This invention relates to an anti-bounce device for saw mills. The device has particular application with portable saw mills.
Such saw mills generally include a frame which straddles a log to be milled. The frame will typically include a pair of rails or tracks which in use extend longitudinally along the log. A carriage is mounted for movement along the rails or tracks. The carriage typically carries an engine, gearbox and saw blade. The saw mill can be of a swing blade type which permits the blade to be moved to vertical and horizontal positions so that vertical and horizontal cuts can be made in the log as the carriage is moved along the rails or tracks.
A sawing device comprising a saw blade, which pivots through 90° to act in both the horizontal and vertical planes, is known. In such a sawing device, the saw is moved along the length of the material. Permanent and portable versions of such saw mills are available.
As can be appreciated, movement of the saw blade relative to the material being sawn, in any direction other than the desired cut direction, is undesirable. For instance, when making a longitudinal cut, either vertically or horizontally, movement of the blade in and out of the cut is to be avoided. If this form of shake, or bounce, can be avoided a significantly improved finish is possible on the sawn material and the tooth life of the saw blade will be lengthened.
The problem of bounce is particularly pronounced in portable saw mills, since the power head (which includes an engine, gearbox and saw blade) is not supported by as heavy or sturdy a frame as in the permanent saw mill. That is, the frame on which the saw blade is mounted provides less resistance to bounce in a portable saw mill.
Portable saw mills generally include a frame which straddles the material to be sawn. A carriage mounted on the tracks, and which carries the power head, allows movement of the saw blade along the material to be sawn. The track is typically a pair of rails that can be positioned vertically so that the depth of a vertical cut by the saw blade can be set. The depth of any horizontal cut is controlled by moving the frame, on which is mounted the power head and the saw blade, relative to the material to be sawn. Increasing the depth of the cut, and/or the length of the tracks between the ends pieces, each independently increases the likelihood of shake or bounce.
A well known portable saw mill of this type is described in Australian patent 688020, the disclosure of which is incorporated herein by way of specific reference. When such a device is used to make a vertical cut, one problem is that the saw blade moves up and down vertically as the carriage bounces. The result is that the saw blade intermittently comes off the floor of the vertical cut, which stresses the teeth of the saw blade and results in the depth of the cut being uneven. When such a device is used to make a horizontal cut, one problem is again that the saw blade moves left and right.
The invention will be described with reference to portable saw mills but the skilled person will appreciate its applicability to permanent saw mills in certain circumstances. The object of the invention is to reduce the above-described undesirable movement of saw blades in saw mills.
Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art.
In one aspect of the invention there is provided an anti-bounce device for a saw mill, the device comprising
In another aspect of the invention there is provided a saw mill for sawing material comprising
In the simplest embodiments, the strut may be the resilient member. For instance, the strut may be a spring, where movement of the first end of the spring towards the second end of the spring causes compression and the spring to be in a stressed state. The strut may be a shock absorber as commercially available and known.
In preferred embodiments, the strut includes a first tubular member having a first end and a second tubular member having a second end, one tubular member received within the other tubular member in a sliding engagement. In these embodiments, the ‘ends’ of the first and second tubular members need not be a physical end but may in their broadest form be any portion of the tubular member that in use can engage and transfer force to the resilient member. For instance, the end may be a physically closed end of the tubular member, an internal protrusion within the tubular member against which an end of the resilient member abuts during use, or a hole in the side of the tubular member through which part of the resilient member may pass. To result in a telescoping sliding engagement the first and second tubular members are preferably of co-operating cross-sectional shape. The tubular members need not be of circular cross-sectional shape. Preferably, the tubular members have an angular cross-sectional shape. More preferably, the tubular members have a rectangular or square cross-sectional shape. The resilient member can be positioned within the first tubular member and/or second tubular member, and can be acted upon by both the first end and the second end. Pressure on one tubular member will cause telescoping movement of the two tubular members towards each other and will stress the resilient member therebetween. In this state the strut is referred to as being in a stressed state. Release of pressure will permit movement of the two tubular members away from each other and will relax such stress. In this state the strut is referred to as being in a relaxed state.
The resilient member may be, for instance, a piece of rubber, compressed gas, compressible liquid, or a spring in combination with a hydraulic dampener. The resilient member may be a gas spring/hydraulic dampener. or a conventional spring/hydraulic dampener. as known to those skilled in the art.
The engagement means is associated with the strut in that both move together with movement of the carriage and forces transferred from the surface of the material to be cut to the engagement means are further transferred to the strut, thus compressing it to a stressed state. Preferably, the engagement means is positioned directly in line with the longitudinal direction of the strut so that force is directly transferred. Preferably, the engagement means is a wheel that runs along the surface of the material to be cut as the carriage is moved along the track.
In preferred embodiments, the engagement means is a wheel or roller where the surface of the wheel that rolls over another surface has a central ridge or rib running circumferentially thereabout and extending therefrom. The purpose of the ridge is to allow the wheel to slot into an already made vertical cut, and thus reduce horizontal shake of the saw blade, when making a subsequent horizontal cut. Thus, in embodiments including a ridge for this purpose, the ridge is necessarily of smaller thickness than, but is more preferably commensurate with, the width of the cut made by the saw blade.
In other preferred embodiments, the anti-bounce device further includes a guide disposed adjacent the engagement means, but vertically above the level of the engagement means and, and preferably vertically between the level of the engagement means that engages the surface of the material to be sawn and the lower end of the strut. The purpose of the guide is to assist with placing the resilient member in a stressed state when in use, ie when the engagement means is engaged with a surface of the material to be sawn.
The connection means may be for connecting the strut to the carriage or to some component carried by the carriage. Preferably, the strut is connected to the carriage. By connected it is not meant to exclude the strut being integrally formed with, ie a part of, the carriage. In preferred embodiments, the connection means are such that the position of the engagement means with respect to the saw blade can be adjusted. In these embodiments, it is preferable that both the vertical and horizontal displacement of the engagement means, from say the centre of the saw blade, is adjustable. For instance, the connection means may include a first component for adjusting the horizontal displacement and a second component for adjusting the vertical displacement. In these embodiments, the first component may engage both the carriage and the second component, and the second component may engage the strut. Preferably, and to achieve maximum effectiveness from the strut, the strut is in use aligned so that it is vertically parallel with the saw blade. That is, the motion of the first end towards the second end is in a direction that is vertically parallel to the saw blade bounce movement.
Preferably, the carriage also carries a saw. The anti-bounce device can be connected to the carriage at any position that allows it to travel along the surface of the material to be sawn at the same time as the blade moves through the material as it is sawn. That is, the anti-bounce device, or more particularly the engagement means, need not be in longitudinal alignment with the saw blade, and thus need not travel the same path on the material being sawn. For instance, the anti-bounce device can be offset from the saw blade. Importantly, the transverse displacement of the engagement means from the saw blade must not be such that one or the other does not contact the material being sawn when in use. More preferably, the transverse positioning of the anti-bounce device is adjustable by having the connection means movable across the transverse direction of the carriage.
The saw mill can be any as known in the art. Preferably, the saw mill is a portable saw mill. Such a saw mill most typically includes 2 substantially parallel rails or tracks and the carriage is adapted to engage and move along both rails or tracks simultaneously. A particularly preferred saw mill is described in Australian patent 688020.
The anti-bounce device may be used for any suitable sawing application, for instance, concrete, metal, plastic or wood. Preferably, the material to be sawn is wood. More preferably, the material to be sawn is a log.
As used herein, except where the context requires otherwise, the term “comprise” and variations of the term, such as “comprising”, “comprises” and “comprised”, are not intended to exclude further additives, components, integers or steps.
In this specification, the terms vertical and horizontal are used as references to the direction of the cut and the anti-bounce device is described in relation to a saw mill where it is bounce in the direction of the cut (both horizontal and vertical) that is to be avoided.
The following description and reference to a saw mill suitable for use with the anti bounce device of the invention is intended for illustration purposes only and is not intended to be limiting of the features of the saw mill to which the invention is applicable. The invention is particularly applicable to saw mills having a pair of rails or tracks and a carriage mounted on the rails or tracks for movement therealong. The carriage comprises a saw blade mount from which a driven saw blade is adapted to cut material as the carriage moves along the rails or tracks.
Referring first to
The anti-bounce device 100 is shown in more detail in
The wheel 41 is attached to first tubular member 50 by a nut and bolt combination as shown in
Resilient member 52, which in this embodiment is a gas spring, has a rod 53 with a nut 54 fitted thereto. The rod 53 is engaged, when the anti-bounce device 100 is assembled, in the first tubular member 50 so that the bolt 46 for attaching the wheel passes through nut 54 to thereby anchor the rod 53.
The body 55 of the shock absorber device 52 is received in the second tubular member 51. The end of the body 55 has a nut 56 into which a grub screw 57 can be engaged. The nut 56 is, when the anti-bounce device 100 is assembled, aligned with opening 58 in the second tubular member 51 and the grub screw 57 screwed in to thereby anchor the body 55 in the second tubular member 51. The first tubular member 50 and second tubular member 51 are thereby coupled together by the resilient member 52 to form the strut 60.
The first tubular member 50 is dimensionally smaller but of similar cross sectional shape to the second tubular member 51 so it can fit, optionally with clearance, in second tubular member 51. Due to the angular cross sectional shape of the arrangement substantially no twisting of the first tubular member 50 with respect to the second tubular member 51 can occur.
The connection means are best illustrated in
The strut mount 70 has a tongue 71 which extends transverse to a tubular section 72 which has a longitudinal slot 73 cut in one wall. The slot 73 forms a clearance for the head of the grub screw 57 which protrudes from second tubular member 51, as well as allowing for compression of the tubular section 72 to provide a clamping action on the second tubular member 51.
The tubular section 72 carries on opposed walls flanges 74, 75. One flange 74 has fastened thereto a nut 76 which is opposite an opening 77 in the other flange 75. A fastener 78 of the T-bolt type illustrated in
The carriage mount 80 is of a similar construction as the strut mount 70. In place of the tongue 71 of the strut mount 70, the carriage mount 80 has a mounting plate 81. This mounting plate 81 permits the carriage mount 80 to be fixed in place on the carriage 16 of the saw mill 10. In this embodiment the carriage mount is positioned such that the engagement means is in alignment with the saw blade and the direction of the intended cut. As well, the carriage mount 80 shown is of the un-adjustable kind, but the skilled person would understand how to make this mount adjustable. The mounting plate 81 is connected to a tubular section 82 which has a longitudinal slot 83 cut in one wall. The slot allows for compression of the tubular section 82 to provide a clamping action on the tongue 71 of the strut mount 70, which is received therein.
The tubular section 82 carries on opposed walls flanges, 84, 85. One flange 84 has fastened thereto a nut 86 which is opposite an opening 87 in the other flange 85. A fastener 88 of the T-bolt type illustrated in
In use, the wooden beam 20 is position beneath the path of carriage 16 and saw blade 18. The horizontal position of the strut 60 and engagement means 40 relative to the saw blade is adjusted so that free movement of the saw blade is allowed. The vertical position of the strut 60 and engagement means 40 relative to the surface of beam 20 along which the engagement means 40 runs is adjusted so that before the engagement means 40 actually engages the beam 20 it is lower than the surface. Thus, as the carriage 16 is moved towards an end of the beam 20, the resilient member 52 in strut 60 must be compressed to a stressed state to allow the engagement means 40 to move up onto the surface of beam 20. The resilient member 52 will remain in a stressed state as carriage 16 and saw blade 18 moves along the remainder of the beam 20 making the cut. Any bouncing of the carriage 16 will be lessened/dampened by the presence of the anti-bounce device 100 in a stressed state. The skilled person will appreciate the mechanism by which this lessening occurs. The effect of the anti-bounce device 100 is better shown in
Referring to
The anti-bounce device can be connected to the carriage at any position that allows it to travel along the surface of the material to be sawn at the same time as the blade moves through the material as it is sawn. That is, the anti-bounce device, or more particularly the engagement means, need not be in longitudinal alignment with the saw blade, and thus need not travel the same path on the material being sawn. For instance, the anti-bounce device can be offset from the saw blade. Importantly, the transverse displacement of the engagement means from the saw blade must not be such that one or the other does not contact the material being sawn when in use. More preferably, the transverse positioning of the anti-bounce device is adjustable by having the connection means movable across the transverse direction of the carriage.
In the embodiment shown in
It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2008905495 | Oct 2008 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2009/001395 | 10/23/2009 | WO | 00 | 4/18/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/045688 | 4/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
566624 | Sager | Aug 1896 | A |
1842114 | Pratt | Jan 1932 | A |
1846641 | Hedgpeth | Feb 1932 | A |
3695316 | Pluckhahn | Oct 1972 | A |
4235140 | Reece | Nov 1980 | A |
4290330 | Washio et al. | Sep 1981 | A |
4416312 | Ostberg | Nov 1983 | A |
4678204 | Hetherington | Jul 1987 | A |
4881584 | Wislocker et al. | Nov 1989 | A |
5046391 | Lewis et al. | Sep 1991 | A |
5193428 | Letendre | Mar 1993 | A |
5243892 | Jindra | Sep 1993 | A |
5396938 | Cannaday | Mar 1995 | A |
5442984 | Tate | Aug 1995 | A |
5784941 | Sanborn | Jul 1998 | A |
5819626 | Lucas | Oct 1998 | A |
6470932 | Grivna et al. | Oct 2002 | B1 |
7530298 | Peterson | May 2009 | B2 |
D638040 | Dale | May 2011 | S |
D639319 | Dale | Jun 2011 | S |
7971612 | Lapointe | Jul 2011 | B2 |
20020144582 | He | Oct 2002 | A1 |
20050028660 | Chin-Chin | Feb 2005 | A1 |
20060179982 | Fenton et al. | Aug 2006 | A1 |
20070234869 | Dale et al. | Oct 2007 | A1 |
20100180985 | Burton | Jul 2010 | A1 |
20110278780 | Lucas | Nov 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110278780 A1 | Nov 2011 | US |