an impeller inside a volute casing transferring energy to the liquid. In many instances, a pump is submerged in a reservoir of liquid, and its discharge is connected to a pipe that is used to convey the liquid to a higher elevation or higher pressure vessel.
A backflow prevention device such as a check valve is used to prevent the flow of liquid through the pump, once the pump has stopped. The pump starting and stopping is typically operated by a device such as a float switch, and is turned off prior to the pump sucking air. Under normal operation, the inlet of the pump is submerged and is never exposed to air during its operation.
However, malfunctions do sometimes occur, and in such circumstances, if the pump is not turned off and does suck air, then a problem may occur the next time the pump is restarted. When the check valve closes, a column of water sits on top of its mechanism and upon restarting, the pump must develop sufficient head to displace the mechanism and the liquid above it enough to resume pumping. A liquid pump is not designed to move air, and the presence of air in the volute chamber will greatly reduce the pumping performance of the pump. Under these circumstances, the pump will not develop adequate head pressure to overcome the closing force of the check valve and the static force of the liquid column acting on it. The pump impeller will spin, but no liquid will be discharged from the pump. The check valve will simply remain closed, with the liquid column above the check valve remaining motionless. A pump in this condition is referred to as being “air locked.”
Many pump designs have a bleed hole in the volute wall that allows air to be expelled back into the reservoir and replaced with liquid drawn in through the pump intake. When the liquid being pumped is free of solid debris, this is quite effective. However, when solid debris, such as solids from macerated toilet effluent, or from a sewage grinder pump is suspended in the liquid, the bleed hole can become blocked with debris particles. This renders it ineffective. Many pump manufacturers suggest cleaning this hole routinely to maintain its effectiveness. However, in some installations, this is not practical from a cost or time standpoint. Additionally, for a sewage grinder pump, or a pump that is part of a macerating apparatus for a toilet, because of the unsavory contents of the liquid, this is an unpleasant maintenance task that is to be avoided.
There is therefore a need for a pump with anti-airlock capability, which capability is not disrupted by the presence of solid materials in the liquid stream being pumped.
The problem of plugging of a bleed hole in the volute of a pump by particles of solids present in a liquid being pumped is solved by providing the bleed hole in a particular region relative to the energetic element of the pump. In a pump comprised of a volute and an impeller (as the energetic element) having secondary back vanes (also known as “pump-out” or “slinger” vanes) on the side of the impeller that is proximate to the volute wall, a bleed hole is provided in a particular region relative to the pump out vanes and the volute wall. The Applicant's experimental testing has demonstrated that the optimal location of the bleed hole is approximately midway along the length of the pump out vanes, as will be subsequently explained in further detail herein. The bleed hole location enables it to be of a small size so as to not reduce pump efficiency, while not becoming plugged with debris.
The present disclosure will be provided with reference to the following drawings, in which like numerals refer to like elements, and in which:
The present invention will be described in connection with a preferred embodiment. However, it is to be understood that there is no intent to limit the invention to the embodiment described. On the contrary, the intent is to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
For a general understanding of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements.
Referring to
The impeller 20 typically comprises a flange 22 with vanes 24 on the processing side that impart momentum into the processing fluid, thereby pumping it. On the opposite side 25 of the impeller flange 22 are smaller vanes 26 that act as slingers to prevent debris from contacting the shaft seal 11. These slinger or pump out vanes 26 create a pressure gradient on the top side 25 of the impeller 20. The shaft seal 11 is at the lowest pressure, which increases gradually to the outer perimeter 27 of the impeller 20. The gap between the top side 25 of the impeller and the wall 42 of the volute is very small, and thus during operation of the pump 10, the liquid flow therein is turbulent due to the interaction between the impeller pump out vanes 26 and the liquid. This volume above the impeller is typically at the highest elevation with the pump 10 oriented as shown, and is thus an optimal location for a bleed hole 44 to allow any trapped air to escape the volute chamber 46. This is also an optimal location because during pump operation, the pump out vanes 26 of the impeller 20 prevent debris from entering the bleed hole 44 and thus blocking or clogging it.
Through experimental testing, the Applicant has discovered that the location of the bleed hole 44 is best approximately midway along the length of the pump out vanes 26. As used herein, “midway” is to be understood to meant that the bleed hole 44 is centered between ¼ and ¾ along the length of the pump out vanes 26, which extend from a central region of the impeller 20 to an outer region of the impeller 20. In certain embodiments, it may be more beneficial to locate the bleed hole 44 between ⅓ and ⅔ along the length of the pump out vanes 26.
It has been found that if the bleed hole 44 is close to the shaft seal 11 or center of the impeller 20, in this low pressure region, whatever fluid (air or liquid) that is present will be sucked back through the bleed hole 44. One of two conditions will exist, depending upon on the location of the bleed hole 44 relative to the level of liquid in the reservoir or tank (not shown) in which the pump is disposed. In a first condition, the inlet 28 of the volute 20 is flooded, but the upper region of the volute 20 is not flooded and the bleed hole 44 is exposed to air. In this condition, when the air has been driven from the volute chamber 25 and the pump 10 starts to move liquid and thus create positive pressure, if the bleed hole 44 is close to the shaft seal 11, air will be sucked back in through the bleed hole 44. In these circumstances, the pump 10 may still not operate correctly and may not develop adequate head to perform as designed, and break the air lock. Conversely, if liquid level in the tank is above the bleed hole 44, it will be drawn into the bleed hole 44, and macerated solids or ground sewage debris may also enter it and create a blockage, rendering the bleed hole 44 ineffective.
In contrast, with a location of the bleed hole 44 at the midway position, the opening of the bleed hole 44 will always be subjected to positive pressure from within the volute chamber 25. Thus the flow of either air or liquid will be in the outward direction through the bleed hole 44. Additionally, it has been found that if the opening of the bleed hole 44 is too close to the outer perimeter 27 of the impeller 20, the pump out vanes 26 are not effective, and debris enters and clogs the bleed hole 44.
This type of anti-air lock design with optimum positioning of the bleed hole 44 as described is effective for pumping of liquids that contain solids macerated by the macerating unit 2, as disclosed in the aforementioned co-pending U.S. patent application Ser. No. 13/027,878. In this configuration, the bleed hole location enables it to be of a small size so as to not reduce pump efficiency, while not becoming plugged with debris. In one exemplary embodiment, a pump 10 having an impeller diameter of 4 inches was provided with a volute bleed hole of 0.30 inches.
Referring again to
Referring again to
It is also effective when used in grinder pumps, such as that described in commonly owned U.S. Pat. No. 7,159,806, or other applications that involve a high loading of suspended particles. Referring to
A bleed hole is provided in the upper portion 72 of the volute by drilling or otherwise forming a hole 74 upwardly in the bearing and seal housing 70 midway along the length of the back vanes 84. A lateral tunnel is provided in the bearing and seal housing 70 by drilling or otherwise forming a hole 76 laterally, which connects to the bleed hole 74. This places the volute chamber 62 in communication with the volume exterior to the pump 50, and permits air to be vented when the pump is started up and air is present in the volute chamber 62. The positioning of the bleed hole 74 midway along the back vanes 84 provides the advantages of bleeding air from the volute while not significantly lowering pump efficiency and not becoming plugged with solid particles as described previously. Although the lateral hole 76 as shown in
It is, therefore, apparent that there has been provided, in accordance with the present invention, liquid pumps which include provisions to prevent air locking. Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3526465 | Compton | Sep 1970 | A |
4256436 | Fandrey et al. | Mar 1981 | A |
4776758 | Gullichsen | Oct 1988 | A |
4981413 | Elonen et al. | Jan 1991 | A |
5167678 | Elonen et al. | Dec 1992 | A |
5779439 | Dufour | Jul 1998 | A |
7159806 | Ritsema | Jan 2007 | B1 |
7537439 | Pohler | May 2009 | B2 |
Number | Date | Country |
---|---|---|
4432224 | Mar 1996 | DE |
0395236 | Oct 1990 | EP |
Entry |
---|
International Search Report of Jul. 11, 2012 in copending application PCT/US2012/024595, EFS file name 20130204—13-0228102—IDS—NPL—Cite1. |
Number | Date | Country | |
---|---|---|---|
20120207590 A1 | Aug 2012 | US |