ANTI-CD19 ANTIBODIES AND METHODS OF USING AND MAKING THEREOF

Information

  • Patent Application
  • 20230086069
  • Publication Number
    20230086069
  • Date Filed
    February 27, 2021
    3 years ago
  • Date Published
    March 23, 2023
    a year ago
Abstract
An isolated monoclonal antibody (mAb) or antigen-binding fragment thereof having a binding specificity to human CD19, wherein the isolated mAb or antigen-binding fragment comprises an amino acid sequence having an identity with a sequence selected from SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93, wherein the identity is not less than at least 95%.
Description
TECHNICAL FIELD

The present disclosure generally relates to the technical field of biologic therapeutics, and more particularly relates to making and using multi-specific antibodies.


BACKGROUND

Lymphoma represents 4.3% of all cancers diagnosed annually in the United States, with B cell malignancies comprising approximately 90% of all lymphoma diagnoses. CD19 is a B-lymphocyte-specific member of the immunoglobulin superfamily expressed by B lymphocytes at different stages of differentiation, from the onset of V(D)J rearrangement until B cell maturation into plasma cells at which time the surface expression of CD19 seems to be lost. While CD19 is widely used as a pan-B cell marker, CD19 is found to be highly expressed in many forms of leukemia and lymphoma with characters of B-cell origins. CD19 has been a focus of immunotherapy development for over 30 years. Pharmaceutical companies are actively pursuing anti-CD19 strategies as they have the promise of directly targeting those B-cell malignancies corresponding to early B-cell differentiation stages. Targeting CD19 has been approved to be an excellent strategy of immune therapies, especially when the antibody therapies targeting CD22, another pan-B cell marker expressed by B-cell malignancies, were not successful.


CD19 is an important cell surface marker on normal B-cells and cancers of B-cell origins. As such it is highly desirable to have an antibody targeting CD19 for use in anti-cancer therapeutics. Reports in the literature demonstrate that it is difficult to identify anti-CD19 antibodies which also cross-react to the CD19 found in cynomolgus monkeys, a property which greatly facilitates therapeutic pharmacological and toxicological studies. The historic antibody BU12 has been shown to possess high affinity to human CD19 and cross reactivity to cynomolgus CD19, however this antibody was discovered from mouse hybridoma and does not comprise a human framework sequence. Therefore, a humanized variant of BU12 is highly desirable for therapeutic use.


SUMMARY

The application provides anti-CD19 peptides, proteins, protein complexes, antibodies and methods of making and using thereof.


In one aspect, the application provides peptides having a binding specificity to human CD19. In one embodiment, the peptide has an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment, the peptide is a scFv peptide. In one embodiment, the scFv peptide may have a binding affinity to human CD19 with a KD not greater than 1 nM, 2 nM, 3 nM, 5 nM 10 nM, 15 nM, 20 nM, 30 nM, 40 nM, or 50 nM.


In one aspect, the application provides an antibody or antigen-binding fragment thereof having a binding specificity to human CD19. In one embodiment, the isolated antibody or antigen-binding fragment comprises an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93. In one embodiment, the antibody comprises an isolated monoclonal antibody (mAb).


In one embodiment, the antibody is a bi-specific antibody. In one embodiment, the antibody is a multi-specific antibody. In one embodiment, the antibody is a tri-specific antibody, tetra-specific antibody, penta-specific antibody, or hexa-specific antibody.


In one embodiment, the antibody comprises a scFv, wherein the scFv comprises an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment, the antibody comprises a Fab, wherein the Fab comprises an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment, the application provides a multi-specific antibody-like protein. In one embodiment, the protein comprises the peptide having an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93. In one embodiment, the multi-specific antibody-like protein has a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal, a second binding domain (D2) comprising a light chain moiety, a Fc region, a third binding domain (D3), and a fourth binding domain (D4) at the C-terminal. The light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both, and the D1, D2, D3, D4, D5 and D6 each has a binding specificity to a tumor antigen, an immune signaling antigen, or a combination thereof.


In one embodiment, the multi-specific antibody-like protein is penta-specific. In one embodiment, the antibody-like protein comprises binding domains including D1, D2, D3, D4 and D6.


In one embodiment, the multi-specific antibody-like protein is hexa-specific.


In one embodiment, D1 comprises the peptide comprises an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment D1 comprises a peptide having an amino acid sequence with 95% sequence identity to SEQ ID NO. 7 or 19.


In one embodiment, D2 comprises the peptide an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment, D2 comprises a peptide having an amino acid sequence with 95% sequence identity to SEQ ID NO. 91 or 93.


In one embodiment, D6 comprises the peptide having an amino acid sequence having at least 70%, 80%, 85%, 90%, 95%, 97%, 98% or 99% of sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


In one embodiment, D6 comprises a peptide having an amino acid sequence with 95% sequence identity to SEQ ID NO. 7 or 19.


In one embodiment, the application provides multi-specific monoclonal antibody, comprising the multi-specific antibody-like protein as claimed herein.


In one embodiment, the multi-specific monoclonal antibody may have a binding affinity to human CD19 with a Kd not greater than 1 nM, 5 nM, 10 nM, 20 nM, 30 nM, 40 nM or 50 nM.


In one embodiment, the antibody is a humanized antibody. In one embodiment, the multi-specific monoclonal antibody is an IgG.


In one embodiment, the application provides isolated nucleic acid encoding the isolated mAb or an antigen-binding fragment, the IgG1 heavy Chain, the kappa light chain, the variable light chain, or the variable heavy chain, as disclosed thereof.


In one aspect, the application provides isolated nucleic acid sequence encoding an amino acid sequence of the multi-specific monoclonal antibody as disclosed herein.


In one embodiment, the application provides an expression vector comprising the isolated nucleic acid, as disclosed thereof.


In one embodiment, the application provides host cells comprising the nucleic acid as disclosed thereof. In one embodiment, the host cell is a prokaryotic cell or a eukaryotic cell.


In one aspect, the application provides methods of producing an antibody comprising culturing the host cell so that the antibody is produced.


In one aspect, the application provides immuno-conjugates. In one embodiment, the immunoconjugate comprises the isolated mAb or an antigen-binding fragment thereof and a drug unit, wherein the drug unit is linked to the isolated mAb or an antigen-binding fragment through a linker, and wherein the linker comprises a covalent bond selected from an ester bond, an ether bond, an amine bond, an amide bond, a disulphide bond, an imide bond, a sulfone bond, a phosphate bond, a phosphorus ester bond, a peptide bond, a hydrazone bond or a combination thereof.


In one embodiment, the drug unit comprises a cytotoxic agent, an immune regulatory reagent, an imaging agent or a combination thereof. In one embodiment, the cytotoxic agent is selected from a growth inhibitory agent or a chemotherapeutic agent from a class of tubulin binders, DNA intercalators, DNA alkylators, enzyme inhibitors, immune modulators, antimetabolite agents, radioactive isotopes, or a combination thereof. In one embodiment, the cytotoxic agent is selected from a calicheamicin, camptothecin, ozogamicin, monomethyl auristatin E, emtansine, a derivative or a combination thereof.


In one embodiment, the immune regulatory reagents activate or suppress immune cells, T cell, NK cell, B cell, macrophage, or dendritic cell. In one embodiment, the imaging agent may be radionuclide, a florescent agent, a quantum dots, or a combination thereof.


In one aspect, the application provides pharmaceutical composition. In one embodiment, the pharmaceutical composition comprises the isolated mAb or an antigen-binding fragment thereof a pharmaceutically acceptable carrier. In one embodiment, the pharmaceutical composition may further include a chemotherapeutic agent, a growth inhibitory agent, a cytotoxic agent from class of calicheamicin, an antimitotic agent, a toxin, a radioactive isotope, a therapeutic agent, or a combination thereof.


In one aspect, the application provides a pharmaceutical composition including an immune-conjugate as disclosed herein and a pharmaceutically acceptable carrier.


In one aspect, the application provides methods of treating a subject with a cancer. In one embodiment, the method comprises administering to the subject an effective amount of the isolated mAb or an antigen-binding fragment as disclosed thereof. In one embodiment, the method may further include co-administering an effective amount of a therapeutic agent, wherein the therapeutic agent comprises an antibody, a chemotherapy agent, an enzyme, or a combination thereof. In one embodiment, the subject is a human.


In a further aspect, the application provides a solution comprising an effective concentration of the multi-specific monoclonal antibody as disclosed herein. In one embodiment, the solution is blood plasma in a subject.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments arranged in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:



FIG. 1 shows an increase in humanness scores (Z-score) from mouse sequence (grey line) to the humanized framework (dark line) in the variable regions of humanized BU12, H4 (Vk for kappa light chain in 1A, and VH for heavy chain in 1B) and H5 (Vk for kappa light chain in 1C and VH for heavy chain in 1D);



FIG. 2 shows the sequence alignment of the variable regions (VL for light chain in 2A and VH for heavy chain in 2B) of humanized mouse BU12 (H1-H6, and H7) and human antibody (21D4);



FIG. 3 shows DLS thermal stability for SI-63C1 (BU12-chimeric), SI-63C2 (humanized BU12, H1) and SI-34C1 (human antibody, 21D4);



FIG. 4 shows the histograms depicting the cross reactivity of the SI-63C2 antibody to human, cynomolgus, and rhesus CD20+ B cells (4A) and CD20− lymphocytes (4B);



FIG. 5 shows the dose-response curve of the SI-63C2 antibody binding to human (5A), cynomolgus (5B), and rhesus (SC) CD20+ lymphocytes, as compared to its parental control (SI-63C1) and mouse anti-human CD19 antibody controls (SJ25C, LT19, HIB19, and 4G7);



FIG. 6 shows an analytical SEC profile of SI-63R1(H1), the protein-A purified recombinant anti-CD19 scFv-HIS protein (6A) and DLS Thermal Stability of SI-63R1(H1) with unfolding temperature at about 58.8° C. (6B);



FIG. 7 shows analytical SEC profile of the protein-A purified recombinant anti-CD19 scFv-monoFc proteins (H1 through H6) with 90% protein of interest (POI);



FIG. 8 depicts a schematic diagram of six binding domains (D1-D6) in hexaGNC antibodies that comprise the core Fab (D2) and Fc regions and the additional D1, D3, and D4 on heavy chain (HC) and D5 and D6 on light chain;



FIG. 9 shows the ExpiCHO expression and purification of three hexaGNC antibodies SI-77H3, SI-77H6, and SI-55H11 with their humanized anti-CD19 domains, H4 at D1, H7 at D2 (Fab), and H4 at D6, respectively;



FIG. 10 shows the dose-response curves of an antibody (SI-38E17, SI-55H11, SI-77H3, and SI-77H6, respectively) direct cellular cytotoxicity (ADCC) to either human (10A) or cynomolgus (10B) PBMC; and



FIG. 11 shows that the humanized CD19 binding domain of hexaGNC antibodies, such as SI-77H, SI-77H6, and SI-55H11, mediates the cytolysis of Raji lymphoma cells that express only CD19 but no other tumor antigens (11A) with a potent dose-response curve comparable to that of SI-38E17, a human anti-CD19 antibody (21D4) (11B).





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.


The present disclosure provides, among others, isolated antibodies, methods of making such antibodies, monoclonal and/or recombinant monospecific antibodies, multi-specific antibodies, antibody-drug conjugates and/or immuno-conjugates composed from such antibodies or antigen binding fragments, pharmaceutical compositions containing the antibodies, monoclonal and/or recombinant monospecific antibodies, multi-specific antibodies, antibody-drug conjugates and/or immuno-conjugates, the methods for making the antibodies and compositions, and the methods for treating cancer using the antibodies and compositions disclosed herein. Specifically, the present disclosure provides isolated monoclonal antibodies (mAb) or antigen-binding fragments thereof having a binding specificity to human CD19 (Table 1), wherein the isolated mAb or antigen-binding fragments comprise an amino acid sequence having an identity with a sequence selected from SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.


The terms “a”, “an” and “the” as used herein are defined to mean “one or more” and include the plural unless the context is inappropriate.


The terms “polypeptide”, “peptide”, and “protein”, as used herein, are interchangeable and are defined to mean a biomolecule composed of amino acids linked by a peptide bond.


The term “antigen” refers to an entity or fragment thereof which can induce an immune response in an organism, particularly an animal, more particularly a mammal including a human. The term includes immunogens and regions thereof responsible for antigenicity or antigenic determinants.


The terms “antigen- or epitope-binding portion or fragment”, “variable region”, “variable region sequence”, or “binding domain” refer to fragments of an antibody that are capable of binding to an antigen (such as CD19 in this application). These fragments may be capable of the antigen-binding function and additional functions of the intact antibody. Examples of binding fragments include, but are not limited to, a single-chain Fv fragment (scFv) consisting of the variable light chain (VL) and variable heavy chain (VH) domains of a single arm of an antibody connected in a single polypeptide chain by a synthetic linker, or a Fab fragment which is a monovalent fragment consisting of the VL, constant light (CL), VH and constant heavy 1 (CH1) domains. Antibody fragments can be even smaller sub-fragments and can consist of domains as small as a single CDR domain, in particular the CDR3 regions from either the VL and/or VH domains (for example see Beiboer et al., J. Mol. Biol. 296:833-49 (2000)). Antibody fragments are produced using conventional methods known to those skilled in the art. The antibody fragments can be screened for utility using the same techniques employed with intact antibodies.


The “antigen- or epitope-binding portion or fragment”, “variable region”, “variable region sequence”, or “binding domain” may be derived from an antibody of the present disclosure by a number of art-known techniques. For example, purified monoclonal antibodies can be cleaved with an enzyme, such as pepsin, and subjected to HPLC gel filtration. Papain digestion of antibodies produces two identical antigen binding fragments, called “Fab” fragments, each with a single antigen binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen combining sites and is still capable of cross-linking antigen. The appropriate fraction containing Fab fragments can then be collected and concentrated by membrane filtration and the like. For further description of general techniques for the isolation of active fragments of antibodies, see for example, Khaw, B. A. et al. J. Nucl. Med. 23:1011-1019 (1982); Rousseaux et al. Methods Enzymology, 121:663-69, Academic Press, 1986.


The term “antibody” is used in the broadest sense and specifically covers single monoclonal antibodies and/or recombinant antibodies (including agonist and antagonist antibodies), antibody compositions with polyepitopic specificity, as well as antibody fragments (e.g., Fab, F(ab′)2, and Fv), so long as they exhibit the desired biological activity. In some embodiments, the antibody may be monoclonal, polyclonal, chimeric, single chain, multi-specific or multi-effective, human and humanized antibodies, as well as active fragments thereof. Examples of active fragments of molecules that bind to known antigens include Fab, F(ab′)2, scFv and Fv fragments, including the products of a Fab immunoglobulin expression library and epitope-binding fragments of any of the antibodies and fragments mentioned above.


The term “Fv” refers to the minimum antibody fragment which contains a complete antigen recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.


In some embodiments, antibody may include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e. molecules that contain a binding site and that immunospecifically bind an antigen. A typical antibody refers to heterotetrameric protein comprising typically of two heavy (H) chains and two light (L) chains. Each heavy chain is comprised of a heavy chain variable domain (abbreviated as VH) and a heavy chain constant domain. Each light chain is comprised of a light chain variable domain (abbreviated as VL) and a light chain constant domain. The light chains of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. The VH and VL regions can be further subdivided into domains of hypervariable complementarity determining regions (CDR), and more conserved regions called framework regions (FR). Each variable domain (either VH or VL) is typically composed of three CDRs and four FRs, arranged in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 from amino-terminus to carboxy-terminus. Within the variable regions of the light and heavy chains there are binding regions that interacts with the antigen.


Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2. The heavy chain constant domains that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.


The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present disclosure may be made by the hybridoma method first described by Kohler & Milstein, Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). “Recombinant” means the antibodies are generated using recombinant nucleic acid techniques in exogeneous host cells.


Monoclonal antibodies can be produced using various methods, including without limitation, mouse hybridoma, phage display, recombinant DNA, molecular cloning of antibodies directly from primary B cells, and antibody discovery methods (see Siegel. Trans fus. Clin. Biol. 2002; Tiller. New Biotechnol. 2011; Seeber et al. PLOS One. 2014). Monoclonal antibodies may include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 [1984]).


The term “multi-specific” antibody as used herein denotes an antibody that has at least two binding sites each having a binding affinity to an epitope of an antigen. The term “bi-specific, tri-specific, tetra-specific, penta-specific, or hexa-specific” antibody as used herein denotes an antibody that has two, three, four, five, or six antigen-binding sites. For example, the antibodies disclosed herein with five binding sites are penta-specific, with six binding sites are hexa-specific.


The term “guidance and navigation control (GNC)” protein refers to a multi-specific protein capable of binding to at least one effector cell (such as immune cell) antigen and at least one target cell (such as tumor cell, immune cell, or microbial cell) antigen. The GNC protein may adopt an antibody-core structure including a Fab region and Fc region with various binding domains attached to the antibody-core, in which case the GNC protein is also termed GNC antibody. The GNC protein may adopt an antibody-like structure, in which case the Fv fragment may be replaced with a non-antibody based binding domain such as NKG2D, 4-1BBL (a 4-1BB receptor ligand), 4-1BBL trimer for 4-1BB, or a receptor.


The term “GNC antibody” refers to a GNC protein had an antibody structure that is capable of binding to at least one effector cell (such as immune cell) and at least one target cell (such as tumor cell, immune cell, or microbial cell) simultaneously. The term “biGNC, triGNC, tetraGNC, pentaGNC, or hexaGNC” antibody as used herein denotes a GNC antibody that has two, three, four, five, or six antigen-binding sites, of which at least one antigen-binding site has the binding affinity to an immune cell and at least one antigen-binding site has the binding affinity to a tumor cell. In one embodiment, the GNC antibodies disclosed herein have four to six binding sites (or binding domain) and are tetraGNC, pentaGNC, and hexaGNC antibodies, respectively. In some embodiments, the GNC antibodies include antibody binding domains (such as Fab and scFv) without the requirement for additional protein engineering in the Fc region. In one embodiment, the GNC antibodies additionally have the advantage of retaining bivalency for each targeted antigen. Further in one embodiment, the GNC antibodies have the advantage of avidity effects that result in higher affinity for antigens and slower dissociation rates. This bivalency for each antigen is in contrast to many multi-specific platforms that are monovalent for each targeted antigen, and thus often lose the beneficial avidity effects that make antibody binding so strong.


The term “humanized antibody” refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one (or more) human immunoglobulin(s). In addition, framework support residues may be altered to preserve binding affinity. Methods to obtain “humanized antibodies” are well known to those skilled in the art. (see, e.g., Queen et al., Proc. Natl Acad Sci USA, 86:10029-10032 (1989), Hodgson et al., Bio/Technology, 9:421 (1991)).


The terms “isolated” or “purified” refers to a biological molecule free from at least some of the components with which it naturally occurs. Either “Isolated” or “purified,” when used to describe the various polypeptides disclosed herein, means a polypeptide that has been identified and separated and/or recovered from a cell or cell culture from which it was expressed. Ordinarily, a purified polypeptide will be prepared by at least one purification step. An “isolated” or a “purified” antibody refers to an antibody which is substantially free of other antibodies having different antigenic a binding specificity.


The term “immunogenic” refers to substances which elicit or enhance the production of antibodies, T-cells or other reactive immune cells directed against an immunogenic agent and contribute to an immune response in humans or animals. An immune response occurs when an individual produces sufficient antibodies, T-cells and other reactive immune cells against administered immunogenic compositions of the present disclosure to moderate or alleviate the disorder to be treated. While the immunogenic response generally includes both cellular (T cell) and humoral (antibody) arms of the immune response, antibodies directed against therapeutic proteins (anti-drug antibodies, ADA) may consist of IgM, IgG, IgE, and/or IgA isotypes.


The terms “specific binding”, “specifically binds to”, or “is specific for a particular antigen or an epitope” means that the binding is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target.


Specific binding for a particular antigen or an epitope can be exhibited, for example, by an antibody having a KD for an antigen or epitope of at least about 10−4 M, at least about 10−5 M, at least about 10−6 M, at least about 10−7 M, at least about 10−8 M, at least about 10 M, alternatively at least about 10−10 M, at least about 10−11 M, at least about 10−2 M, or greater, where KD refers to a dissociation rate of a particular antibody-antigen interaction. Typically, an antibody that specifically binds an antigen will have a KD that is 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for a control molecule relative to the antigen or epitope.


Also, specific binding for a particular antigen or an epitope can be exhibited, for example, by an antibody having a KA or Ka for an antigen or epitope of at least 20-, 50-, 100-, 500-, 1000-, 5,000-, 10,000- or more times greater for the epitope relative to a control, where KA or Ka refers to an association rate of a particular antibody-antigen interaction.


The present disclosure may be understood more readily by reference to the following detailed description of specific embodiments and examples included herein. Although the present disclosure has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the disclosure.


EXAMPLES
Example 1. Designing Humanized Anti-CD19 Sequences

All computational steps were performed in the Discovery Studio package (Dassault Systems). First, a structural model was generated using the mouse BU12 sequence (McDonagh et al., 2009). Antibody framework regions in the input sequence were identified and aligned to a database of antibody variable domains using Hidden Markov Models (HMM), and this alignment was used to build and score models using the MODELLER software. CDR loop modelling was performed by a structural mapping of the CDRL1, CDRL2, CDRL3, CDRH1, and CDRH2 regions to known canonical classes and loop models were built similarly to the framework.


The framework regions from the mouse BU12 antibody were aligned and matched to the closest human germline sequence, and CDRs regions were copied into the human sequence except for important structural residues (Vernier residues [Almagro and Fransson, 2008]). Mutations predicted to stabilize the previously build structural model were evaluated computationally by 1000 steps of Steepest Descent with a RMS gradient tolerance of 3, followed by Conjugate Gradient minimization and stabilizing mutations matching frequent human residues were chosen based on individual and combined −ΔΔG versus the initial model. Mutational stabilization energy analysis on discovery studio was performed by using sequence H1 as the reference. Version H2, H3 and H4 are mutational variants which had negative values for mutational energy (ΔΔG was −0.8, −1.5, and −1.1 kCal, respectively) and hypothesized to be more stable than version H1. The resulting humanized sequence (H1, SEQ ID NO. 1 and 13) was tested for humanness using the Abysis webserver based on the method of Abhinandan and Martin (2007). Using H4 as an example for its light chain (Vk) and heavy chain (VH) as shown in FIGS. 1A and 1B, the humanized sequences show a higher humanness score than the corresponding mouse sequences (BU12) (SEQ ID NO. 25 and 27).


In addition, a direct CDR grafting approach was used to generate humanized versions H5. A reference antibody framework was mutated to analogous human germline residues and CDRs were directly grafted in the mutated framework to generate H5. Using the resulting humanized sequence H5 as the founding sequence, more mutation was made on the H5 framework to improve framework stability which generated humanized sequence (H6). The humanized sequence H5 (SEQ ID NO. 9 and 21) was tested for humanness using the Abysis webserver based on the method of Abhinandan and Martin (2007). The humanized sequences show a higher humanness score than the mouse sequence (BU12) (SEQ ID NO. 25, and 27) (FIGS. 1C and 1D).


H1 is the first humanized version originating directly from the variable domains of the Fab sequence of BU12 with a signature amino acid sequence, LEIK, at the C-terminus. As shown in FIG. 2, the last three residues (EIK) are predominantly present for variable kappa chains present in nature and provides stability when positioned specifically in the Fab domain. In this context, having H4 that ends with VTVL at the Fab position may not be ideal for the stability of the antibody. Version H7 is a modified H4 which is hypothesized to improve protein stability when positioned in the context of a Fab domain (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058631/). H7 was created by restoring EIK and introducing a disulfide staple between H7VL and H7VH via a Q to C and a G to C mutation, respectively.


To compare and prioritize these designed sequences, all humanized variable regions (H1, H2, H3, H4, H5, H6, and H7) were aligned with the sequences from a human anti-CD19 antibody, 21D4 (Rao-Naik et al., 2009), as shown in FIG. 2. The percentage identities to H1 are 98.1% VL and 99.1-100% VH for H2, H3, H4, and H7, 85% VL and 86% VH for H5 and H6, and 70% VL and 51% VH for 21D4. These findings imply that there are substantial flexibilities in the primary sequences of an anti-CD19 binding domain.


To predict immunogenicity of humanized anti-CD19 sequences, MixMHC2pred algorithm (Gfeller Lab, https://github.com/GfellerLab/MixMHC2pred) was used to predict the extent of major histocompatibility complex-11 (MHC-II) binding of peptides within mouse and humanized (VH/VL) sequences. The algorithm detects the number of ‘core’ peptides in a given amino acid sequence that will bind to MCHII with sufficient affinity to form a T cell epitope. The higher the number of MHCII-binding peptides identified in a sequence, the more potential T cell epitopes the sequence contains. A high number of core peptides increases the likelihood of containing some peptides that are pro-immunogenic. Reducing the number of core peptides in the antibody variable regions may thus help to reduce ADA by eliminating potential T cell epitopes.


Anti-CD19 variable sequences were run through the MixMHC2pred algorithm as scFv (VH-(G4S)4-VL). The algorithm includes the option to score among multiple alleles. In this case, “the score from each peptide is taken as its best percentile rank among all the alleles.” This scoring strategy allows sequences to examined to find the strongest ligands to any allele of MHCII. For sequence analysis of antibody variable domains, the number of core peptides was calculated based on the number of peptides in the sequence that could bind to any MHCII allele with a score in the top 0.2% of interactions. As shown in Table 1, most of humanized sequences have lower scores than their parental mouse sequences, indicative of weaker MHCII binding peptides and lower risk of immunogenicity. Herein, the total score of core peptides in the variable regions that were predicted to bind strongly to MHCII decreased from 9 for mouse sequences to 5 for humanized sequences (H1 through H4, and H7, no change for H5 and H6). The humanness scores for light and heavy chains were calculated using the humanness Z score analysis algorithm (Abhinandan & Andrew, 2007). For VH sequences, versions H1-H4 had similar humanness as 21D4, while H5 and H6 had higher humanness and H7 had lower humanness. For VK sequences, H1-H7 all had similar humanness which was slightly lower than that of 21D4. Notably, all humanized sequences (H1-H7, VH and Vk) had significantly higher humanness scores than the original mouse sequences (Table 1). Considering both humanness and MHC-II peptide binding scores, H1-H4 and H7 were the candidates for generating humanized anti-CD19 antibodies.


Example 2. Expression of Humanized Anti-CD19 Monoclonal Antibodies

To characterize the humanized light chain CDR and heavy chain CDR and framework regions, the DNA sequences encoding H1 and other peptides were synthesized in overlapping fragments and cloned into linearized pTT5 vector (NE Builder) containing a C-terminal human kappa sequence, or human IgG CH1 and Fc region respectively to create a mAb format (SEQ ID NO. 37 and 39). The DNA sequences for 21D4 and Mouse (BU12) variable regions were also synthesized and cloned into linearized pTT5 vector containing a C-terminal human kappa sequence, or IgG CH1 and Fc region respectively to generate a chimeric mAb format (SEQ ID NO. 33, 35, 83, and 85). The plasmid DNA containing the antibody sequences were expressed using the ExpiCHO expression system (ThermoFisher). The three recombinant antibodies, SI-63C1 (with BU12 mouse parental anti-CD19 variable sequence), SI-63C2 (with H1 humanized anti-CD19 variable sequence, also known as SI-huCD19), and SI-34C1 (with 21D4 human anti-CD19 variable sequence), were purified from the culture supernatant by using a Protein-A affinity chromatography column (mabSelect Resin, Ge healthcare) with PBS (5×Cv) for washing followed by 20 mM Glycine pH 3.5 for elution. The resulting proteins were neutralized with 100× Tris pH 8.5 and dialyzed overnight into PDB buffer. To check for stability and monodispersity, purified antibodies were concentrated to 1 mg/ml and injected onto an analytical HPLC (waters, column waters BEH200A 300 mm column). The purified anti-CD19 antibodies showed a sharp monodispersed peak with the correct size with 1.8-2.5% aggregate (Table 2).


Example 3. Characterization of SI-63C2

The purified SI-63C1, SI-63C2, and SI-34C1 antibodies were tested for their binding affinity using biolayer interferometry (ForteBio OctetRED 384). The antibodies were bound to anti-human Fc biosensors, and human CD19 protein (R&D Biosystems Cat #9269-CD-050) was used as the analyte in a 4-point series of 2-fold dilutions with the highest concentration starting at 200 nM. The results of Octet analysis indicated that the binding affinity of SI-63C3 (also known as SI-huCD19) to human and cynomolgus CD19 were at 3.8 nM and 3.6 nM, comparable to that of the human anti-CD19 antibody (21D4) at 2.1 nM and 3.8 nM, respectively. Furthermore, the humanized anti-CD19 variable sequences of SI-63C2 not only retain the binding specificity to human and cynomolgus CD19 but also exhibited comparable binding affinity (KD) to SI-63C1 (with BU12 variable sequences) and SI-34C1 (with 21D4 variable sequences) (Table 2).


To test the thermal stability of SI-63C2, dynamic light scattering was used while the temperature was ramped from 25° C. to 75° C. at 0.5° C./min, and the radius of the proteins (1 mg/ml) was monitored by using Wyatt DynaPro Plate Reader III. As shown in FIG. 3 and Table 2, the results indicated that SI-63C2 and SI-63C1 displayed similar unfolding temperature, as measured by DLS™, which was higher than that of SI-34C1.


Example 4. The Binding Specificity of SI-63C2

Non-human primates (NHPs), such as the cynomolgus or rhesus macaque, are currently necessary to provide risk assessment data for antibody drug development because of their similarity to humans, predictable metabolic stability, and historically established toxicity profiles. To minimize the use of NHPs and to increase the efficiency, antibody drug candidate should have high target specificity and cross-reactivity. In this context, CD19 is a pan-B cell marker and is expressed by the majority of malignant B cells. CD19 has a broader coverage to B cell development and differentiation than CD20, which is another pan-B cell marker for lymphocytes from human and NHPs, such as cynomolgus and rhesus macaque. Of many mouse anti-human CD19 antibodies, BU12 can cross react with B lymphocytes derived from cynomolgus macaque with lower binding affinity (Liu et al., 2016).


To determine if the humanization alters the cross reactivity, the flow cytometry was carried out. The SI-63C2 antibody was used to bind the peripheral blood mononuclear cells derived from human, cynomolgus, and rhesus, respectively. Lymphocytes were gated based on forward and side scatter, followed by single cells based on the ratio of forward scatter signal height and area. Viable CD20+ B-cell and CD20− lymphocytes are gated based on the exclusion of membrane permeable amine reactive dye and the binding level of CD20 antibody (clone 2H7, Biolegend). Binding of the labelled antibody was determined as the geometric mean fluorescence intensity (gMFI) of the cell population for the fluorescent conjugate's emission channel. As shown in the histogram analysis in FIG. 4, the SI-63C2 antibody binds to CD20+ B cells from human, cynomolgus, and rhesus (4A) but not to their CD20− lymphocytes (4B). When a panel of anti-CD19 antibodies (namely, SJ25C, LT19, HIB19, and 4G7) were used for comparison, only SI-63C2 and its the parental antibody, SI-63C1, displayed significant binding affinity to CD20+ B cells from human, cynomolgus, and rhesus (FIG. 5). These data confirmed the binding specificity of SI-63C2 to human, cynomolgus, and rhesus B cells was retained, however, its cross reactivity to cynomolgus, as measured by EC50, remains lower than its response to human CD19 (Table 3).


Example 5. His-Tagged Humanized Anti-CD19 scFv Proteins

To characterize humanized anti-CD19 binding domain as a scFv unit, the DNA sequences encoding humanized anti-CD19 variable regions (H1) were cloned into a His-tagged scFv expression vector containing the residues GSHHHHHH at the C-terminal of the scFv (SEQ ID NO. 41). Using the ExpiCHO expression system, the humanized anti-CD19 scFv-His-tagged protein was expressed, purified via protein L affinity chromatography, and named as SI-63R1. The data from analytical SEC indicated that SI-63R1 had 70% protein of interest, and DLS thermal stability test measured the unfolding temperature for SI-63R1 at 58.8° C. (FIG. 6).


To assess the binding affinity of SI-63R1, Octet binding assay was used. The SI-63R1 protein was loaded via covalent coupling onto AR2G sensors at 10 ug/ml and bound to a serial dilution of His-tagged human CD19 (1:2.5 dilutions from the highest concentration of 200 nM). The result shows that SI-63R1 has a binding affinity to human CD19 in the low nanomolar range (Table 2).


Example 6. Humanized Anti-CD19 scFv monoFc Fusion Proteins

To further screen and compare all humanized peptides, the DNA sequences encoding humanized CD19 binding variants (H1, H2, H3, H4, H5 and H6) were configured to a scFv-monoFc format and cloned (Dimitrov et al. 2012.) (SEQ ID NO. 55,57,59,61,63,65). Using the ExpiCHO expression system, each of 6 humanized anti-CD19 scFv monoFc fusion proteins was expressed and purified via protein-A affinity chromatography. They were given names as SI-63SF1(H1), SI-63SF2(H2), SI-63SF4(H3), SI-63SF5(H4), SI-63SF6(H5), and SI-63SF7(H6). Following the expression and purification processes, all six proteins were characterized for their physical characters, including yields (titer), purity (% HMW and aSEC), binding affinity (KD, Kon, and Kdis) to human CD19, and thermal stability. For Octet assay, the scFv-monoFc fusion proteins were loaded via AHC sensors at 10 ug/ml and bound to a serial dilution of His-tagged human CD19 (1:2.5 dilutions starting from the highest concentration of 200 nM), and the resulting global fit to a 1:1 binding model. For the DLS analysis, the temperature was ramped from 25° C. to 75° C. at 0.5° C./min while the radius of the scFv-monoFc fusion proteins (at 1 mg/ml) was monitored by a Wyatt DynaPro Plate Reader III. The analytical SEC profiles are shown in FIG. 7, and all the measurements are listed in Table 4.


The data revealed that SI-63SF5 (H4) has the highest DLS melting temperature (Tm) at 51.8° C. (Table 4). Due to its higher thermal stability, humanized anti-CD19 variable region with H4 peptide was selected for further investigation in the GNC antibody platform.


Example 7. Humanized Anti-CD19 scFv or Fab Domain in GNC Antibodies

The Guidance and Navigation Control (GNC) antibodies refer to a multi-specific antibody capable of binding to antigen(s) expressed by at least one target cell (including but not limited to a tumor cell, an immune cell, or a microbial cell) and the antigen expressed by at least one effector cell (such as immune cell) (see Applicant's application WO/2019/005642, incorporated herein in its entirety). A GNC antibody comprises an antibody structure of Fab and Fc regions with various additional binding domains attached to the antibody-core, such as one or more single chain fragment variable domains, also known as scFv. GNC antibodies are capable of targeting tumor antigens, engaging immune-activating receptors, and directing immune effector cell-mediated killing of tumors at a fraction of the cost. For example, it has been shown that tetra-specific GNC (tetra-GNC) antibodies exert desirable multi-facet effects with structurally and functionally diverse but relatively independent binding domains (see Applicant's application WO/2019/191120, incorporated herein in its entirety). In this context, the humanized anti-CD19 variable domain may be added to any GNC antibody as either a Fab or scFv domain.


To characterize the humanized CD19 binding domain in GNC antibodies, the DNA sequences encoding H4 and H7 were configured and cloned into the GNC antibody format in one of five scFv positions and the Fab position, respectively (FIG. 8 shows the configuration scheme). A mutation R19S (Kabat numbering) was optionally incorporated into the FR1 region of the humanized (H4) VH domain for VH3-containing scFvs on the GNC light chain, e.g. SI-55H11. When scFvs containing VH3 are attached to the GNC light chain, the VH domain can bind to protein A resin during purification, causing formation of light chain monomers and dimers to contaminate the desired heavy-light chain heterotetramer. In order to rationally disrupt protein A binding of VH3 family members, a structural approach was taken to interrupt the binding interface. Crystal structure 1DEE (Graille M. et al. Proc. Nat. Acad. Sci. 2000.) showed that residue R19 in VH3 (Kabat numbering) is in direct contact with two side chains of protein A domain D. In particular, contact with Q32 and D36 could be eliminated to significantly weaken the interaction. Thus, R19 was mutated to serine, which does not form these interactions due to its shorter side-chain. Additionally, S19 exists naturally in other VH family members, suggesting that it may be less immunogenic than other substitutions. For hexaGNC antibodies, which may contain up to two VH3 scFvs per chain, this mutation is especially important in allowing efficient purification of the desired product.


Table 5 listed the hexaGNC antibodies having a humanized CD19 binding domain H4 at D1 of SI-77H3 (SEQ ID NO. 67 and 69), at D2 (Fab) of SI-77H6 (SEQ ID NO. 71, 73), and at D6 of SI-55H11 (SEQ ID NO. 75 and 77); and the pentaGNC antibody having a humanized CD19 binding domain H4 at D6 of SI-38P12 (SEQ ID NO. 87 and 89). The expression vectors encoding these GNC antibodies were transfected and expressed in the ExpiCHO system and all GNC antibodies were purified via protein-A affinity chromatography. The results of yields and purity as measured by titer and aSEC demonstrated that the GNC antibodies with a humanized CD19 binding domain, as either a scFv or a Fab, can be expressed and purified (FIG. 9 and Table 6).


To determine the binding affinity of the hexa and pentaGNC antibodies to human CD19, the Octet binding assay was used. The GNC antibodies were loaded via AHC sensors at 10 ug/ml and bound to a serial dilution (1:2.5 dilutions starting from the highest concentration of 200 nM) or a single 100-nM concentration of His-tagged human CD19. The resulting global fit to a 1:1 binding model demonstrated that these GNC antibodies bind to CD19 with affinities in the low nanomolar range (Table 6).


Example 8. The Positional Effect of a Humanized CD19 Binding Domain in GNC Antibodies

To evaluate the humanized CD19 binding domain mediated antibody-dependent cellular cytotoxicity, peripheral blood mononuclear cells (PBMCs) from human and cynomolgus macaque were used. T cell engagers were added to human or cynomolgus PBMC and cultured for 5 days. After 5 days, the culture cells are collected, and both viable and non-viable CD20+ B cell were counted by FACS. Analyses of both viable single B cells and viable all B cells (singlets, doublets, or other cells in the gate) were independently evaluated. Relative total cell counts are quantified using spiked in counting bead controls. In this study, the hexaGNC antibodies being tested included SI-77H3 (H4 at D1), SI-77H6 (H7 at D2, i.e. Fab), SI-55H11 (H4 at D6), and the control was a tetraGNC antibody, SI-38E17 (SEQ ID NO. 79 and 81), which has a human CD19 binding domain (21D4) at the Fab region (D2) (Table 5).


The single cell analysis by FACS tends to miss the effect of T cell engagers on the formation of non-cytolytic complexes, most of which seem to fall outside the gate for single cells. In contrast, the analysis that is inclusive of doublet cells covers more events, thereby provides more complete understanding of cell-cell interactions. FIG. 10 shows the results of ADCC analyses using the gate on viable all B cells. The control antibody, SI-38E17, displayed the binding specificity to human CD19 but not to cynomolgus CD19. As a comparison, all three hexaGNC antibodies showed similar responses to both human and cynomolgus PBMC. Unexpectedly, SI-77H6 seemed not to mediate the ADCC to both human and cynomolgus PBMC despite the presence of a humanized CD19 binding affinity (Table 6). As shown in Table 5, in SI-77H6, the humanized CD19 binding domain is the Fab region of the antibody-core structure, whereas in both SI-77H3 and SI-55H11, the humanized CD19 binding domain is an added scFv domain to the antibody-core structure. A hexa-GNC antibody possesses at least 6 binding specificities, thereby is capable of binding at least two different types of cells in vivo and at the same time, which is a different situation from assessing the affinity of individual binding domains. This observed correlation of position and effect suggested that there are biologically distinct outcomes mediated by the positional effect of the humanized anti-CD19 Fab domain in a GNC antibody, and that SI-77H6 may not be able to support the proper formation of cytolytic immune synapses between activated T cells and target B cells. Since CD19 is expressed by both normal and neoplastic B cells, the positional effect may be useful when assigning each binding domain for the benefit of treating different types of cancer, i.e. solid versus liquid tumors. For example, a SI-77H6 liked GNC antibody may still be useful for treating solid tumors with higher efficacy but lower cytotoxicity to normal B cells. In another example the SI-77H6 liked GNC antibody could be useful for engagement of B cell help to T cells in cytolytic interaction directed toward other tumor associated antigens.


Example 9. RTCC by Hexa-GNC Antibodies Having a Humanized CD19 Binding Domain

To demonstrate the cytotoxic effect of hexaGNC antibodies having a humanized CD19 binding domain, the analysis of re-directed T cell cytotoxicity (RTCC) was carried out using Raji cells. The Raji line of lymphoblast-like cells was derived from a Burkitt's lymphoma. Since each of the three hexaGNC antibodies can bind to multiple tumor antigens other than CD19, such as EGFR, HER3, and PD-L1 (Table 5), the Raji cells expressing mKate2 fluorescent protein were stained by labeled monoclonal antibodies against individual tumor antigens and analyzed by FACS. The histogram results confirmed that the Raji cells expresses CD19, and that no expression of EGFR, HER3, or PD-L1 can be detected (FIG. 11A).


The Raji cells expressing mKate2 fluorescent protein were co-cultured with human CD8 T cells at a ratio of 5 T cells per Raji cell for 81 hours in the presence of T cells engager proteins at concentrations ranging from 10 nM to 1 fM in triplicate. Target cell fluorescent signal was evaluated as a measure of specific cytolysis by quantitative microscopy and dose response curves modelled using 5 parameter asymmetric sigmoidal nonlinear regression and least squares fit method using Graphpad Prism 8. As shown in FIG. 11B, the humanized CD19 binding domain in each of SI-55H11 (EC50, 2 pM), SI-77H3 (EC50, 8 pM), and SI-77H6 (EC50, 30 pM) mediated the potent cytolysis of tumor cells, and the potency of SI-55H11 was the same as that of SI-38E17 (EC50, 2 pM), a human anti-CD19 antibody (21D4) (Table 6). SI-77H6 displayed suboptimal cytolysis with reduced potency, a phenomenon in parallel to its effect of CD19 binding to normal B cells without cytolysis induction. SI-77H3 was able to complete killing tumor cells but at a reduced EC50. Thus, with optimized configuration and treatment conditions (such as the ratio of activated T cells to target cells), the disclosed humanized CD19 binding domain may exert the same potency as the human CD19 binding domain in multi-specific GNC antibodies with an added feature of cross-reactivity to cynomolgus macaque CD19.


While the present disclosure has been described with reference to particular embodiments or examples, it may be understood that the embodiments are illustrative and that the disclosure scope is not so limited. Alternative embodiments of the present disclosure may become apparent to those having ordinary skill in the art to which the present disclosure pertains. Such alternate embodiments are considered to be encompassed within the scope of the present disclosure. Accordingly, the scope of the present disclosure is defined by the appended claims and is supported by the foregoing description. All references cited or referred to in this disclosure are hereby incorporated by reference in their entireties.


REFERENCE



  • 1. Watkins M P, Bartlett N L. CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas. Expert Opin Investig Drugs. 2018; 27(7):601-611. doi:10.1080/13543784.2018.1492549.

  • 2. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058631/.)

  • 3. McDonagh, Charlotte et. Al. CD19 Binding agents and Uses Thereof. US 20090136526 A1.

  • 4. Rao-Naik et. al. CD19 Antibodies and their uses. US 20090142349 A1.

  • 5. Dimitrov et al. 2012: https://www.frontiersin.org/articles/10.3389/fimmu.2017.01545/full.

  • 6. (Graille M. et al. Proc. Nat. Acad. Sci. 2000.)



TABLES









TABLE 1







Computational calculation of humanized variable domains fortotal


MHCII binding scores and humanness scores using


MixMHC2pred and Z score analysis algorithm, respectively.













Core






peptides
Humanness
Humanness


Name of Peptides
Sequence
(MHCII
Score (Vk)
Score (VH)


(VH/VL)
Type
Binding)
(Z score)
(Z score)














BU12 (VH/VL)
Mouse
9
−1.40
−1.94


H1VH-H1VL
Humanized
5
−0.77
−0.03


H2VH-H2VL
Humanized
5
−0.75
−0.03


H3VH-H3VL
Humanized
5
−0.77
−0.03


H4VH-H4VL
Humanized
5
−0.75
−0.03


H5VH-H5VL
Humanized
9
−0.70
0.58


H6VH-H6VL
Humanized
9
−0.70
0.57


H7VH-H7VL
Humanized
6
−0.56
−0.55


21D4
Human
12
0.86
−0.06
















TABLE 2







The purity, binding affinity, and thermal stability of SI-63C1 (with mouse parental BU12


variable sequences), SI-63C2 (with H1 humanized anti-CD19 variable sequences), SI-34C1


(with 21D4 human anti-CD19 variable sequences), and SI-63R1


(humanized anti-CD19 scFv-His-tagged protein).

















αCD19





DLS




domain
Titer
%
KD
Kon
Kdis
Tm


Sample ID
Format
(VH/VL)
(ug/ml)
aSEC
(nM)
(1/ms)
(1/s)
(° C.)


















SI-63C1
mAb
BU12
250
98%
3.06
6.81E+04
2.09E−04
75.09


SI-63C2
mAb
H1
235
99%
3.77
6.08E+04
2.29E−04
75.02


SI-34C1
mAb
21D4
60
96.45%
1.56
6.44E+04
1.01E−04
69.07


SI-63R1
ScFv
H1
120
70%
1.33
4.99E+04
9.15E−05
58.8
















TABLE 3







The cross reactivity of recombinant antibodies (SI-63C1 and SI-63C2)


and mouse anti-human CD19 antibodies (SJ25C, LT19, HIB19, and 4G7)


to CD20+ lymphocytes of human, cynomolgus, and rhesus origins,


as measured by EC50.










Anti-CD19 mAb
Human
Cynomolgus
Rhesus


EC50 (ug/ml)
CD20+
CD20+
CD20+














SI-63C2-AF647
Humanized
0.03974
2.901
0.6665


SI-63C1-AF647
Mouse
0.2314
0.9093
0.9907


SJ25C-BV421
Mouse
0.2088
N/A
N/A


LT19-FITC
Mouse
0.008687
N/A
N/A


HIB19-APC
Mouse
0.05441
N/A
N/A


4G7-FITC
Mouse
0.5492
N/A
N/A
















TABLE 4







The purity, binding affinity, and thermal stability of humanized anti-CD19 scFv monoFc


fusion proteins, SI-63SF1 (H1), SI-63SF2 (H2), SI-63SF4(H3), SI-63SF5 (H4), SI-63SF6 (H5),


and SI-63SF7 (H6).
















αCD19






DLS



domain
Titer
%
%
KD
Kon
Kdis
Tm


scFv-Fc ID
(VH/VL)
(ug/ml)
HMW
aSEC
(nM)
(1/ms)
(1/s)
(° C.)


















SI-63SF1
H1
130
20%
80%
6.89
4.41E+04
1.84E−03
46.9


SI-63SF2
H2
121
15%
85%
4.22
4.28E+04
1.81E−03
45.1


SI-63SF4
H3
174
12%
89%
4.18
4.56E+04
1.91E−03
51.2


SI-63SF5
H4
110
11%
88%
5.02
3.72E+04
1.87E−03
51.8


SI-63SF6
H5
101
 8%
92%
5.68
5.97E+04
3.39E−04
49.8


SI-63SF7
H6
97
 7%
91%
5.37
7.02E+04
3.77E−04
50.1
















TABLE 5







The positions of the


humanized CD19 binding domain and other antigen binding domains in GNC antibodies.















Multi-

D2






GNC Ab ID
Specificity
D1
(Fab)
D3
D4
D5
D6





SI-77H3
Hexa
H4
αEGFR
αPD-Ll
α4-1BB
αHER3
αCD3


SI-77H6
Hexa
αHER3
H7
αPD-Ll
α4-1BB
αHER3
αCD3


SI-55H11
Hexa
αEGFR
αCD3
αPD-Ll
α4-1BB
αHER3
H4


SI-38P12
Penta
αCD20
αCD3
αPD-Ll
α4-1BB

H4


SI-38E17
Tetra
αCD3
21D4
αPD-Ll
α4-1BB


















TABLE 6







The physical and functional characters of the GNC antibodies having a humanized anti-


CD19 scFv domain or Fab region.

















αCD19







Multi-
αCD19
domain
Titer
aSEC
αCD19
EC50


GNC Ab ID
Specificity
Position
(VH/VL)
(μg/ml)
% POI
KD (nM)
(pM)





SI-77H3
Hexa
DI
H4
 68.4
86.91
7.53
 8.1


SI-77H6
Hexa
D2
H4
 58.6
78.51
5.25
30.2


SI-55H11
Hexa
D6
H4
 61.9
76.95
4.54
 2.5


SI-38P12
Penta
D6
H4
101.2
79.05
1.11
n/a


SI-38E17
Tetra
D2
21D4
 61.1
80.54
1.48
 2.1



















SEQUENCE LISTING



















SEQ ID NO.










Sample ID
Annotation
Protein
DNA





H1VH
Humanized version 1 variable heavy chain
 1
 2





H2VH
Humanized version 2 variable heavy chain
 3
 4





H3VH
Humanized version 3 variable heavy chain
 5
 6





H4VH
Humanized version 4 variable heavy chain
 7
 8





H5VH
Humanized version 5 variable heavy chain
 9
10





H6VH
Humanized version 6 variable heavy chain
11
12





H7VH
Humanized version 7 variable heavy chain
91
92





H1VL
Humanized version 1 variable light chain
13
14





H2VL
Humanized version 2 variable light chain
15
16





H3VL
Humanized version 3 variable light chain
17
18





H4VL
Humanized version 4 variable light chain
19
20





H5VL
Humanized version 5 variable light chain
21
22





H6VL
Humanized version 6 variable light chain
23
24





H7VL
Humanized version 7 variable light chain
93
94





BU12VH
Mouse anti-CD19 heavy chain variable sequence
25
26





BU12VL
Mouse anti-CD19 light chain variable sequence
27
28





21D4VH
Human anti-CD19 heavy chain variable sequence
29
30





21D4VL
Human anti-CD19 light chain variable sequence
31
32





SI-63C1HC
BU12 version mAb heavy chain
33
34





SI-63C1LC
BU12 version mAb kappa light chain
35
36





SI-63C2HC
Humanized version 1 mAb heavy chain
37
38





SI-63C2LC
Humanized version 1 mAb light chain
39
40





SI-63R1
Humanized version 1 ScFv His-tagged
41
42





SI-63SV1
Humanized version 1 ScFv
43
44





SI-63SV2
Humanized version 2 ScFv
45
46





SI-63SV3
Humanized version 3 ScFv
47
48





SI-63SV4
Humanized version 4 ScFv
49
50





SI-63SV5
Humanized version 5 ScFv
51
52





SI-63SV6
Humanized Version 6 ScFv
53
54





SI-63SV7
Humanized Version 7 ScFv
95
96





SI-63SF1
Humanized version 1 ScFv monoFc
55
56





SI-63SF2
Humanized version 2 ScFv monoFc
57
58





SI-63SF4
Humanized version 3 ScFv monoFc
59
60





SI-63SF5
Humanized version 4 ScFv monoFc
61
62





SI-63SF6
Humanized version 5 ScFv monoFc
63
64





SI-63SF7
Humanized version 6 ScFv mono Fc
65
66





SI-77H3HC
hexaGNC heavy chain
67
68





SI-77H3LC
hexaGNC light chin
69
70





SI-77H6HC
hexaGNC heavy chain
71
72





SI-77H6LC
hexaGNC Light Chain
73
74





SI-55H11HC
hexaGNC Heavy Chain
75
76





SI-55H11LC
hexaGNC light chain
77
78





SI-38E17HC
tetraGNC Heavy chain
79
80





SI-38E17LC
tetraGNC Light Chain
81
82





SI-34C1
21D4 mAb Heavy Chain
83
84





SI-34C1
21D4 mAb Light Chain
85
86





SI-38P12 LC
pentaGNC Light Chain
87
88





SI-38P12 HC
pentaGNC Heavy Chain
89
90










>Sequence ID 1: Humanized Version 1 (H1VH) Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 2: Humanized Version 1 (H1VH) Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTCTCGAGT





>Sequence ID 3: Humanized Version 2 (H2VH) Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 4: Humanized Version 2 (H2VH) Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTCTCGAGT





>Sequence ID 5: Humanized Version 3 (H3VH) Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 6: Humanized Version 3 (H3VH) Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTCTCGAGT





Sequence ID 7: Humanized Version 4 (H4VH) Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 8: Humanized Version 4(H4VH) Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTCTCGAGT





>Sequence ID 9: Humanized Version 5 (H5VH) Amino Acid Sequence


EVQLVESGGGLVQPGGSLRLSCVFSGFSLSTSGMGVGWVRQAPGKGLEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNS


LRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 10: Humanized Version 5 (H5VH) Nucleotide Sequence


GAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCACTTCGGCTCTCATGTGTGTTCAGTGGTTTTTCCCT


TAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGTCTGGAATGGGTTGGTCACATTTGGTGGGATGATG


ACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATACGAGTAAGAACACGGTGTATCTGCAAATGAACAGT


CTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGTCTTACTATTTTGATTACTGGGGCCAGGGCACGTT


GGTAACGGTCTCGAGT





>Sequence ID 11: Humanized Version 6 (H6VH) Amino Acid Sequence


EVQLVESGGGLVQPGGSLRLSCSFSGFSLSTSGMGVGWVRQAPGKGLEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNS


LRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 12: Humanized Version 6 (H6VH) Nucleotide Sequence


GAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCACTTCGGCTCTCATGTAGCTTCAGTGGTTTTTCCCT


TAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGTCTGGAATGGGTTGGTCACATTTGGTGGGATGATG


ACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATACGAGTAAGAACACGGTGTATCTGCAAATGAACAGT


CTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGTCTTACTATTTTGATTACTGGGGCCAGGGCACGTT


GGTAACGGTCTCGAGT





>Sequence ID 13: Humanized Version 1 (H1VL) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLEIK





>Sequence ID 14: Humanized Version 1 (H1VL) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAG





>Sequence ID 15: Humanized Version 2 (H2VL) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKITIL





>Sequence ID 16: Humanized Version 2 (H2VL) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAATTACGATACTG





>Sequence ID 17: Humanized Version 3 (H3VL) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLTVL





>Sequence ID 18: Humanized Version 3 (H3VL) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAACTTACGGTACTG





Sequence ID 19: Humanized Version 4 (H4VL) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVL





>Sequence ID 20: Humanized Version 4 (H4VL) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTTACGGTACTG





>Sequence ID 21: Humanized Version 5 (H5VL) Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVL





>Sequence ID 22: Humanized Version 5 (H5VL) Nucleotide Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTT





>Sequence ID 23: Humanized Version 6 (H6VL) Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVL





>Sequence ID 24: Humanized Version 6 (H6VL) Nucleotide Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTT





>Sequence ID 25: BU12 VH: Mouse anti-CD19 VH Amino Acid Sequence


QVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSSNQVFLKIAS


VDTADTAAYYCARMELWSYYFDYWGQGTTLTVSS





>Sequence ID 26: BU12 VH: Mouse anti-CD19 VH Nucleotide Sequence


CAGGTGACCCTGAAAGAAAGCGGCCCGGGCATTCTGCAGCCGAGCCAGACCCTGAGCCTGACCTGCAGCTTTAGCGGCTTTAGCCT


GAGCACCAGCGGCATGGGCGTGGGCTGGATTCGCCAGCCGAGCGGCAAAGGCCTGGAATGGCTGGCGCATATTTGGTGGGATGATG


ATAAACGCTATAACCCGGCGCTGAAAAGCCGCCTGACCATTAGCAAAGATACCAGCAGCAACCAGGTGTTTCTGAAAATTGCGAGC


GTGGATACCGCGGATACCGCGGCGTATTATTGCGCGCGCATGGAACTGTGGAGCTATTATTTTGATTATTGGGGCCAGGGCACCAC


CCTGACCGTGAGCAGC





>Sequence ID 27: BU12 VL: Mouse anti-CD19 VL Amino Acid Sequence


ENVLTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSSTSPKLWIYDTSKLASGVPGRFSGSGSGNSHFLTISSMEAEDVATYY


CFQGSVYPFTFGSGTKLEIK





>Sequence ID 28: BU12 VL: Mouse anti-CD19 VL Nucleotide Sequence


GAAAACGTGCTGACCCAGAGCCCGGCGATTATGAGCGCGAGCCCGGGCGAAAAAGTGACCATGACCTGCAGCGCGAGCAGCAGCGT


GAGCTATATGCATTGGTATCAGCAGAAAAGCAGCACCAGCCCGAAACTGTGGATTTATGATACCAGCAAACTGGCGAGCGGCGTGC


CGGGCCGCTTTAGCGGCAGCGGCAGCGGCAACAGCCATTTTCTGACCATTAGCAGCATGGAAGCGGAAGATGTGGCGACCTATTAT


TGCTTTCAGGGCAGCGTGTATCCGTTTACCTTTGGCAGCGGCACCAAACTGGAAATTAAA





>Sequence ID 29: 21D4 human antibody VH Amino Acid Sequence


EVQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDTRYSPSFQGQVTISADKSIRTAYLQWSSL


KASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVS S





>Sequence ID 30: 21D4 human antibody VH Nucleotide Sequence


GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTT


TAGCAGTTCATGGATCGGCTGGGTGCGCCAGGCACCTGGGAAAGGCCTGGAATGGATGGGGATCATCTATCCTGATGACTCTGATA


CCAGATACAGTCCATCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGGACTGCCTACCTGCAGTGGAGTAGCCTG


AAGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTACTATGATTTGGGGAGTTATTATTGACTTCTGGGGCCAGGGAAC


CCTGGTCACCGTCTCCTCA





Sequence ID 31: 21D4 human antibody VL Amino Acid Sequence


AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATY


YCQQFNSYPFTFGPGTKVDIK





>Sequence ID 32: 21D4 human antibody VL Nucleotide Sequence


GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCAT


TAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGG


TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT


TACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAA





>Sequence ID 33: SI-63C1 Heavy Chain Amino Acid Sequence


QVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSSNQVFLKIAS


VDTADTAAYYCARMELWSYYFDYWGQGTTLTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT


FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMISRT


PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


HEALHNHYTQKSLSLSPGK





>Sequence ID 34: SI-63C1 Heavy Chain Nucleotide Sequence


CAGGTGACCCTGAAAGAAAGCGGCCCGGGCATTCTGCAGCCGAGCCAGACCCTGAGCCTGACCTGCAGCTTTAGCGGCTTTAGCCT


GAGCACCAGCGGCATGGGCGTGGGCTGGATTCGCCAGCCGAGCGGCAAAGGCCTGGAATGGCTGGCGCATATTTGGTGGGATGATG


ATAAACGCTATAACCCGGCGCTGAAAAGCCGCCTGACCATTAGCAAAGATACCAGCAGCAACCAGGTGTTTCTGAAAATTGCGAGC


GTGGATACCGCGGATACCGCGGCGTATTATTGCGCGCGCATGGAACTGTGGAGCTATTATTTTGATTATTGGGGCCAGGGCACCAC


CCTGACCGTGAGCAGCGCTAGCACCAAGGGCCCATCTGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCTG


CCCTGGGCTGCCTGGTCAAGGACTACTTCCCTGAACCTGTGACAGTGTCCTGGAACTCAGGAGCCCTGACCAGCGGCGTGCACACC


TTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTA


CATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCC


CACCGTGCCCAGCACCTCCTGTAGCAGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA


TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC


TGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT


CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAA





>Sequence ID 35: SI-63C1 Light Chain Amino Acid Sequence


ENVLTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSSTSPKLWIYDTSKLASGVPGRFSGSGSGNSHFLTISSMEAEDVATYY


CFQGSVYPFTFGSGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASWCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY


SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 36: SI-63C1 Light Chain Nucleotide Sequence


GAAAACGTGCTGACCCAGAGCCCGGCGATTATGAGCGCGAGCCCGGGCGAAAAAGTGACCATGACCTGCAGCGCGAGCAGCAGCGT


GAGCTATATGCATTGGTATCAGCAGAAAAGCAGCACCAGCCCGAAACTGTGGATTTATGATACCAGCAAACTGGCGAGCGGCGTGC


CGGGCCGCTTTAGCGGCAGCGGCAGCGGCAACAGCCATTTTCTGACCATTAGCAGCATGGAAGCGGAAGATGTGGCGACCTATTAT


TGCTTTCAGGGCAGCGTGTATCCGTTTACCTTTGGCAGCGGCACCAAACTGGAAATTAAACGTACGGTGGCTGCACCATCTGTCTT


CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA


AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC


AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAG


CTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





>Sequence ID 37: SI-63C2 Heavy Chain Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKGLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHT


FPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMISRT


PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


HEALHNHYTQKSLSLSPGK





>Sequence ID 38: SI-63C2 Heavy Chain Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTGTCCTCTGCTAGCACCAAGGGCCCATCTGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCTG


CCCTGGGCTGCCTGGTCAAGGACTACTTCCCTGAACCTGTGACAGTGTCCTGGAACTCAGGAGCCCTGACCAGCGGCGTGCACACC


TTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTA


CATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCC


CACCGTGCCCAGCACCTCCTGTAGCAGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA


TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC


TGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT


CCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAA





Sequence ID 39: SI-63C2 Light Chain Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASWCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY


SLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





Sequence ID 40: SI-63C2 Light Chain Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGCGTACGGTGGCTGCACCATCTGTCTT


CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA


AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTAC


AGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAG


CTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





>Sequence ID 41: SI-63R1 (H1 ScFv-His) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLEIKGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGSHHHHHH





>Sequence ID 42: SI-63R1 (H1 ScFv-His) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGATCCCATCATCACCATCACCATTGA





>Sequence ID 43: SI-63SV1 Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLEIKGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 44: SI-63SV1 Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT





Sequence ID 45: SI-63SV2 Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKITILGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





Sequence ID 46: SI-63SV2 Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAATTACGATACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT





>Sequence ID 47: SI-63SV3 Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 48: SI-63SV3 Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGACGGTACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT





>Sequence ID 49: SI-63SV4 Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 50: SI-63SV4 Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTTACGGTACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT





>Sequence ID 51: SI-63SV5 Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCVFSGFSLSTSGMGVGWVRQAPGKG


LEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 52: SI-63SV5 Nucleic Acid Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTTGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCAC


TTCGGCTCTCATGTGTGTTCAGTGGTTTTTCCCTTAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGT


CTGGAATGGGTTGGTCACATTTGGTGGGATGATGACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATAC


GAGTAAGAACACGGTGTATCTGCAAATGAACAGTCTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGT


CTTACTATTTTGATTACTGGGGCCAGGGCACGTTGGTAACGGTCTCGAGT





Sequence ID 53: SI-63SV6 Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCSFSGFSLSTSGMGVGWVRQAPGKG


LEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





Sequence ID 54: SI-63SV6 Nucleic Acid Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTTGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCAC


TTCGGCTCTCATGTAGCTTCAGTGGTTTTTCCCTTAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGT


CTGGAATGGGTTGGTCACATTTGGTGGGATGATGACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATAC


GAGTAAGAACACGGTGTATCTGCAAATGAACAGTCTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGT


CTTACTATTTTGATTACTGGGGCCAGGGCACGTTGGTAACGGTCTCGAGT





>Sequence ID 55: SI-63SF1 (H1 ScFv-monoFc) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLEIKGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS


GGSSGSGSGSTGLVPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT


KPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPS


DIAVEWESNGQPENNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIE


WHE





>Sequence ID 56: SI-63SF1 (H1 ScFv-monoFc) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAATTGGAGATAAAGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT


GGGGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTCGTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGG


AACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT


GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGC


GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTT


CTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAA


TGGCATGAA





>Sequence ID 57: SI-63SF2 (H2 ScFv-monoFc) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKITILGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGSSGSGSGSTG


LVPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYR


VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPSDIAVEWESNGQP


ENNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIEWHE





>Sequence ID 58: SI-63SF2 (H2 ScFv-monoFc) Nucleotide sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAATTACGATACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT


GGGGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTCGTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGG


AACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT


GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGC


GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTT


CTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAA


TGGCATGAA





Sequence ID 59: SI-63SF4 (H3 ScFv-monoFc) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGSSGSGSGSTG


LVPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYR


VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPSDIAVEWESNGQP


ENNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIEWHE





Sequence ID 60: SI-63SF4 (H3 ScFv-monoFc) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAACTTACGGTACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT


GGGGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTCGTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGG


AACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT


GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGC


GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTT


CTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAA


TGGCATGAA





>Sequence ID 61: SI-63SF5 (H4 ScFv-monoFc) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGSSGSGSGSTG


LVPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYR


VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPSDIAVEWESNGQP


ENNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIEWHE





>Sequence ID 62: SI-63SF5 (H4 ScFv-monoFc) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTTACGGTACTGGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGT


GGGGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTCGTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGG


AACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACAT


GCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA


AAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA


GTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC


AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGC


GACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTT


CTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGC


ACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGGGCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAA


TGGCATGAA





Sequence ID 63: SI-63SF6 (H5 ScFv-monoFc) Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCVFSGFSLSTSGMGVGWVRQAPGKG


LEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGSSGSGSGSTGL


VPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRV


VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPSDIAVEWESNGQPE


NNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIEWHE





Sequence ID 64: SI-63SF6 (H5 ScFv-monoFc) Nucleotide Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTTGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCAC


TTCGGCTCTCATGTGTGTTCAGTGGTTTTTCCCTTAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGT


CTGGAATGGGTTGGTCACATTTGGTGGGATGATGACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATAC


GAGTAAGAACACGGTGTATCTGCAAATGAACAGTCTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGT


CTTACTATTTTGATTACTGGGGCCAGGGCACGTTGGTAACGGTCTCGAGTGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTC


GTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGGAACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCC


AAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA


AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCC


CATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCA


AGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTG


GCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGG


GCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAATGGCATGAA





>Sequence ID 65: SI-63SF7 (H6 ScFv-monoFc) Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCSASSSVSYMHWYQQKPGKAPKLLIYDTSKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATYY


CFQGSVYPFTFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCSFSGFSLSTSGMGVGWVRQAPGKG


LEWVGHIWWDDDKRYNPALKSRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGSSGSGSGSTGL


VPRGSTSSSGTGTSAGTPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRV


VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLRCHVKGFYPSDIAVEWESNGQPE


NNYKTTKPVLDSDGSFFLYSTLTVDKSRWQQGNVFSCSVLHEALHNHYTQKSLSLSPGKGSGLNDIFEAQKIEWHE





>Sequence ID 66: SI-63SF7 (H6 ScFv-monoFc) Nucleotide Sequence


GAAATAGTGATGACGCAGTCACCTAGCACCCTTAGTGCTTCTGTAGGAGACAGGGTTATAATTACCTGCAGTGCTAGTTCCTCAGT


GTCATACATGCACTGGTATCAGCAGAAACCGGGAAAAGCTCCAAAGCTGCTTATATACGACACGTCCAAATTGGCATCAGGTGTCC


CCAGTCGATTTAGTGGCTCTGGCTCAGGGGCTGAATTTACGCTCACAATCTCCAGCCTCCAACCAGATGACTTCGCCACATACTAC


TGTTTTCAGGGCTCAGTGTATCCGTTTACTTTCGGCCAGGGGACAAAGTTGACTGTACTTGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAGGTGCAACTTGTGGAAAGCGGCGGCGGGTTGGTGCAACCTGGCGGTTCAC


TTCGGCTCTCATGTAGCTTCAGTGGTTTTTCCCTTAGCACAAGCGGGATGGGTGTCGGGTGGGTCCGCCAAGCGCCTGGCAAAGGT


CTGGAATGGGTTGGTCACATTTGGTGGGATGATGACAAAAGGTATAATCCCGCGCTGAAATCTAGATTTACTATTAGTCGGGATAC


GAGTAAGAACACGGTGTATCTGCAAATGAACAGTCTCAGGGCAGAGGATACAGCGGTATATTATTGTGCTCGAATGGAGCTGTGGT


CTTACTATTTTGATTACTGGGGCCAGGGCACGTTGGTAACGGTCTCGAGTGGATCCTCTGGAAGTGGCTCCGGCAGCACTGGGCTC


GTACCAAGGGGGTCCACATCCAGTAGCGGTACTGGCACATCCGCGGGAACCCCCGTCGCTGGACCGTCAGTCTTCCTCTTCCCCCC


AAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA


AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGCTAGCACGTACCGTGTG


GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCC


CATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCA


AGAACCAGGTCAGCCTGAGATGCCACGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG


AACAACTACAAGACCACGAAGCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCACCCTCACCGTGGACAAGAGCAGGTG


GCAGCAGGGGAACGTCTTCTCATGCTCCGTGCTCCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCTGTCTCCGG


GCAAAGGTTCAGGCCTGAACGATATTTTTGAAGCGCAGAAAATTGAATGGCATGAA





Sequence ID 67: SI-77H3 Heavy Chain Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSQV


QLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKCLEWLGVIWSGGNTDYNTPFTSRFTITKDNSKNQVYFKLRSVRAD


DTAIYYCARALTYYDYEFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA


VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPE


VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPR


EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE


ALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGIT


YDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQM


TQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQ


GYSWGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSGGN


VYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQ


SPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTY


LGTDYVGGAFGGGTKVEIK





>Sequence ID 68: SI-77H3 Heavy Chain Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGCCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCACAAGTA


CAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGACGCTTAGTATAACGTGTACTGTTTCAGGCTTTAGCCTTACGAA


CTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAATGTTTGGAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATA


ACACCCCCTTTACAAGTCGGTTCACAATTACGAAAGATAATTCCAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCGCGGAC


GACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACGATTACGAATTTGCGTATTGGGGGCAAGGGACTCTTGTAACAGT


CTCCAGTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCT


GCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT


GTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAA


CGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCC


CAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG


GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGC


CAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATG


GCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA


GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTA


TCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG


GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG


GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCA


GCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCG


GGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACT


TACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG


AGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGG


TCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATG


ACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTT


AAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGT


TCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAG


GGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGG


CTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGGATTCA


CCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAAT


GTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCT


GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGGTCACCG


TCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAG


TCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTG


GTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCG


GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTAT


CTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





Sequence ID 69: SI-77H3 Light Chain Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATY


YCQGYFYFISRTYVNSFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLSLSCAASGFTISTNAMSWVRQA


PGKGLEWVGVITGRDITYYASWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGGSG


GGGSEIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSGSGSGTEFTLTISSVQSED


FAVYYCQQNNNWPTTFGCGTKLTVLRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS


KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGT


SSDVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCSSYGSSSTHVIFGGGTKVTVL


GGGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLSLSCAASGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKG


RFTISRDDAKNSLYLQMNSLRAEDTAVYYCARDRGVGYFDLWGRGTLVTVSS





Sequence ID 70: SI-77H3 Light Chain Nucleotide Sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCACATGCCAGGCCTCCGAGTCAAT


CAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGCTCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTG


TCCCATCTAGGTTCTCCGGCTCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCTAC


TACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAACAAAGTTGACTGTTCTTGGTGGCGG


AGGCAGTGGTGGCGGGGGCAGCGGAGGTGGTGGTTCAGGGGGTGGTGGGAGCGAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGG


TGCAACCTGGTGGATCTCTTAGCCTCTCATGCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCAGGCC


CCCGGCAAAGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCGAGTTGGGCAAAGGGCAGGTTCACGAT


TAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAATGAATAGCTTGAGGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGG


ATGGAGGTAGTTCCGCCATAACTTCCAACAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGTGGCGGTGGAGGGTCCGGC


GGTGGTGGATCAGAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCTCTTGCAGGGC


AAGTCAATCCATAGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACCACCCAGGCTTTTGATTAAGTATGCAAGTGAGT


CTATTTCCGGTATCCCTGACCGCTTCTCTGGATCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGAC


TTCGCCGTGTATTACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGATGCGGTACAAAGCTGACCGTTTTACGTACGGTGGC


TGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCT


ATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGC


AAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCAC


CCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTG


GCGGAGGATCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACC


AGCAGTGACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATCTATGATGTCAG


TGATCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTG


ACGACGAGGCTGATTATTACTGCAGCTCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTA


GGTGGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCAATTGCAGGAGTCGGGGGG


AGGCCTGGTCAAGCCTGGAGGGTCCCTGAGTCTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCC


GCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGC


CGATTCACCATCTCCAGAGACGACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTA


CTGTGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCTAGC





>Sequence ID 71: SI-77H6 Heavy Chain Amino Acid Sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSGSGSGTEFTLTISSVQSEDFAVY


YCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGL


EWLGVIWSGGNTDYNTPFTSRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGSQV


TLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKCLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLD


AEDTAVYYCARMELWSYYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP


AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTP


EVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQP


REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH


EALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGI


TYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQ


MTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQ


QGYSWGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSGG


NVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMT


QSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQST


YLGTDYVGGAFGGGTKVEIK





>Sequence ID 72: SI-77H6 Heavy Chain Nucleotide Sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCTCTTGCAGGGCAAGTCAATCCAT


AGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACCACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTA


TCCCTGACCGCTTCTCTGGATCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGTAT


TACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTTAGGCGGTGGCGGTAGTGGGGGAGG


CGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAAGTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGA


CGCTTAGTATAACGTGTACTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGGTTTG


GAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGTCGGTTCACAATTACGAAAGATAATTC


CAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCGCGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACG


ATTACGAATTTGCGTATTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCACAGGTC


ACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCAC


TAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAATGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAAC


GGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGAC


GCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCAC


GGTGTCGAGTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGG


GCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCG


GCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTG


CAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGT


GCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT


GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAA


TGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA


ATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC


CGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTT


CTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG


ACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT


GAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGT


GCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTA


GCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATC


ACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT


GAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCC


TGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAG


ATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCA


CTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAA


GGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAA


CAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGG


TGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTGGAT


TCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGT


AATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAG


CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGGTCA


CCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACC


CAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATC


CTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCA


GCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACC


TATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





Sequence ID 73: SI-77H6 Light Chain Amino Acid Sequence


EIVMTQSPSTLSASVGDRVIITCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGAEFTLTISSLQPDDFATY


YCQGYFYFISRTYVNSFGQGTKLTVLGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLSLSCAASGFTISTNAMSWVRQA


PGKGLEWVGVITGRDITYYASWAKGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGGSG


GGGSENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDF


ATYYCFQGSVYPFTFGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK


DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTS


SDVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCSSYGSSSTHVIFGGGTKVTVLG


GGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLSLSCAASGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGR


FTISRDDAKNSLYLQMNSLRAEDTAVYYCARDRGVGYFDLWGRGTLVTVSS





>Sequence ID 74: SI-77H6 Light Chain Nucleotide sequence


GAAATCGTTATGACGCAGAGTCCCTCCACGCTCTCCGCTAGTGTCGGGGATCGCGTCATTATCACATGCCAGGCCTCCGAGTCAAT


CAGCAGCTGGCTTGCATGGTATCAACAGAAGCCGGGAAAAGCTCCTAAATTGCTGATCTATGAAGCGTCAAAATTGGCGTCTGGTG


TCCCATCTAGGTTCTCCGGCTCTGGGTCTGGTGCGGAATTTACTTTGACAATCTCCAGTCTTCAACCAGACGATTTCGCTACCTAC


TACTGCCAAGGGTATTTCTATTTTATAAGCCGGACATATGTAAACTCCTTCGGCCAAGGAACAAAGTTGACTGTTCTTGGTGGCGG


AGGCAGTGGTGGCGGGGGCAGCGGAGGTGGTGGTTCAGGGGGTGGTGGGAGCGAAGTCCAATTGGTAGAAAGTGGCGGTGGTCTGG


TGCAACCTGGTGGATCTCTTAGCCTCTCATGCGCCGCTAGTGGCTTTACTATTTCAACTAATGCGATGAGCTGGGTTCGCCAGGCC


CCCGGCAAAGGACTTGAGTGGGTCGGCGTCATCACCGGCAGGGACATTACATACTATGCGAGTTGGGCAAAGGGCAGGTTCACGAT


TAGCCGCGATACTTCAAAGAATACCGTTTACCTTCAAATGAATAGCTTGAGGGCGGAAGACACAGCTGTGTATTACTGCGCGAGGG


ATGGAGGTAGTTCCGCCATAACTTCCAACAACATATGGGGACAAGGCACGCTGGTTACTGTCTCGAGCGGCGGTGGAGGGTCCGGC


GGTGGTGGATCAGAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGC


ATCAAGCAGCGTCTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGG


CTTCCGGCGTACCTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTT


GCAACTTATTATTGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGTGTGGGACAAAAGTGGAGATCAAGCGTACGGTGGCTGC


ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATC


CCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAG


GACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCG


GAGGATCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGC


AGTGACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATCTATGATGTCAGTGA


TCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACG


ACGAGGCTGATTATTACTGCAGCTCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTAGGT


GGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCAATTGCAGGAGTCGGGGGGAGG


CCTGGTCAAGCCTGGAGGGTCCCTGAGTCTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCC


AGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCGA


TTCACCATCTCCAGAGACGACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTG


TGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCTAGC





Sequence ID 75: SI-55H11 Heavy Chain Amino Acid Sequence


EIVLTQSPSTLSVSPGERATFSCRASQSIGTNIHWYQQKPGKPPRLLIKYASESISGIPDRFSGSGSGTEFTLTISSVQSEDFAVY


YCQQNNNWPTTFGPGTKLTVLGGGGSGGGGSGGGGSGGGGSQVQLQQSGPGLVKPSETLSITCTVSGFSLTNYGVHWIRQAPGKGL


EWLGVIWSGGNTDYNTPFTSRFTITKDNSKNQVYFKLRSVRADDTAIYYCARALTYYDYEFAYWGQGTLVTVSSGGGGSGGGGSGG


GGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKCLEWIGVITGRDITYYASWAKGRFTISRDNSKNTL


YLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG


ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKP


KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIE


KTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ


GNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWI


ACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGG


GSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQ


PDDFATYYCQQGYSWGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGL


EYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGS


GGGGSDWMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPG


DAATYYCQSTYLGTDYVGGAFGGGTKVEIK





>Sequence ID 76: SI-55H11 Heavy Chain Nucleotide Sequence


GAAATCGTCCTTACACAATCTCCTAGCACACTGAGTGTGAGCCCCGGCGAACGCGCGACTTTCTCTTGCAGGGCAAGTCAATCCAT


AGGGACTAATATACATTGGTATCAACAAAAGCCAGGTAAACCACCCAGGCTTTTGATTAAGTATGCAAGTGAGTCTATTTCCGGTA


TCCCTGACCGCTTCTCTGGATCAGGCAGTGGCACAGAGTTCACACTCACCATATCTAGTGTGCAATCAGAGGACTTCGCCGTGTAT


TACTGCCAACAGAATAATAACTGGCCGACTACCTTCGGACCCGGTACAAAGCTGACCGTTTTAGGCGGTGGCGGTAGTGGGGGAGG


CGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAAGTACAGTTGCAGCAATCCGGTCCCGGTCTCGTCAAACCGAGTGAGA


CGCTTAGTATAACGTGTACTGTTTCAGGCTTTAGCCTTACGAACTATGGAGTTCACTGGATTCGGCAGGCACCCGGCAAAGGTTTG


GAATGGCTGGGTGTTATTTGGTCAGGTGGAAATACAGACTATAACACCCCCTTTACAAGTCGGTTCACAATTACGAAAGATAATTC


CAAAAATCAAGTTTATTTCAAGTTGAGATCCGTCCGCGCGGACGACACTGCGATCTACTATTGTGCGAGGGCACTGACCTACTACG


ATTACGAATTTGCGTATTGGGGGCAAGGGACTCTTGTAACAGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGT


GGCGGCTCCGGTGGAGGCGGCTCTGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC


CTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGTGTCTGGAGTGGATCGGAG


TCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTG


TATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAGTAA


CAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCA


AGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGC


GCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTC


CAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAAT


CTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCC


AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAA


CTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCG


TCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAG


AAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCA


GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT


ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAG


GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGG


TGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCT


CCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATC


GCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAA


GAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACT


ACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGC


GGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAC


TTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGG


CATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAG


CCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGA


GATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGT


CCCTGAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTG


GAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTC


CAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTG


ATCCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCC


GGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCA


GGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCA


ATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGC


GATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGAT


CAAA





Sequence ID 77: SI-55H11 Light Chain Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLSLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSDV


VMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYC


QGYFYFISRTYVNSFGCGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK


DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSGGGGSGGGGSQSALTQPASVSGSPGQSITISCTGTS


SDVGGYNFVSWYQQHPGKAPKLMIYDVSDRPSGVSDRFSGSKSGNTASLIISGLQADDEADYYCSSYGSSSTHVIFGGGTKVTVLG


GGGSGGGGSGGGGSGGGGSQVQLQESGGGLVKPGGSLSLSCAASGFTFSSYWMSWVRQAPGKGLEWVANINRDGSASYYVDSVKGR


FTISRDDAKNSLYLQMNSLRAEDTAVYYCARDRGVGYFDLWGRGTLVTVSS





Sequence ID 78: SI-55H11 Light Chain Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACCGTCCTAGGCGGTGGCGGTAGTGGGGGAGGCGG


TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCACAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGCCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCAGACGTC


GTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAAGCCAGTGAGAGCATTAGCAG


TTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCAT


CAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGC


CAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCTGTGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGC


ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATC


CCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAG


GACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTGGCGGTGGCGGTAGCGGTGGCGGCGGAAGTGGTGGCG


GAGGATCCCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGC


AGTGACGTTGGTGGTTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATCTATGATGTCAGTGA


TCGGCCCTCAGGGGTGTCTGATCGCTTCTCCGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGCCTCCAGGCTGACG


ACGAGGCTGATTATTACTGCAGCTCATATGGGAGCAGCAGCACTCATGTGATTTTCGGCGGAGGGACCAAGGTGACCGTCCTAGGT


GGAGGCGGTTCAGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTGCAATTGCAGGAGTCGGGGGGAGG


CCTGGTCAAGCCTGGAGGGTCCCTGAGTCTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGTTATTGGATGAGCTGGGTCCGCC


AGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAACCGCGATGGAAGTGCGAGTTACTATGTGGACTCTGTGAAGGGCCGA


TTCACCATCTCCAGAGACGACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTG


TGCGAGAGATCGTGGGGTGGGCTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCTAGCTGA





>Sequence ID 79: SI-38E17 Heavy Chain Amino Acid Sequence


DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATY


YCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQA


PGKGLEWIGVITGRDITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGGSG


GGGSEVQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDTRYSPSFQGQVTISADKSIRTAYLQ


WSSLKASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT


SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDT


LMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTI


SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV


FSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACI


AAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSG


GGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDD


FATYYCQQGYSWGNVDNVFGGGTKVEIKGGGGSGGGGSRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIG


TISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG


SDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAAT


YYCQSTYLGTDYVGGAFGGGTKVEIK





Sequence ID 80: SI-38E17 Heavy Chain Amino Acid Sequence


GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAAGCCAGTGAGAGCAT


TAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGG


TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTAT


TACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGG


CGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGG


TCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCT


CCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCAT


CTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCG


ACGGTGGATCATCTGCTATTACTAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCAGGCGGTGGAGGGTCCGGC


GGTGGTGGATCCGAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAGAGTCTCTGAAGATCTCCTGTAAGGGTTC


TGGATACAGCTTTAGCAGTTCATGGATCGGCTGGGTGCGCCAGGCACCTGGGAAAGGCCTGGAATGGATGGGGATCATCTATCCTG


ATGACTCTGATACCAGATACAGTCCATCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGGACTGCCTACCTGCAG


TGGAGTAGCCTGAAGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTACTATGATTTGGGGAGTTATTATTGACTTCTG


GGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCT


CTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACC


AGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTT


GGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACA


AAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC


CTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGT


GGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG


TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC


TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT


GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCA


CGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTC


TTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTC


CGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAG


CCTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATT


GCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCT


GTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGG


ACCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGT


GGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC


CAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTC


TGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGAT


TTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGG


CGGTGGAGGGTCCGGCGGTGGTGGATCCCGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCT


CCTGTACAGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGA


ACCATTAGTAGTGGTGGTAATGTATACTACGCGAGCTCCGCGAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGT


GGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGG


GCCAGGGAACCCTGGTCACCGTCTCGAGCGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGA


TCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAA


CATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTG


GGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACT


TACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA





Sequence ID 81: SI-38E17 Light Chain Amino Acid Sequence


AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATY


YCQQFNSYPFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST


YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 82: SI-38E17 Light Chain Nucleotide Sequence


GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCAT


TAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGG


TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT


TACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACGGTGGCTGCACCATCTGT


CTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG


CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC


TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCT


GAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





Sequence ID 83: SI-34C1 Heavy Chain Amino Acid Sequence


EVQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDTRYSPSFQGQVTISADKSIRTAYLQWSSL


KASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH


TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS


RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK


GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS


VMHEALHNHYTQKSLSLSPG





Sequence ID 84: SI-34C1 Heavy Chain Nucleotide Sequence


GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTT


TAGCAGTTCATGGATCGGCTGGGTGCGCCAGGCACCTGGGAAAGGCCTGGAATGGATGGGGATCATCTATCCTGATGACTCTGATA


CCAGATACAGTCCATCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGGACTGCCTACCTGCAGTGGAGTAGCCTG


AAGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTACTATGATTTGGGGAGTTATTATTGACTTCTGGGGCCAGGGAAC


CCTGGTCACCGTCTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG


CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCAC


ACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGAC


CTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACAT


GCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCC


CGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA


GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGG


ACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAA


GGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGT


CAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGC


TGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCC


GTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT





>Sequence ID 85: SI-34C1 Light Chain Amino Acid Sequence


AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATY


YCQQFNSYPFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDST


YSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 86: SI-34C1 Light Chain Nucleotide Sequence


GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCAT


TAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGG


TCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTAT


TACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAACGTACGGTGGCTGCACCATCTGT


CTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG


CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACC


TACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCT


GAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





>Sequence ID 87: SI-38P12 Heavy Chain Amino Acid Sequence


QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYY


CQQWTSNPPTFGGGTKLTVLGGGGSGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLE


WIGAIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSSGGGGSGGGGSE


VQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRFTISRDNSKNTLYLQMNSLRA


EDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF


PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRT


PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQ


PREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM


HEALHNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAG


ITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDI


QMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYC


QQGYSWGNVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSG


GNVYYASSARGRFTISRPSSKNTVDLOMNSLRAEDTAVYYCARDSGYSDPMWGOGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVM


TQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDETLTISDLEPGDAATYYCQS


TYLGTDYVGGAFGGGTKVEIK





Sequence ID 88: SI-38P12 Heavy Chain Nucleotide Sequence


CAGATCGTGCTGAGCCAGAGCCCCGCCATCCTGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGGGCCAGCAGCAGCGT


GAGCTACATCCACTGGTTCCAGCAGAAGCCCGGCAGCAGCCCCAAGCCCTGGATCTACGCCACCAGCAACCTGGCCAGCGGCGTGC


CCGTGCGGTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCCGGGTGGAGGCCGAGGACGCCGCCACCTACTAC


TGCCAGCAGTGGACCAGCAACCCCCCCACCTTCGGCGGCGGCACCAAGCTGACCGTGCTGGGTGGTGGTGGCTCTGGAGGAGGCGG


GAGCGGGGGTGGTGGCTCAGGTGGTGGAGGTTCCCAGGTGCAGCTGCAGCAGCCCGGCGCCGAGCTGGTGAAGCCCGGCGCCAGCG


TGAAGATGAGCTGCAAGGCCAGCGGCTACACCTTCACCAGCTACAACATGCACTGGGTGAAGCAGACCCCCGGCCGGGGCCTGGAG


TGGATCGGCGCCATCTACCCCGGCAACGGCGACACCAGCTACAACCAGAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACAAGAG


CAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGGAGCACCTACTACGGCG


GCGACTGGTACTTCAACGTGTGGGGCGCCGGCACCACCGTGACCGTCTCGAGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCAGAG


GTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAG


TACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACT


ACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCC


GAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGCTATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGT


CACCGTGTCCTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCC


TGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTC


CCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACAT


CTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCAC


CGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC


CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCA


TAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC


TGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG


CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGG


CTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACT


CCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATG


CATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGA


GGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCA


GTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGT


ATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG


CCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAA


CCCTGGTCACCGTGTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATC


CAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTC


CCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCAT


CAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGC


CAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGG


TGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTCTG


GATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGT


GGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAA


CAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACCCTGG


TCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATG


ACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTT


ATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGT


TCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCT


ACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAATGA





>Sequence ID 89: SI-38P12 Light Chain Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGQGTKVTVLGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKG


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSSGGGGSGGGGSDV


VMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYC


QGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK


DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





>Sequence ID 90: SI-38P12 Light Chain Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGCAGGGGACAAAAGTGACGGTACTGGGTGGAGGCGGTTCAGGCGGAGGTGG


TTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTCAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAAGGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCGCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCAGACGTC


GTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAAGCCAGTGAGAGCATTAGCAG


TTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCAT


CAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGC


CAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGC


ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATC


CCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAG


GACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCA


TCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT





Sequence ID 91: Humanized Version 7 (H7VH) Amino Acid Sequence


QVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKCLEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNS


LDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 92: Humanized Version 7 (H7VH) Nucleotide Sequence


CAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCCTTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCT


TAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAATGTCTTGAGTGGTTGGCTCACATTTGGTGGGACGACG


ACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATACCTCAAAAAATCAAGTGTACTTGCAAATGAATAGC


CTTGACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGTCTTACTACTTTGATTATTGGGGGCAGGGGACTCT


CGTCACGGTGTCGAGT





>Sequence ID 93: Humanized Version 7 (H7VL) Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGCGTKVEIK





>Sequence ID 94: Humanized Version 7 (H7VL) Nucleotide Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGTGTGGGACAAAAGTGGAGATCAAG





>Sequence ID 95: SI-63SV7 Amino Acid Sequence


ENVLTQSPASLSASPGERVTITCSASSSVSYMHWYQQKPGQAPKLWIYDTSKLASGVPSRFSGSGSGNDHTLTISSMEPEDFATYY


CFQGSVYPFTFGCGTKVEIKGGGGSGGGGSGGGGSGGGGSQVTLKESGPGLVQPGQTLRLTCAFSGFSLSTSGMGVGWIRQPPGKC


LEWLAHIWWDDDKRYNPALKSRLTISKDTSKNQVYLQMNSLDAEDTAVYYCARMELWSYYFDYWGQGTLVTVSS





>Sequence ID 96: SI-63SV7 Nucleic Acid Sequence


GAAAATGTATTGACACAGAGCCCCGCCTCCCTCAGTGCCTCACCTGGGGAAAGGGTAACTATCACTTGCTCTGCATCAAGCAGCGT


CTCATACATGCATTGGTATCAACAAAAGCCTGGACAGGCCCCCAAGCTCTGGATATACGATACGAGCAAGCTGGCTTCCGGCGTAC


CTAGCCGCTTCAGTGGTTCCGGCTCAGGCAACGATCACACCCTTACGATTTCCAGTATGGAACCCGAAGATTTTGCAACTTATTAT


TGTTTCCAGGGGAGCGTGTACCCATTCACTTTCGGGTGTGGGACAAAAGTGGAGATCAAGGGTGGCGGAGGCAGTGGTGGCGGGGG


CAGCGGAGGTGGTGGTTCAGGGGGTGGTGGGAGCCAGGTCACATTGAAGGAATCTGGCCCCGGCCTTGTTCAGCCAGGACAGACCC


TTAGGCTCACCTGTGCCTTCAGTGGTTTTTCTCTTAGCACTAGCGGTATGGGGGTCGGCTGGATTCGGCAGCCTCCCGGCAAATGT


CTTGAGTGGTTGGCTCACATTTGGTGGGACGACGACAAACGGTATAATCCTGCCTTGAAAAGTCGGCTGACCATTAGTAAGGATAC


CTCAAAAAATCAAGTGTACTTGCAAATGAATAGCCTTGACGCCGAGGATACGGCTGTATATTATTGCGCTCGGATGGAACTCTGGT


CTTACTACTTTGATTATTGGGGGCAGGGGACTCTCGTCACGGTGTCGAGT








Claims
  • 1. A peptide having a binding specificity to human CD19, comprising an amino acid sequence having a sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.
  • 2-7. (canceled)
  • 8. A multi-specific antibody-like protein, wherein the multi-specific antibody-like protein has a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, a first binding domain (D1) at the N-terminal, a second binding domain (D2) comprising a light chain moiety,a Fc region,a third binding domain (D3), anda fourth binding domain (D4) at the C-terminal,wherein the light chain moiety comprises a fifth binding domain (D5) covalently attached to the C-terminal, a sixth binding domain (D6) covalently attached to the N-terminal, or both,wherein the D1, D2, D3, D4, D5 and D6 each has a binding specificity to a tumor antigen, an immune signaling antigen, or a combination thereof, andwherein the multi-specific antibody-like protein comprises an amino acid sequence having a sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.
  • 9. (canceled)
  • 10. The multi-specific antibody-like protein of claim 8, wherein D1 comprises a peptide having an amino acid sequence having a sequence identity to SEQ ID NO. 7 or 19.
  • 11. (canceled)
  • 12. The multi-specific antibody-like protein of claim 8, wherein D2 comprises a peptide having an amino acid sequence having a sequence identity to SEQ ID NO. 91 or 93.
  • 13. (canceled)
  • 14. The multi-specific antibody-like protein of claim 8, wherein D6 comprises a peptide having an amino acid sequence having a sequence identity to SEQ ID NO. 7 or 19.
  • 15. The multi-specific antibody-like protein of claim 8, wherein the multi-specific antibody-like protein is a monoclonal antibody.
  • 16. The multi-specific antibody-like protein of claim 15, having a binding affinity to human CD19 with a Kd not greater than 10 nM.
  • 17. The multi-specific antibody-like protein of claim 15, comprising a scFv domain, a Fab region, or both, wherein the scFv domain or Fab region comprises an amino acid sequence having a sequence identity to SEQ ID NO. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 91, or 93.
  • 18. The multi-specific antibody-like protein of claim 15, wherein the antibody is an IgG, or wherein the antibody is a humanized antibody.
  • 19. An isolated nucleic acid sequence, encoding an amino acid sequence of the multi-specific antibody-like protein of claim 15.
  • 20. An expression vector comprising the isolated nucleic acid of claim 19.
  • 21. A host cell comprising the nucleic acid of claim 19, wherein the host cell is a prokaryotic cell or a eukaryotic cell.
  • 22. A method of producing an antibody comprising culturing the host cell of claim 21 so that the antibody is produced.
  • 23. An immune-conjugate, comprising the multi-specific antibody-like protein of claim 15 and a drug unit, wherein the drug unit is linked to the multi-specific antibody-like protein through a linker, and wherein the linker comprises a covalent bond selected from an ester bond, an ether bond, an amine bond, an amide bond, a disulfide bond, an imide bond, a sulfone bond, a phosphate bond, a phosphorus ester bond, a peptide bond, a hydrazone bond or a combination thereof.
  • 24. The immune-conjugate of claim 23, wherein the drug unit comprises a cytotoxic agent, an immune regulatory reagent, an imaging agent or a combination thereof.
  • 25. The immune-conjugate of claim 24, wherein the cytotoxic agent is selected from a growth inhibitory agent or a chemotherapeutic agent from a class of tubulin binders, DNA intercalators, DNA alkylators, enzyme inhibitors, immune modulators, antimetabolite agents, radioactive isotopes, or a combination thereof, wherein the cytotoxic agent is selected from a calicheamicin, camptothecin, ozogamicin, monomethyl auristatin E, emtansine, a derivative or a combination thereof, or wherein the immune regulatory reagents activate or suppress immune cells, T cell, NK cell, B cell, macrophage, or dendritic cell.
  • 26-28. (canceled)
  • 29. A pharmaceutical composition, comprising the multi-specific antibody-like protein of claim 15 and a pharmaceutically acceptable carrier.
  • 30. The pharmaceutical composition of claim 29, further comprising a chemotherapeutic agent, a growth inhibitory agent, a cytotoxic agent from class of calicheamicin, an antimitotic agent, a toxin, a radioactive isotope, a therapeutic agent, or a combination thereof.
  • 31. A pharmaceutical composition, comprising the immune-conjugate of claim 24 and a pharmaceutically acceptable carrier.
  • 32. A method of treating a subject with a cancer, comprising administering to the subject an effective amount of the multi-specific antibody-like protein of claim 15.
  • 33. The method of claim 32, further comprising co-administering an effective amount of a therapeutic agent, wherein the therapeutic agent comprises an antibody, a chemotherapy agent, an enzyme, or a combination thereof.
  • 34. The method of claim 33, wherein the subject is a human.
  • 35. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 62/984,731 filed Mar. 3, 2020 under 35 U.S.C. 119(e), the entire disclosures of which are incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/20145 2/27/2021 WO
Provisional Applications (1)
Number Date Country
62984731 Mar 2020 US