Anti-claudin 18.2 antibodies and uses thereof

Information

  • Patent Grant
  • 12018076
  • Patent Number
    12,018,076
  • Date Filed
    Thursday, August 5, 2021
    3 years ago
  • Date Issued
    Tuesday, June 25, 2024
    6 months ago
Abstract
Provided are antibodies or fragment thereof having binding specificity to the wild-type human claudin 18.2 (CLDN18.2) protein and also capable of binding the M149L mutant. By contrast, such antibodies and fragments do not or weakly bind to claudin 18.1 (CLDN18.1).
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 19, 2019, is named 271339_SEQ_ST25.txt and is 146,879 bytes in size.


BACKGROUND

Claudins are a family of proteins that form the important components of the tight cell junctions. They establish a paracellular barrier which controls the flow of molecules between the cells. The proteins have N-terminus and a C-terminus in the cytoplasm. Different claudins are expressed on different tissues, their altered function has linked to formation of cancers of respective tissues. Claudin-1 is expressed in colon cancer, claudin-18 is expressed in gastric cancer, and claudin-10 is expressed in hepatocellular carcinoma.


Claudin-18 has two isoforms, isoform 1 and isoform 2. Isoform 2 (Claudin 18.2 or CLDN18.2) is a highly selective cell lineage marker. Claudin 18.2's expression in normal tissues is strictly confined to differentiated epithelial cells of the gastric mucosa, but it was absent from the gastric stem cell zone. Claudin 18.2 was retained on malignant transformation and was expressed in a significant proportion of primary gastric cancers and its metastases. Frequently ectopic activation of claudin 18.2 was also found in pancreatic, esophageal, ovarian, and lung tumors. These data suggested that CLDN18.2 has highly restricted expression pattern in normal tissues, with frequent ectopic activation in a diversity of human cancers.


SUMMARY

Anti-claudin 18.2 antibodies are discovered herein that have high affinity to both the wild-type claudin 18.2 and a common mutant, M149L. Such antibodies, therefore, have the unique advantage of being capable of targeting both the wild-type and the M149L mutant claudin 18.2 protein. This advantage is important because a significant portion of cancer patients harbor this common mutation. Moreover, the antibodies of the present disclosure do not bind to the other claudin 18 isoform, claudin 18.1 and thus are highly selective.


In accordance with one embodiment of the present disclosure, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment further binds to a M149L mutant of the CLDN18.2 protein at an affinity that is at least about 1% of the affinity to the wild-type CLDN18.2 protein, and wherein the antibody or fragment further does not bind to a human wild-type claudin 18.1 (CLDN18.1) protein at an affinity that is greater than about 1% of the affinity to the wild-type CLDN18.2 protein. In some embodiments, the antibody or fragment thereof does not bind to the CLDN18.1 protein.


Also provided, in one embodiment, is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the binding between the antibody or fragment thereof and the wild-type CLDN18.2 protein involves amino acid residues comprising: at least an amino acid residue selected from the group consisting of Y46, G48, L49, W50, C53, V54, R55, E56 and S58; and at least an amino acid residue selected from the group consisting of Y169 and G172, of the wild-type CLDN18.2 protein. In some embodiments, the binding further involves W30 of the CLDN18.2 protein.


In some embodiments, the binding involves amino acid residues comprising: W30; two or more amino acid residues selected from the group consisting of G48, L49, W50, C53, and E56; and at least an amino acid residue selected from the group consisting of Y169 and G172, of the wild-type CLDN18.2 protein. In some embodiments, the binding involves amino acid residues comprising W30, G48, L49, W50, C53, E56 and Y169 of the wild-type CLDN18.2 protein.


Methods and uses for the treatment of diseases and conditions are also provided. In one embodiment, provided is a method of treating cancer in a patient in need thereof, comprising administering to the patient the antibody or fragment thereof of the present disclosure. In another embodiment, a method of treating cancer in a patient in need thereof is provided, comprising: (a) treating a cell, in vitro, with the antibody or fragment thereof of the present disclosure; and (b) administering the treated cell to the patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows that the mouse sera from all mice after DNA immunisation have high titration reacted with HEK293 cells transfected with CLD 18A2 by flow cytometry, CLD 18A1 as negtive control.



FIG. 2 shows that the hybridoma supernatants can bind to HEK293 cells transfected with human CLD18A2 by cell ELISA or flow cytometry.



FIG. 3 shows that the purified murine antibodies can bind to MKN45 cells transfected with human CLD18A2 by flow cytometry with high EC50, compared with postive reference antibody.



FIG. 4 shows that the purified murine antibodies can bind to SU620 cells endogenously expressing human CLD18A2 bearing M149L mutation by flow cytometry with high EC50, while the reference antibody did not.



FIG. 5 shows that the purified murine antibodies can bind to HEK293 cells transfected with mouse CLD18A2 by flow cytometry with high EC50.



FIG. 6 shows that the purified murine antibodies can bind to HEK293 cells transfected with cyno CLD18A2 by flow cytometry with high EC50.



FIG. 7 shows that the purified murine antibodies can bind to HEK293 cells transfected with human CLD18A2 by flow cytometry with high EC50.



FIG. 8 shows that the chimeric antibodies can bind to MKN45 cells transfected with human CLD18A2 by flow cytometry with high EC50, compared with positive reference antibody.



FIG. 9 shows that the chimeric antibodies can not bind to MKN45 cells transfected with human CLD18A1 by flow cytometry.



FIG. 10 shows that humanized antibodies can bind to MKN45 cells transfected with human CLD18A2 by flow cytometry with high EC50, compared with positive reference antibody.



FIG. 11 shows that the humanized antibodies cannot bind to MKN45 cells transfected with human CLD18A1 by flow cytometry.



FIG. 12 shows that humanized antibodies with CDR mutation can bind to MKN45 cells transfected with human CLD18A2 by flow cytometry with high EC50, compared with positive reference antibody.



FIG. 13 shows that the humanized antibodies with CDR mutation cannot bind to MKN45 cells transfected with human CLD18A1 by flow cytometry.



FIG. 14 shows that the de-risked variants had potent binding to cell surface CLD18A2.



FIG. 15 shows that certain mutations of CLD18A2 have significant effect on the indicated antibodies binding to HEK293 cells transfected these mutants, suggesting that these amino acid residues constitute at least part of the epitope.



FIG. 16 shows that antibodies 4F11E2, 72C1B6A3 and 120B7B2 had superior binding in both claudin 18.2 high and low CHO-K1 cells, as compared to 175D10.



FIG. 17 shows the potent ADCC testing results of 4F11E2, 72C1B6A3 and 120B7B2 using 175D10 antibody as a reference.



FIG. 18 shows that the S239D/I332E versions of the 4F11E2, 72C1B6A3 and 120B7B2 outperformed the 175D10 counterpart in the ADCC assays.



FIG. 19 shows that 4F11E2, 72C1B6A3 and 120B7B2 also had better ADCP effects than 175D10.





DETAILED DESCRIPTION
Definitions

It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “an antibody,” is understood to represent one or more antibodies. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein.


As used herein, the term “polypeptide” is intended to encompass a singular “polypeptide” as well as plural “polypeptides,” and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). The term “polypeptide” refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, “protein,” “amino acid chain,” or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of “polypeptide,” and the term “polypeptide” may be used instead of, or interchangeably with any of these terms. The term “polypeptide” is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-naturally occurring amino acids. A polypeptide may be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It may be generated in any manner, including by chemical synthesis.


The term “isolated” as used herein with respect to cells, nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively, that are present in the natural source of the macromolecule. The term “isolated” as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Moreover, an “isolated nucleic acid” is meant to include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state. The term “isolated” is also used herein to refer to cells or polypeptides which are isolated from other cellular proteins or tissues. Isolated polypeptides is meant to encompass both purified and recombinant polypeptides.


As used herein, the term “recombinant” as it pertains to polypeptides or polynucleotides intends a form of the polypeptide or polynucleotide that does not exist naturally, a non-limiting example of which can be created by combining polynucleotides or polypeptides that would not normally occur together.


“Homology” or “identity” or “similarity” refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences. An “unrelated” or “non-homologous” sequence shares less than 40% identity, though preferably less than 25% identity, with one of the sequences of the present disclosure.


A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in Ausubel et al. eds. (2007) Current Protocols in Molecular Biology. Preferably, default parameters are used for alignment. One alignment program is BLAST, using default parameters. In particular, programs are BLASTN and BLASTP, using the following default parameters: Genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by=HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+SwissProtein+SPupdate+PIR. Biologically equivalent polynucleotides are those having the above-noted specified percent homology and encoding a polypeptide having the same or similar biological activity.


The term “an equivalent nucleic acid or polynucleotide” refers to a nucleic acid having a nucleotide sequence having a certain degree of homology, or sequence identity, with the nucleotide sequence of the nucleic acid or complement thereof. A homolog of a double stranded nucleic acid is intended to include nucleic acids having a nucleotide sequence which has a certain degree of homology with or with the complement thereof. In one aspect, homologs of nucleic acids are capable of hybridizing to the nucleic acid or complement thereof. Likewise, “an equivalent polypeptide” refers to a polypeptide having a certain degree of homology, or sequence identity, with the amino acid sequence of a reference polypeptide. In some aspects, the sequence identity is at least about 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%. In some aspects, the equivalent polypeptide or polynucleotide has one, two, three, four or five addition, deletion, substitution and their combinations thereof as compared to the reference polypeptide or polynucleotide. In some aspects, the equivalent sequence retains the activity (e.g., epitope-binding) or structure (e.g., salt-bridge) of the reference sequence.


Hybridization reactions can be performed under conditions of different “stringency”. In general, a low stringency hybridization reaction is carried out at about 40° C. in about 10×SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50° C. in about 6×SSC, and a high stringency hybridization reaction is generally performed at about 60° C. in about 1×SSC. Hybridization reactions can also be performed under “physiological conditions” which is well known to one of skill in the art. A non-limiting example of a physiological condition is the temperature, ionic strength, pH and concentration of Mg2+ normally found in a cell.


A polynucleotide is composed of a specific sequence of four nucleotide bases: adenine (A); cytosine (C); guanine (G); thymine (T); and uracil (U) for thymine when the polynucleotide is RNA. Thus, the term “polynucleotide sequence” is the alphabetical representation of a polynucleotide molecule. This alphabetical representation can be input into databases in a computer having a central processing unit and used for bioinformatics applications such as functional genomics and homology searching. The term “polymorphism” refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a “polymorphic region of a gene”. A polymorphic region can be a single nucleotide, the identity of which differs in different alleles.


The terms “polynucleotide” and “oligonucleotide” are used interchangeably and refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides or analogs thereof. Polynucleotides can have any three-dimensional structure and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment (for example, a probe, primer, EST or SAGE tag), exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, dsRNA, siRNA, miRNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide can comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure can be imparted before or after assembly of the polynucleotide. The sequence of nucleotides can be interrupted by non-nucleotide components. A polynucleotide can be further modified after polymerization, such as by conjugation with a labeling component. The term also refers to both double- and single-stranded molecules. Unless otherwise specified or required, any embodiment of this disclosure that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.


The term “encode” as it is applied to polynucleotides refers to a polynucleotide which is said to “encode” a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for the polypeptide and/or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.


As used herein, an “antibody” or “antigen-binding polypeptide” refers to a polypeptide or a polypeptide complex that specifically recognizes and binds to an antigen. An antibody can be a whole antibody and any antigen binding fragment or a single chain thereof. Thus the term “antibody” includes any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule having biological activity of binding to the antigen. Examples of such include, but are not limited to a complementarity determining region (CDR) of a heavy or light chain or a ligand binding portion thereof, a heavy chain or light chain variable region, a heavy chain or light chain constant region, a framework (FR) region, or any portion thereof, or at least one portion of a binding protein.


The terms “antibody fragment” or “antigen-binding fragment”, as used herein, is a portion of an antibody such as F(ab′)2, F(ab)2, Fab′, Fab, Fv, scFv and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody. The term “antibody fragment” includes aptamers, spiegelmers, and diabodies. The term “antibody fragment” also includes any synthetic or genetically engineered protein that acts like an antibody by binding to a specific antigen to form a complex.


A “single-chain variable fragment” or “scFv” refers to a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins. In some aspects, the regions are connected with a short linker peptide of ten to about 25 amino acids. The linker can be rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of the linker. ScFv molecules are known in the art and are described, e.g., in U.S. Pat. No. 5,892,019.


The term antibody encompasses various broad classes of polypeptides that can be distinguished biochemically. Those skilled in the art will appreciate that heavy chains are classified as gamma, mu, alpha, delta, or epsilon (γ, μ, α, δ, ε) with some subclasses among them (e.g., γ1-γ4). It is the nature of this chain that determines the “class” of the antibody as IgG, IgM, IgA IgG, or IgE, respectively. The immunoglobulin subclasses (isotypes) e.g., IgG1, IgG2, IgG3, IgG4, IgG5, etc. are well characterized and are known to confer functional specialization. Modified versions of each of these classes and isotypes are readily discernable to the skilled artisan in view of the instant disclosure and, accordingly, are within the scope of the instant disclosure. All immunoglobulin classes are clearly within the scope of the present disclosure, the following discussion will generally be directed to the IgG class of immunoglobulin molecules. With regard to IgG, a standard immunoglobulin molecule comprises two identical light chain polypeptides of molecular weight approximately 23,000 Daltons, and two identical heavy chain polypeptides of molecular weight 53,000-70,000. The four chains are typically joined by disulfide bonds in a “Y” configuration wherein the light chains bracket the heavy chains starting at the mouth of the “Y” and continuing through the variable region.


Antibodies, antigen-binding polypeptides, variants, or derivatives thereof of the disclosure include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized, primatized, or chimeric antibodies, single chain antibodies, epitope-binding fragments, e.g., Fab, Fab′ and F(ab′)2, Fd, Fvs, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv), fragments comprising either a VK or VH domain, fragments produced by a Fab expression library, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to LIGHT antibodies disclosed herein) Immunoglobulin or antibody molecules of the disclosure can be of any type (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.


Light chains are classified as either kappa or lambda (K, λ). Each heavy chain class may be bound with either a kappa or lambda light chain. In general, the light and heavy chains are covalently bonded to each other, and the “tail” portions of the two heavy chains are bonded to each other by covalent disulfide linkages or non-covalent linkages when the immunoglobulins are generated either by hybridomas, B cells or genetically engineered host cells. In the heavy chain, the amino acid sequences run from an N-terminus at the forked ends of the Y configuration to the C-terminus at the bottom of each chain.


Both the light and heavy chains are divided into regions of structural and functional homology. The terms “constant” and “variable” are used functionally. In this regard, it will be appreciated that the variable domains of both the light (VK) and heavy (VH) chain portions determine antigen recognition and specificity. Conversely, the constant domains of the light chain (CK) and the heavy chain (CH1, CH2 or CH3) confer important biological properties such as secretion, transplacental mobility, Fc receptor binding, complement binding, and the like. By convention the numbering of the constant region domains increases as they become more distal from the antigen-binding site or amino-terminus of the antibody. The N-terminal portion is a variable region and at the C-terminal portion is a constant region; the CH3 and CK domains actually comprise the carboxy-terminus of the heavy and light chain, respectively.


As indicated above, the variable region allows the antibody to selectively recognize and specifically bind epitopes on antigens. That is, the VK domain and VH domain, or subset of the complementarity determining regions (CDRs), of an antibody combine to form the variable region that defines a three dimensional antigen-binding site. This quaternary antibody structure forms the antigen-binding site present at the end of each arm of the Y. More specifically, the antigen-binding site is defined by three CDRs on each of the VH and VK chains (i.e. CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2 and CDR-L3). In some instances, e.g., certain immunoglobulin molecules derived from camelid species or engineered based on camelid immunoglobulins, a complete immunoglobulin molecule may consist of heavy chains only, with no light chains. See, e.g., Hamers-Casterman et al., Nature 363:446-448 (1993).


In naturally occurring antibodies, the six “complementarity determining regions” or “CDRs” present in each antigen-binding domain are short, non-contiguous sequences of amino acids that are specifically positioned to form the antigen-binding domain as the antibody assumes its three dimensional configuration in an aqueous environment. The remainder of the amino acids in the antigen-binding domains, referred to as “framework” regions, show less inter-molecular variability. The framework regions largely adopt a β-sheet conformation and the CDRs form loops which connect, and in some cases form part of, the β-sheet structure. Thus, framework regions act to form a scaffold that provides for positioning the CDRs in correct orientation by inter-chain, non-covalent interactions. The antigen-binding domain formed by the positioned CDRs defines a surface complementary to the epitope on the immunoreactive antigen. This complementary surface promotes the non-covalent binding of the antibody to its cognate epitope. The amino acids comprising the CDRs and the framework regions, respectively, can be readily identified for any given heavy or light chain variable region by one of ordinary skill in the art, since they have been precisely defined (see “Sequences of Proteins of Immunological Interest,” Kabat, E., et al., U.S. Department of Health and Human Services, (1983); and Chothia and Lesk, J. Mol. Biol., 196:901-917 (1987)).


In the case where there are two or more definitions of a term which is used and/or accepted within the art, the definition of the term as used herein is intended to include all such meanings unless explicitly stated to the contrary. A specific example is the use of the term “complementarity determining region” (“CDR”) to describe the non-contiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. This particular region has been described by Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of Proteins of Immunological Interest” (1983) and by Chothia et al., J. Mol. Biol. 196:901-917 (1987), which are incorporated herein by reference in their entireties. The CDR definitions according to Kabat and Chothia include overlapping or subsets of amino acid residues when compared against each other. Nevertheless, application of either definition to refer to a CDR of an antibody or variants thereof is intended to be within the scope of the term as defined and used herein. The appropriate amino acid residues which encompass the CDRs as defined by each of the above cited references are set forth in the table below as a comparison. The exact residue numbers which encompass a particular CDR will vary depending on the sequence and size of the CDR. Those skilled in the art can routinely determine which residues comprise a particular CDR given the variable region amino acid sequence of the antibody.


















Kabat
Chothia









CDR-H1
31-35
26-32



CDR-H2
50-65
52-58



CDR-H3
95-102
95-102



CDR-L1
24-34
26-32



CDR-L2
50-56
50-52



CDR-L3
89-97
91-96










Kabat et al. also defined a numbering system for variable domain sequences that is applicable to any antibody. One of ordinary skill in the art can unambiguously assign this system of “Kabat numbering” to any variable domain sequence, without reliance on any experimental data beyond the sequence itself. As used herein, “Kabat numbering” refers to the numbering system set forth by Kabat et al., U.S. Dept. of Health and Human Services, “Sequence of Proteins of Immunological Interest” (1983).


In addition to table above, the Kabat number system describes the CDR regions as follows: CDR-H1 begins at approximately amino acid 31 (i.e., approximately 9 residues after the first cysteine residue), includes approximately 5-7 amino acids, and ends at the next tryptophan residue. CDR-H2 begins at the fifteenth residue after the end of CDR-H1, includes approximately 16-19 amino acids, and ends at the next arginine or lysine residue. CDR-H3 begins at approximately the thirty third amino acid residue after the end of CDR-H2; includes 3-25 amino acids; and ends at the sequence W-G-X-G, where X is any amino acid. CDR-L1 begins at approximately residue 24 (i.e., following a cysteine residue); includes approximately 10-17 residues; and ends at the next tryptophan residue. CDR-L2 begins at approximately the sixteenth residue after the end of CDR-L1 and includes approximately 7 residues. CDR-L3 begins at approximately the thirty third residue after the end of CDR-L2 (i.e., following a cysteine residue); includes approximately 7-11 residues and ends at the sequence F or W-G-X-G, where X is any amino acid.


Antibodies disclosed herein may be from any animal origin including birds and mammals Preferably, the antibodies are human, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken antibodies. In another embodiment, the variable region may be condricthoid in origin (e.g., from sharks).


As used herein, the term “heavy chain constant region” includes amino acid sequences derived from an immunoglobulin heavy chain. A polypeptide comprising a heavy chain constant region comprises at least one of: a CH1 domain, a hinge (e.g., upper, middle, and/or lower hinge region) domain, a CH2 domain, a CH3 domain, or a variant or fragment thereof. For example, an antigen-binding polypeptide for use in the disclosure may comprise a polypeptide chain comprising a CH1 domain; a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, and a CH2 domain; a polypeptide chain comprising a CH1 domain and a CH3 domain; a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, and a CH3 domain, or a polypeptide chain comprising a CH1 domain, at least a portion of a hinge domain, a CH2 domain, and a CH3 domain. In another embodiment, a polypeptide of the disclosure comprises a polypeptide chain comprising a CH3 domain. Further, an antibody for use in the disclosure may lack at least a portion of a CH2 domain (e.g., all or part of a CH2 domain). As set forth above, it will be understood by one of ordinary skill in the art that the heavy chain constant region may be modified such that they vary in amino acid sequence from the naturally occurring immunoglobulin molecule.


The heavy chain constant region of an antibody disclosed herein may be derived from different immunoglobulin molecules. For example, a heavy chain constant region of a polypeptide may comprise a CH1 domain derived from an IgG1 molecule and a hinge region derived from an IgG3 molecule. In another example, a heavy chain constant region can comprise a hinge region derived, in part, from an IgG1 molecule and, in part, from an IgG3 molecule. In another example, a heavy chain portion can comprise a chimeric hinge derived, in part, from an IgG1 molecule and, in part, from an IgG4 molecule.


As used herein, the term “light chain constant region” includes amino acid sequences derived from antibody light chain. Preferably, the light chain constant region comprises at least one of a constant kappa domain or constant lambda domain.


A “light chain-heavy chain pair” refers to the collection of a light chain and heavy chain that can form a dimer through a disulfide bond between the CL domain of the light chain and the CH1 domain of the heavy chain.


As previously indicated, the subunit structures and three dimensional configuration of the constant regions of the various immunoglobulin classes are well known. As used herein, the term “VH domain” includes the amino terminal variable domain of an immunoglobulin heavy chain and the term “CH1 domain” includes the first (most amino terminal) constant region domain of an immunoglobulin heavy chain. The CH1 domain is adjacent to the VH domain and is amino terminal to the hinge region of an immunoglobulin heavy chain molecule.


As used herein the term “CH2 domain” includes the portion of a heavy chain molecule that extends, e.g., from about residue 244 to residue 360 of an antibody using conventional numbering schemes (residues 244 to 360, Kabat numbering system; and residues 231-340, EU numbering system; see Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of Proteins of Immunological Interest” (1983). The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It is also well documented that the CH3 domain extends from the CH2 domain to the C-terminal of the IgG molecule and comprises approximately 108 residues.


As used herein, the term “hinge region” includes the portion of a heavy chain molecule that joins the CH1 domain to the CH2 domain. This hinge region comprises approximately 25 residues and is flexible, thus allowing the two N-terminal antigen-binding regions to move independently. Hinge regions can be subdivided into three distinct domains: upper, middle, and lower hinge domains (Roux et al., J. Immunol 161:4083 (1998)).


As used herein the term “disulfide bond” includes the covalent bond formed between two sulfur atoms. The amino acid cysteine comprises a thiol group that can form a disulfide bond or bridge with a second thiol group. In most naturally occurring IgG molecules, the CH1 and CK regions are linked by a disulfide bond and the two heavy chains are linked by two disulfide bonds at positions corresponding to 239 and 242 using the Kabat numbering system (position 226 or 229, EU numbering system).


As used herein, the term “chimeric antibody” will be held to mean any antibody wherein the immunoreactive region or site is obtained or derived from a first species and the constant region (which may be intact, partial or modified in accordance with the instant disclosure) is obtained from a second species. In certain embodiments the target binding region or site will be from a non-human source (e.g. mouse or primate) and the constant region is human.


As used herein, “percent humanization” is calculated by determining the number of framework amino acid differences (i.e., non-CDR difference) between the humanized domain and the germline domain, subtracting that number from the total number of amino acids, and then dividing that by the total number of amino acids and multiplying by 100.


By “specifically binds” or “has specificity to,” it is generally meant that an antibody binds to an epitope via its antigen-binding domain, and that the binding entails some complementarity between the antigen-binding domain and the epitope. According to this definition, an antibody is said to “specifically bind” to an epitope when it binds to that epitope, via its antigen-binding domain more readily than it would bind to a random, unrelated epitope. The term “specificity” is used herein to qualify the relative affinity by which a certain antibody binds to a certain epitope. For example, antibody “A” may be deemed to have a higher specificity for a given epitope than antibody “B,” or antibody “A” may be said to bind to epitope “C” with a higher specificity than it has for related epitope “D.”


As used herein, the terms “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the progression of cancer. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.


By “subject” or “individual” or “animal” or “patient” or “mammal,” is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired. Mammalian subjects include humans, domestic animals, farm animals, and zoo, sport, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and so on.


As used herein, phrases such as “to a patient in need of treatment” or “a subject in need of treatment” includes subjects, such as mammalian subjects, that would benefit from administration of an antibody or composition of the present disclosure used, e.g., for detection, for a diagnostic procedure and/or for treatment.


Anti-Claudin 18.2 Antibodies


The present disclosure provides anti-claudin 18.2 antibodies with high affinity to both the wild-type claudin 18.2 and a common mutant, M149L (the SU620 cell endogenously expressing this mutation). To the best knowledge of the inventors, all currently known anti-claudin 18.2 proteins do not bind to this mutant. The antibodies of the present disclosure, therefore, have the unique advantage of being capable of targeting both the wild-type and the M149L mutant claudin 18.2 protein. This advantage is important because a significant portion of cancer patients harbor this common mutation. It is also worth noting that the antibodies of the present disclosure do not bind to the other claudin 18 isoform, claudin 18.1 (or binds claudin 18.1 at a much lower affinity).


Experiments presented in the Examples revealed that certain amino acids in the first and second extracellular fragments of the claudin 18.2 protein are involved in or otherwise impact the binding of the presently disclosed antibodies to the protein. More specifically, three clusters of amino acid residues are shown to represent the epitope of the antibodies. The first cluster includes W30, which is in the first part of the first extracellular domain of the claudin 18.2 protein. The second cluster, including N45, Y46, G48, L49, W50, C53, V54, R55, E56, S58, F60, E62, and C63, is also located in the first extracellular domain. The third cluster, including Y169 and G172, on the other hand, are located at or close to the second extracellular domain.


The antibodies and fragments of the present disclosure exhibited superior properties even when using a clinical candidate as a reference. 175D10 (IMAB362) is currently undergoing phase III clinical trials for treating gastric and gastroesophageal junction adenocarcinoma. The instant antibodies and fragment not only showed stronger binding activities, they also exhibited higher ADCC and ADCP activities under various different conditions, as compared to 175D10.


The improved properties of these new antibodies and fragments, it is contemplated, are attributed to the higher binding specificity of these antibodies and fragments as compared to those under development, such as 175D10. For instance, 175D10's interaction with claudin 18.2 is strong across the spectrum in FIG. 15, which includes strong binding to D28, Q33, N38 and V43, and then G59 and V79. The new antibodies, 4F11E2, 72C1B6A3 and 120B7B2, by contrast, have higher specificity to W30 within the first half of the first extracellular domain, and higher specificity to G48 through E56 within the second half of the first extracellular domain. The new antibodies also have slightly stronger binding to Y46 and S58, which are also in the second half. Their binding to D28, Q33, N38, V43, G59 and V79 is considerably weaker (or not functional), which likely contributed to the improved ADCC and ADCP of the new antibodies.


Human Claudin 18.2 Sequence













Name
Sequence (SEQ ID NO: 30)







Human
  1 MAVTACQGLG FVVSLIGIAG IIAATCMDQW STQDLYNNPV TAVFNYQGLW


C1audin 18.2
 51 RSCVRESSGF TECRGYFTLL GLPAMLQAVR ALMIVGIVLG AIGLLVSIFA


(NP_001002026)
101 LKCIRIGSME DSAKANMTLT SGIMFIVSGL CAIAGVSVFA NMLVTNFWMS



151 TANMYTGMGG MVQTVQTRYT FGAALFVGWV AGGLTLIGGV MMCIACRGLA



201 PEETNYKAVS YHASGHSVAY KPGGFKASTG FGSNTKNKKI YDGGARTEDE



251 VQSYPSKHDY V









In accordance with one embodiment of the present disclosure, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment further binds to a M149L mutant of the CLDN18.2 protein. In some embodiments, the antibody or fragment does not bind to a human wild-type claudin 18.1 (CLDN18.1) protein, or does not bind CLDN18.1 at an affinity that is greater than about 1% of the affinity to the wild-type CLDN18.2 protein.


The binding affinity of an antibody or fragment to a protein can be measured with many methods known in the art. For examples, it can be measured cell-free assays with standalone CLDN18.1 or CLDN18.2 proteins. Preferably, however, the measurement is done with the CLDN18.1 or CLDN18.2 protein on a cell surface mimicking the actual binding environment. Such binding assays are adequately exemplified in the experimental examples.


In some embodiments, the antibodies or fragments thereof have a binding affinity to the M149L mutant that is at least 1%, or alternatively at least 0.001%, 0.01%, 0.1%, 0.5%, 2%, 3%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99% of the affinity to the wild-type CLDN18.2 protein.


In some embodiments, the antibodies or fragments thereof do not bind human CLDN18.1. In some embodiments, the antibodies or fragments thereof, as compared to binding to CLDN18.2, have a much weaker binding to human CLDN18.1, e.g., not greater than 10%, 5%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, or 0.001%, without limitation.


As described above, the antibodies and fragments thereof of the present disclosure bind to the claudin 18.2 protein at an epitope that is different from known antibodies (see FIG. 4; at least the reference antibody interacts with M149 whereas the presently disclosed ones do not). In one embodiment, therefore, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the binding between the antibody or fragment thereof and the wild-type CLDN18.2 protein involves amino acid residues comprising at least an amino acid residue selected from the group consisting of Y46, G48, L49, W50, C53, V54, R55, E56 and S58; and at least an amino acid residue selected from the group consisting of Y169 and G172, of the wild-type CLDN18.2 protein. In some embodiments, the binding further involves one or more of W30 of the CLDN18.2 protein.


In some embodiments, the antibody or fragment thereof binds to N45 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to Y46 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to G48 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to L49 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to W50 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to C53 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to V54 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to R55 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to E56 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to E58 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to F60 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to E62 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to C63 of CLDN18.2.


In some embodiments, the antibody or fragment thereof binds to at least two amino acid residues selected from G48, L49, W50, C53, V54, R55, and E56. In some embodiments, the antibody or fragment thereof binds to at least three amino acid residues selected from G48, L49, W50, C53, V54, R55, and E56. In some embodiments, the antibody or fragment thereof binds to at least four amino acid residues selected from G48, L49, W50, C53, V54, R55, and E56. In some embodiments, the antibody or fragment thereof binds to at least five amino acid residues selected from G48, L49, W50, C53, V54, R55, and E56.


In some embodiments, the antibody or fragment thereof binds to at least two amino acid residues selected from Y46, G48, L49, W50, C53, V54, R55, E56 and S58. In some embodiments, the antibody or fragment thereof binds to at least three amino acid residues selected from Y46, G48, L49, W50, C53, V54, R55, E56 and S58. In some embodiments, the antibody or fragment thereof binds to at least four amino acid residues selected from Y46, G48, L49, W50, C53, V54, R55, E56 and S58. In some embodiments, the antibody or fragment thereof binds to at least five amino acid residues selected from Y46, G48, L49, W50, C53, V54, R55, E56 and S58.


In some embodiments, the antibody or fragment thereof binds to at least Y169 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to at least G172 of CLDN18.2. In some embodiments, the antibody or fragment thereof binds to at least two amino acid residues selected from Y169 and G172 of CLDN18.2.


In some embodiments, the binding involves amino acid residues comprising W30; two, three, four, five or more amino acid residues selected from the group consisting of G48, L49, W50, C53, and E56; and at least an amino acid residue selected from the group consisting of Y169 and G172, of the wild-type CLDN18.2 protein. In some embodiments, the binding involves amino acid residues comprising W30, G48, L49, W50, C53, E56 and Y169 of the wild-type CLDN18.2 protein.


In some embodiments, the binding between the antibody or fragment thereof and the wild-type CLDN18.2 protein involves at least Y46 and/or S58. In some embodiments, the binding between the antibody or fragment thereof and the wild-type CLDN18.2 protein does not involve N38 or V43. In some embodiments, the binding between the antibody or fragment thereof and the wild-type CLDN18.2 protein does not involve D28, Q33, N38, V43, G59 and V79, or have weaker bindings to one, two, three, four or all of D28, Q33, N38, V43, G59 and V79.


The weaker bindings to these amino acids on CLDN18.2 may be as compared to the other amino acids, such as G48, L49, W50, C53, V54, R55, E56. In some embodiments, the comparison is to the binding at the same amino acid to 175D10. For instance, the binding of the antibody or fragment of the present disclosure is weaker than that of 175D10 (IMGT/2Dstructure-DB card No: 10473) to at least one, two, three, four, five or all of D28, Q33, N38, V43, G59 and V79.


In some embodiments, the antibody or fragment thereof does not bind M149L of the CLDN18.2 protein. In some embodiments, the antibody or fragment thereof binds to a M149L mutant of the CLDN18.2 protein.


In accordance with one embodiment of the present disclosure, provided is an antibody or fragment thereof that includes the heavy chain and light chain variable domains with the CDR regions as shown in the CDR combinations of Table A and Table A′.









TABLE A







CDR combinations of tested antibodies

















CDRL2






Comb.

CDRL1
(SEQ ID
CDRL3
CDRH1
CDRH2
CDRH3


No.
Antibody
(SEQ ID NO:)
NO:)
(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)
(SEQ ID NO:)





 1
64G11B4
QSLLNSGNQRNY
WAS (2)
QNDYFYPFT (42)
GYAFTNYL (59)
INPGNGGS (77)
ARIYYGNSFAY




(31)




(96)





 2
65G8B8
QSLLNSGNLKNY
WAS (2)
QNVYIYPFT (43)
GFSLTSYG (60)
IWGDGNT (78)
AKQGLYGHAMDY




(32)




(97)





 3
56E8F10F4
QSLLNSGNQKNY
WAS (2)
QNDYYFPFT (44)
GFTFNSFG (61)
ISGGSNTI (79)
TRLALGNAMDY




(1)




(98)





 4
54A2C4
QSLLNGGNQKNY
GAS
QNDLYYPWT (45)
GFTFNTNA (62)
IRSKSNNYAT (80)
VSGAYYGNSKAFDY




(33)
(39)



(99)





 5
54A2C4′
QSLLNGGNQKNY
GAS
QNDLYYPWT (45)
GYAFTNYL (59)
INPGNGGSN (81)
ARIYYGNSFAY




(33)
(39)



(96)





 6
54A2C4″
QSLLNGGNQKNY
GAS
QNDLYYPWT (45)
GYTFPTYS (63)
INPSTIYT (82)
AREGYGRGNAMDY




(33)
(39)



(100)





 7
44F6B11
QSLLNSGNQKKY
WAS (2)
QNGYSYPFT (46)
GFTFSNYG (64)
FSYGDSHN (83)
ARFGRGNTMDY




(34)




(101)





 8
15C2B7
QSLLNSGNQKNY
WAS (2)
QNNYYFPLT (47)
GYTFTNYG (65)
INANTGEP (84)
ARLTRGNSFDY




(1)




(102)





 9
20F1E10
QSLFNSGNQRNY
WAS (2)
QNVYSYPLT (48)
GYTFTKYG (66)
ISTNTGEP (85)
ARLVRGNSFDF




(35)




(103)





10
72C1B6A3
QSLLNSGNQKNY
RAS (7)
QNDYIYPYT (8)
GYTFTTYP (9)
FHPYNDDT (10)
ARRAYGYPYAMDY




(1)




(11)





11
58G2C2
QSLLNSGNQKNY
WAF
QNSYSYPFT (49)
GYAFTNYL (59)
INPGRSGT (86)
ARTRYGGNAMDY




(1)
(40)



(104)





12
101C4F12
QSLLNSGNQRNY
WSS
QNNFIYPLT (50)
GFSLSSYG (67)
IWAGGST (87)
ARSLYGNSLDS




(31)
(41)



(105)





13
103A10B2
MSLFNSGNQKSY
WAS (2)
HNDYIYPLT (51)
GLSLTSFG (68)
IWAGGST (87)
ARSLYGNSFDY




(36)




(106)





14
78E8G9G6
QSLLNSGNQKNY
WAS (2)
QNSYSYPFT (49)
GFSLISYG (69)
IWAGGRT (88)
ARDRYGGNSLDY




(1)




(107)





15
4F11E2
QSLLNSGNRKNY
WAS (2)
QNAYSYPFT (13)
GFTFSTFG (14)
ITSGNSPI (15)
ARSSYYGNSMDY




(12)




(16)





16
10G7G11
QSLFNSGNQRNY
WAS (2)
QNAYYFPFT (19)
GFSLNTYG (70)
MLSDGNT (89)
ARHKAYGNAMDY




(35)




(108)





17
12F1F4
QSLFNSGNQRNY
WSS
QNNYYYPFT (52)
GFSLINYG (71)
IWGDGNT (78)
AKVGRGNAMDH




(35)
(41)



(109)





18
78C10B6G4
QSLLNSGNQKNY
RAS (7)
QNDYIYPYT (8)
GFSLINYG (71)
IRGDGNT (90)
AKVGRGNAMDH




(1)




(109)





19
119G11D9
QSLFNSGNQKNY
WAS (2)
QNAYYYPLT (53)
GYTFTGFL (72)
INPYNDGT (5)
ARLDYGNAMDY




(37)




(110)





20
113G12E5E6
QSLLNSGNQKNY
WAS (2)
QNAYFYPCT (54)
DFSLTKYG (73)
IWTGGNT (91)
ARNGYYGNAMDY




(1)




(111)





21
116A8B7
QSLFNSGNQRNY
WAS (2)
QNAYYYPLT (53)
GYTFTGFL (72)
INPYNDGT (5)
GRLDYGNAMDY




(35)




(112)





22
105F7G12
QSLLNSGNQKNY
WAS (2)
QNAYFYPCT (54)
DFSLTKYG (73)
IWTGGNT (91)
ARNGYYGNAMDY




(1)




(111)





23
84E9E12
QSVFNSGNQKNY
WAS (2)
QNDYYFPLT (55)
GYSITSGYF
ISYDGSN (92)
ASFRFFAY(113)




(38)


(74)







24
103F4D4
QSLLNGGNQKNY
WAS (2)
QNAYFYPFT (56)
GYTFPTYS (63)
INPSTIYT (82)
AREGYGRGNAMDY




(33)




(100)





25
110C12B6
QSLFNSGNQRNY
WAS (2)
QNAYYYPLT (53)
GYTFTGFL (72)
INPYNDGT (5)
GRLDYGNAMDY




(35)




(112)





26
85H12E8
QSLLNSGNQRNY
WAS (2)
QNAYFYPFT (56)
GFSLSNYG (75)
IWAGGNT (93)
ARHGYGKGNAMDN




(31)




(114)





27
103H2B4
QSLLNSGNQKNY
WAS (2)
QNNYFYPLT (57)
GYSFTNFL (76)
INPTNGRT (94)
ARIYYGNSMDY




(1)




(115)





28
103F6D3
QSLLNGGNQKNY
WAS (2)
QNAYFYPFT (56)
GYTFPTYS (63)
INPNTIYT (95)
AREGYGRGNAMDY




(33)




(100)





29
113E12F7
QSLFNSGNQKNY
WAS (2)
QNNYIYPLA (58)
GFSLSSYG (67)
IWAGGST (87)
ARSLYGNSFDH




(37)




(116)





30
120137132
QSLLNSGNQKNY
WAS (2)
QNGYYFPFT (3)
GYTFTGYI (4)
INPYNDGT (5)
ARAYFGNSFAY




(1)




(6)





31
111612D11
QSLFNSGNQRNY
WAS (2)
QNNYIYPLA (58)
GFSLTSYG (60)
IWAGGST (87)
ARSLYGNSFDH




(35)




(116)





32
111E7E2
QSLFNSGNQKNY
WAS (2)
QNNYIYPLA (58)
GFSLTSYG (60)
IWAGGST (87)
ARSLYGNSFDH




(37)




(116)





33
100F4G12
QSLLNSGNQRNY
WAS (2)
QNAYYYPLT (53)
GYTFTGFL (72)
INPYNDGT (5)
ARLDYGNAMDY




(31)




(110)
















TABLE A′







CDR combination of tested antibodies (Kabat numbering)

















CDRL2
CDRL3
CDRH1

CDRH3)


Comb.

CDRL1
(SEQ
(SEQ
(SEQ
CDRH2
SEQ


No.
Antibody
(SEQ ID NO:)
ID NO:)
ID NO:)
ID NO:)
(SEQ ID NO:)
ID NO:)





 1
64G11B4
KSSQSLLNSGNQRNYLT
WASTRES
QNDYFYPFT
NYLLE
EINPGNGGSNYNEKFKG
IYYGNSFAY




(208)
(227)
(42)
(234)
(255)
(281)





 2
65G8B8
KSSQSLLNSGNLKNYLT
WASTRES
QNVYIYPFT
SYGVS
VIWGDGNTIYHSALKS
QGLYGHAMDY




(209)
(227)
(43)
(235)
(256)
(282)





 3
56E8F10F4
KSSQSLLNSGNQKNYLT
WASTRES
QNDYYFPFT
SFGMN
FISGGSNTIHYLDTVKG
LALGNAMDY




(210)
(227)
(44)
(236)
(257)
(283)





 4
54A2C4
KSSQSLLNGGNQKNYLA
GASTRES
QNDLYYPWT
TNAMN
RIRSKSNNYATYYADSVKD
GAYYGNSKAFDY




(211)
(228)
(45)
(237)
(258)
(284)





 5
54A2C4′
KSSQSLLNGGNQKNYLA
GASTRES
QNDLYYPWT
NYLLE
EINPGNGGSNYNEKFKG
IYYGNSFAY




(211)
(228)
(45)
(234)
(255)
(281)





 6
54A2C4″
KSSQSLLNGGNQKNYLA
GASTRES
QNDLYYPWT
TYSIH
YINPSTIYTNYNQKFKY
EGYGRGNAMDY




(211)
(228)
(45)
(238)
(259)
(285)





 7
44F6B11
KSNQSLLNSGNQKKYLT
WASTRES
QNGYSYPFT
NYGMS
TFSYGDSHNYYSDSVKG
FGRGNTMDY




(212)
(227)
(46)
(239)
(260)
(286)





 8
15C2B7
KSSQSLLNSGNQKNYLT
WASTRES
QNNYYFPLT
NYGMN
WINANTGEPTYAEEFKG
LTRGNSFDY




(210)
(227)
(47)
(240)
(261)
(287)





 9
20F1E10
KSSQSLFNSGNQRNYLT
WASTRES
QNVYSYPLT
KYGMN
WISTNTGEPTYAEEFKG
LVRGNSFDF




(213)
(227)
(48)
(241)
(262)
(288)





10
72C1B6A3
KSSQSLLNSGNQKNYLT
RASSRES
QNDYIYPYT
TYPIE
NFHPYNDDTKYNEKFKG
RAYGYPYAMDY




(210)
(229)
(8)
(242)
(263)
(289)





11
58G2C2
KSSQSLLNSGNQKNYLT
WAFTRES
QNSYSYPFT
NYLIE
VINPGRSGTNYNEKFKG
TRYGGNAMDY




(210)
(230)
(49)
(243)
(264)
(290)





12
101C4F12
KSSQSLLNSGNQRNYLT
WSSTRDS
QNNFIYPLT
SYGVH
VIWAGGSTNYDSALMS
SLYGNSLDS




(208)
(231)
(50)
(244)
(265)
(291)





13
103A10B2
RSSMSLFNSGNQKSYLS
WASTRDS
HNDYIYPLT
SFGVH
VIWAGGSTNYNSALMS
SLYGNSFDY




(214)
(232)
(51)
(245)
(266)
(292)





14
78E8G9G6
RSIQSLLNSGNQKNYLS
WASTRES
QNSYSYPFT
SYGVH
VIWAGGRTNYNSALMS
DRYGGNSLDY




(215)
(227)
(49)
(244)
(267)
(293)





15
4F11E2
RSSQSLLNSGNRKNYLT
WASTRES
QNAYSYPFT
TFGMH
YITSGNSPIYFTDTVKG
SSYYGNSMDY




(216)
(227)
(13)
(246)
(268)
(294)





16
10G7G11
KSSQSLFNSGNQRNYLT
WASTRES
QNAYYFPFT
TYGVH
VMLSDGNTVYNSSLKS
HKAYGNAMDY




(213)
(227)
(19)
(247)
(269)
(295)





17
12F1F4
KSSQSLFNSGNQRNYLT
WSSTRES
QNNYYYPFT
NYGVS
VIWGDGNTNYQSALRS
VGRGNAMDH




(213)
(233)
(52)
(248)
(270)
(296)





18
78C10B6G4
KSSQSLLNSGNQKNYLT
RASSRES
QNDYIYPYT
NYGVS
VIRGDGNTNYQSALRS
VGRGNAMDH




(210)
(229)
(8)
(248)
(271)
(296)





19
119G11D9
RSTQSLFNSGNQKNYLT
WASTRES
QNAYYYPLT
GFLMH
YINPYNDGTKYSEKFKG
LDYGNAMDY




(217)
(227)
(53)
(249)
(272)
(297)





20
113G12E5E6
KPSQSLLNSGNQKNYLA
WASTRES
QNAYFYPCT
KYGVH
VIWTGGNTDYNPALIP
NGYYGNAMDY




(218)
(227)
(54)
(250)
(273)
(298)





21
116A8B7
RSTQSLFNSGNQRNYLT
WASTRES
QNAYYYPLT
GFLMH
YINPYNDGTKYSEKFKG
LDYGNAMDY




(219)
(227)
(53)
(249)
(272)
(297)





22
105F7G12
KSSQSLLNSGNQKNYLA
WASTRES
QNAYFYPCT
KYGVH
VIWTGGNTDYNPALIP
NGYYGNAMDY




(220)
(227)
(54)
(250)
(273)
(298)





23
84E9E12
KSSQSVFNSGNQKNYLT
WASTRES
QNDYYFPLT
SGYFW
YISYDGSNNYNPSLKN
FRFFAY




(221)
(227)
(55)
(251)
(274)
(299)





24
103F4D4
RSSQSLLNGGNQKNYLT
WASTRES
QNAYFYPFT
TYSIH
YINPSTIYTNYNQKFKY
EGYGRGNAMDY




(222)
(227)
(56)
(238)
(259)
(285)





25
110C12B6
RSTQSLFNSGNQRNYLT
WASTRES
QNAYYYPLT
GFLMH
YINPYNDGTKYSEKFKG
LDYGNAMDY




(219)
(227)
(53)
(249)
(272)
(297)





26
85H12E8
KSSQSLLNSGNQRNYLS
WASTRES
QNAYFYPFT
NYGVS
VIWAGGNTNYNSALMS
HGYGKGNAMDN




(223)
(227)
(56)
(248)
(275)
(300)





27
103H2B4
KSSQSLLNSGNQKNYLT
WASTRES
QNNYFYPLT
NFLTH
EINPTNGRTYYNEKFKR
IYYGNSMDY




(210)
(227)
(57)
(252)
(276)
(301)





28
103F6D3
RSSQSLLNGGNQKNYLT
WASTRES
QNAYFYPFT
TYSIH
YINPNTIYTNYNQKFKY
EGYGRGNAMDY




(222)
(227)
(56)
(238)
(277)
(285)





29
113E12F7
KSSQSLFNSGNQKNYLT
WASTRES
QNNYIYPLA
SYGVH
VIWAGGSTNYDSALMS
SLYGNSFDH




(224)
(227)
(58)
(244)
(265)
(302)





30
1206762
KSSQSLLNSGNQKNYLT
WASTRES
QNGYYFPFT
GYIIQ
FINPYNDGTKYNEQFKG
AYFGNSFAY




(210)
(227)
(3)
(253)
(278)
(303)





31
111612D11
RSSQSLFNSGNQRNYLT
WASTRES
QNNYIYPLA
SYGVH
VIWAGGSTNYDSTLMS
SLYGNSFDH




(225)
(227)
(58)
(244)
(279)
(302)





32
111E7E2
KSSQSLFNSGNQKNYLT
WASTRES
QNNYIYPLA
SYGAH
VIWAGGSTNYDSALMS
SLYGNSFDH




(224)
(227)
(58)
(254)
(265)
(302)





33
100F4G12
KSTQSLLNSGNQRNYLT
WASTRES
QNAYYYPLT
GFLMH
YINPYNDGTKYSERFKG
LDYGNAMDY




(226)
(227)
(53)
(249)
(280)
(297)
















TABLE B







CDRs of 120B7B2










Sequence
De-Risked Versions


CDR
(SEQ ID NO:)
(SEQ ID NO:)





CDRL1
QSLLNSGNQKNY (1)
QSLLNAGNQKNY (17)




QSLLESGNQKNY (18)





CDRL2
WAS (2)






CDRL3
QNGYYFPFT (3)
QNAYYFPFT (19)




QEGYYFPFT (20)





CDRH1
GYTFTGYI (4)






CDRH2
INPYNDGT (5)
INPYNDDT (21)





CDRH3
ARAYFGNSFAY (6)
ARAYFGNAFAY (22)
















TABLE C







CDRs of 72C1B6A3












Sequence
De-Risked Versions



CDR
(SEQ ID NO:)
(SEQ ID NO:)







CDRL1
QSLLNSGNQKNY (1)
QSLLNAGNQKNY (17)





QSLLESGNQKNY (18)







CDRL2
RAS (7)








CDRL3
QNDYIYPYT (8)








CDRH1
GYTFTTYP (9)








CDRH2
FHPYNDDT (10)








CDRH3
ARRAYGYPYAMDY (11)

















TABLE D







CDRs of 4F11E2










Sequence
De-Risked Versions


CDR
(SEQ ID NO:)
(SEQ ID NO:)





CDRL1
QSLLNSGNRKNY (12)
QSLLESGNRKNY (23)




QSLLNAGNRKNY (24)





CDRL2
WAS (2)






CDRL3
QNAYSYPFT (13)






CDRH1
GFTFSTFG (14)






CDRH2
ITSGNSPI (15)
ITSGQSPI (25)




ITSGESPI (26)





CDRH3
ARSSYYGNSMDY (16)
ARSSYYGQSMDY (27)




ARSSYYGESMDY (28)




ARSSYYGNAMDY (29)
















TABLE B′







CDRs of 120B7B2 (Kabat numbering)










Sequence
De-Risked Versions


CDR
(SEQ ID NO:)
(SEQ ID NO:)





CDRL1
KSSQSLLNSGNQKNYLT
KSSQSLLNAGNQKNYLT (304)



(210)
KSSQSLLESGNQKNYLT (305)





CDRL2
WASTRES (227)






CDRL3
QNGYYFPFT (3)
QNAYYFPFT (19)




QEGYYFPFT (20)





CDRH1
GYIIQ (253)






CDRH2
FINPYNDGTKYNEQFKG
FINPYNDDTKYNEQFKG (306)



(278)






CDRH3
AYFGNSFAY (303)
AYFGNAFAY (307)
















TABLE C′







CDRs of 72C1B6A3 (Kabat numbering)










Sequence
De-Risked Versions


CDR
(SEQ ID NO:)
(SEQ ID NO:)





CDRL1
KSSQSLLNSGNQKNYLT
KSSQSLLNAGNQKNYLT (304)



(210)
KSSQSLLESGNQKNYLT (305)





CDRL2
RASSRES (229)






CDRL3
QNDYIYPYT (8)






CDRH1
TYPIE (242)






CDRH2
NFHPYNDDTKYNEKFKG




(263)






CDRH3
RAYGYPYANIDY (289)
















TABLE D′







CDRs of 4F11E2 (Kabat numbering)










Sequence
De-Risked Versions


CDR
(SEQ ID NO:)
(SEQ ID NO:)





CDRL1
RSSQSLLNSGNRKNYLT
RSSQSLLESGNRKNYLT (308)



(216)
RSSQSLLNAGNRKNYLT (309)





CDRL2
WASTRES (227)






CDRL3
QNAYSYPFT (13)






CDRH1
TFGMH (246)






CDRH2
YITSGNSPIYFTDTVKG
YITSGQSPIYFTDTVKG (310)



(268)
YITSGESPIYFTDTVKG (311)





CDRH3
SSYYGNSMDY (294)
SSYYGQSMDY (312)




SSYYGESMDY (313)




SSYYGNAMDY (314)









The antibodies that contained these CDR regions, whether mouse, humanized or chimeric, had potent claudin 18.2 binding and inhibitory activities. As shown in Examples 11 and 12, certain residues within the CDR can be modified to retain or improve the property or reduce their potential to have post-translational modifications (PTMs). Such modified CDR can be referred to as affinity matured or de-risked CDRs.


Non-limiting examples of de-risked CDRs are provided in Tables B-D and B′-D′, in the third columns. Affinity matured ones can include those having one, two or three amino acid addition, deletion and/or substitutions. In some embodiments, the substitutions can be conservative substitutions.


A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a nonessential amino acid residue in an immunoglobulin polypeptide is preferably replaced with another amino acid residue from the same side chain family. In another embodiment, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members.


Non-limiting examples of conservative amino acid substitutions are provided in the table below, where a similarity score of 0 or higher indicates conservative substitution between the two amino acids.









TABLE E







Amino Acid Similarity Matrix




























C
G
P
S
A
T
D
E
N
Q
H
K
R
V
M
I
L
F
Y
W






























W
−8
−7
−6
−2
−6
−5
−7
−7
−4
−5
−3
−3
2
−6
−4
−5
−2
0
0
17


Y
0
−5
−5
−3
−3
−3
−4
−4
−2
−4
0
−4
−5
−2
−2
−1
−1
7
10



F
−4
−5
−5
−3
−4
−3
−6
−5
−4
−5
−2
−5
−4
−1
0
1
2
9




L
−6
−4
−3
−3
−2
−2
−4
−3
−3
−2
−2
−3
−3
2
4
2
6





I
−2
−3
−2
−1
−1
0
−2
−2
−2
−2
−2
−2
−2
4
2
5






M
−5
−3
−2
−2
−1
−1
−3
−2
0
−1
−2
0
0
2
6







V
−2
−1
−1
−1
0
0
−2
−2
−2
−2
−2
−2
−2
4








R
−4
−3
0
0
−2
−1
−1
−1
0
1
2
3
6









K
−5
−2
−1
0
−1
0
0
0
1
1
0
5










H
−3
−2
0
−1
−1
−1
1
1
2
3
6











Q
−5
−1
0
−1
0
−1
2
2
1
4












N
−4
0
−1
1
0
0
2
1
2













E
−5
0
−1
0
0
0
3
4














D
−5
1
−1
0
0
0
4















T
−2
0
0
1
1
3
















A
−2
1
1
1
2

















S

1
1
1


















P
−3
−1
6



















G
−3
5




















C
12
















TABLE F







Conservative Amino Acid Substitutions








For Amino Acid
Substitution With





Alanine
D-Ala, Gly, Aib, β-Ala, L-Cys, D-Cys


Arginine
D-Arg, Lys, D-Lys, Orn D-Orn


Asparagine
D-Asn, Asp, D-Asp, Glu, D-Glu Gln, D-Gln


Aspartic Acid
D-Asp, D-Asn, Asn, Glu, D-Glu, Gln, D-Gln


Cysteine
D-Cys, S-Me-Cys, Met, D-Met, Thr, D-Thr, L-Ser,



D-Ser


Glutamine
D-Gln, Asn, D-Asn, Glu, D-Glu, Asp, D-Asp


Glutamic Acid
D-Glu, D-Asp, Asp, Asn, D-Asn, Gln, D-Gln


Glycine
Ala, D-Ala, Pro, D-Pro, Aib, β-Ala


Isoleucine
D-Ile, Val, D-Val, Leu, D-Leu, Met, D-Met


Leucine
Val, D-Val, Met, D-Met, D-Ile, D-Leu, Ile


Lysine
D-Lys, Arg, D-Arg, Orn, D-Orn


Methionine
D-Met, S-Me-Cys, Ile, D-Ile, Leu, D-Leu, Val, D-Val


Phenylalanine
D-Phe, Tyr, D-Tyr, His, D-His, Trp, D-Trp


Proline
D-Pro


Serine
D-Ser, Thr, D-Thr, allo-Thr, L-Cys, D-Cys


Threonine
D-Thr, Ser, D-Ser, allo-Thr, Met, D-Met, Val, D-Val


Tyrosine
D-Tyr, Phe, D-Phe, His, D-His, Trp, D-Trp


Valine
D-Val, Leu, D-Leu, Ile, D-Ile, Met, D-Met









In one embodiment, therefore, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein the CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 are selected from combinations 1-33 of Table A or Table A′ or each of the combinations 1-33 in which one or more of the CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3 each includes one, two, or three amino acid addition, deletion, conservative amino acid substitution or the combinations thereof.


In some embodiments, an anti-CLDN18.2 antibody or fragment is provided that includes CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3, each of which is selected from Table A or Tables B-D. For instance, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises an amino acid sequence selected from the group of SEQ ID NO:1, 12 and 31-38, or comprises an amino acid sequence derived anyone of SEQ ID NO:1, 12 and 31-38 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRL2 comprises an amino acid sequence selected from the group of SEQ ID NO:2, 7 and 39-41, or comprises an amino acid sequence derived anyone of SEQ ID NO:2, 7 and 39-41 by an amino acid addition, deletion, amino acid substitution; the CDRL3 comprises an amino acid sequence selected from the group of SEQ ID NO:3, 8, 13, 19 and 42-58, or comprises an amino acid sequence derived anyone of SEQ ID NO: 3, 8, 13, 19 and 42-58 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRH1 comprises an amino acid sequence selected from the group of SEQ ID NO:4, 9, 14 and 59-76, or comprises an amino acid sequence derived anyone of SEQ ID NO:4, 9, 14 and 59-76 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRH2 comprises an amino acid sequence selected from the group of SEQ ID NO:5, 10, 15 and 77-95, or comprises an amino acid sequence derived anyone of SEQ ID NO:5, 10, 15 and 77-95 by one, two, or three amino acid addition, deletion, amino acid substitution; and the CDRH3 comprises an amino acid sequence selected from the group of SEQ ID NO:6, 11, 16 and 96-116, or comprises an amino acid sequence derived anyone of SEQ ID NO:6, 11, 16 and 96-116 by one, two, or three amino acid addition, deletion, amino acid substitution.


In some embodiments, the CDRL1 comprises an amino acid sequence selected from the group of SEQ ID NO:1, 12, 17-18, 23-24 and 31-38; the CDRL2 comprises an amino acid sequence selected from the group of SEQ ID NO:2, 7 and 39-41; the CDRL3 comprises an amino acid sequence selected from the group of SEQ ID NO:3, 8, 13, 19-20 and 42-58; the CDRH1 comprises an amino acid sequence selected from the group of SEQ ID NO:4, 9, 14 and 59-76; the CDRH2 comprises an amino acid sequence selected from the group of SEQ ID NO:5, 10, 15, 21, 25-26 and 77-95; and the CDRH3 comprises an amino acid sequence selected from the group of SEQ ID NO:6, 11, 16, 22, 27-29 and 96-116.


In some embodiments, an anti-CLDN18.2 antibody or fragment is provided that includes CDRL1, CDRL2, CDRL3, CDRH1, CDRH2, and CDRH3, each of which is selected from Table A′ or Tables B′-D′. For instance, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises an amino acid sequence selected from the group of SEQ ID NO:208-226, or comprises an amino acid sequence derived anyone of SEQ ID NO:208-226 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRL2 comprises an amino acid sequence selected from the group of SEQ ID NO:227-233, or comprises an amino acid sequence derived anyone of SEQ ID NO:227-233 by an amino acid addition, deletion, amino acid substitution; the CDRL3 comprises an amino acid sequence selected from the group of SEQ ID NO:3, 8, 13, 19 and 42-58, or comprises an amino acid sequence derived anyone of SEQ ID NO: 3, 8, 13, 19 and 42-58 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRH1 comprises an amino acid sequence selected from the group of SEQ ID NO:234-254, or comprises an amino acid sequence derived anyone of SEQ ID NO:234-254 by one, two, or three amino acid addition, deletion, amino acid substitution; the CDRH2 comprises an amino acid sequence selected from the group of SEQ ID NO:255-280, or comprises an amino acid sequence derived anyone of SEQ ID NO:255-280 by one, two, or three amino acid addition, deletion, amino acid substitution; and the CDRH3 comprises an amino acid sequence selected from the group of SEQ ID NO:281-303, or comprises an amino acid sequence derived anyone of SEQ ID NO:281-303 by one, two, or three amino acid addition, deletion, amino acid substitution.


In some embodiments, the CDRL1 comprises an amino acid sequence selected from the group of SEQ ID NO:208-226, 304-305 and 308-309; the CDRL2 comprises an amino acid sequence selected from the group of SEQ ID NO:227-233; the CDRL3 comprises an amino acid sequence selected from the group of SEQ ID NO:3, 8, 13, 19, 20 and 42-58; the CDRH1 comprises an amino acid sequence selected from the group of SEQ ID NO:234-254; the CDRH2 comprises an amino acid sequence selected from the group of SEQ ID NO:255-280, 306, 310 and 311; and the CDRH3 comprises an amino acid sequence selected from the group of SEQ ID NO:281-303, 307, and 312-314.


The antibody 120B7B2 has been demonstrated to be potent inhibitor of claudin 18.2. Its CDR sequences, along with a few de-risked versions, are provided in Table B. In one embodiment, the present disclosure provides an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of QSLLNSGNQKNY (SEQ ID NO:1), QSLLNAGNQKNY (SEQ ID NO:17) or QSLLESGNQKNY (SEQ ID NO:18) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:1, 17 or 18, the CDRL2 comprises the amino acid sequence of WAS (SEQ ID NO:2) or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of CQNGYYFPFT (SEQ ID NO:3), QNAYYFPFT (SEQ ID NO:19) or QEGYYFPFT (SEQ ID NO:20) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:3, 19 or 20, the CDRH1 comprises the amino acid sequence of GYTFTGYI (SEQ ID NO:4) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:4, the CDRH2 comprises the amino acid sequence of INPYNDGT (SEQ ID NO:5) or INPYNDDT (SEQ ID NO:21) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:5 or 21, and the CDRH3 comprises the amino acid sequence of ARAYFGNSFAY (SEQ ID NO:6) or ARAYFGNAFAY (SEQ ID NO:22) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:6 or 22.


It is interesting to note (see Table A) that the CDRs from different antibody share great homology. It is then contemplated that each corresponding CDR can be interchanged without greatly impacting the antibody or fragment's binding affinity or activity. Alternatively, each particular amino acid in a CDR can be substituted with another amino acid present in a corresponding CDR from a different antibody. In some embodiments, therefore, the following tables summarize some feasible substitutions based on sequence alignments.









TABLE G1







Example substitutions of amino acid residues in SEQ ID NO: 1









Kabat numbering
Residue
Substitution





27
Q
M


29
L
V


30
L
F


30B
S
G


30E
Q
L or R


30F
K
R


31
N
K or S
















TABLE G2







Example substitutions of amino acid residues in SEQ ID NO: 2









Kabat numbering
Residue
Substitution





50
W
G or R


51
A
S


52
S
F
















TABLE G3







Example substitutions of amino acid residues in SEQ ID NO: 3









Kabat numbering
Residue
Substitution





89
Q
H


91
G
A, D, N, S or V


92
Y
F or L


93
Y
F, I or S


94
F
Y


96
F
C, L, W, or Y


97
T
A
















TABLE G4







Example substitutions of amino acid residues in SEQ ID NO: 4











Kabat numbering
Residue
Substitution







26
G
D



27
Y
F or L



28
T
A or S



29
F
I or L



30
T
I, N, P or S



31
G
K, N, S or T



32
Y
F, G or N



33
I
A, G, L, P, S or Y

















TABLE G5







Example substitutions of amino acid residues in SEQ ID NO: 5









Kabat numbering
Residue
Substitution





51
I
F or M


52
N
H, I, L, R, S, T or W


52A
P
A, G, S, T or Y


53
Y
D, G, K, N, S or T


54
N
D, G, R, S or T


55
D
G, R, S or T


56
G
D, R, S, Y or deletion


57
T
E, H, I, N, P or S
















TABLE G6







Example substitutions of amino acid residues in SEQ ID NO: 6











Kabat numbering
Residue
Substitution







 93
A
G, I, N, P or Y



 94
R
A, K, N, S or T



 95
A
F, R, T, E, I, L, S, V, H, Q, D, N





or deletion



 96
Y
A, R, I, G, D, S, L, K or deletion



 97
F
A, Y, W, L, S or R



 98
G
P



 99
N
H or Y



100
S
A, T or V



100A
F
L or M



101
A
D



102
Y
F, H, N or S










In some embodiments of the antibody or fragment thereof, the CDRL1 comprises the amino acid sequence of SEQ ID NO:1, 17 or 18, the CDRL2 comprises the amino acid sequence of SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of SEQ ID NO:3, 19 or 20, the CDRH1 comprises the amino acid sequence of SEQ ID NO:4, the CDRH2 comprises the amino acid sequence of SEQ ID NO:5 or 21, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:6 or 22.


Non-limiting examples of a light chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:141, 192-195 and 206-207, or a biological equivalent, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:141, 192-195 and 206-207.


Non-limiting examples of a heavy chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:171, 188-191 and 205, or a biological equivalent, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:171, 188-191 and 205.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:17, the CDRL2 comprises the amino acid sequence of SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of SEQ ID NO:19, the CDRH1 comprises the amino acid sequence of SEQ ID NO:4, the CDRH2 comprises the amino acid sequence of SEQ ID NO:21, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:22.


In some embodiments, the antibody or fragment thereof include a light chain variable region comprising an amino acid sequence of SEQ ID NO:206 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:205, or their biological equivalents thereof.


Tables A′-D′ provide the CDR sequences according to Kabat numbering. It is apparent to the skilled artisan that the substitutions disclosed above can be readily translated to the CDR according to a different numbering scheme.


In some embodiments, an antibody or fragment thereof is provided having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein. In some embodiments, the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of SEQ ID NO:210, 304 or 305 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:210, 304 or 305, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227 or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:3, 19 or 20 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:3, 19 or 20, the CDRH1 comprises the amino acid sequence of SEQ ID NO:253 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO: 253, the CDRH2 comprises the amino acid sequence of SEQ ID NO:278 or 306 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:278 or 306, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:303 or 307 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:303 or 307.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:210, 304 or 305, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:3, 19 or 20, the CDRH1 comprises the amino acid sequence of SEQ ID NO:253, the CDRH2 comprises the amino acid sequence of SEQ ID NO:278 or 306, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:303 or 307.


Non-limiting examples of a light chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:141, 192-195 and 206-207, or a biological equivalent, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:141, 192-195 and 206-207.


Non-limiting examples of a heavy chain variable region include an amino acid sequence selected from the group consisting of SEQ ID NO:171, 188-191 and 205, or a biological equivalent, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:171, 188-191 and 205.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:304, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:19, the CDRH1 comprises the amino acid sequence of SEQ ID NO:253, the CDRH2 comprises the amino acid sequence of SEQ ID NO:306, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:307. A non-limiting example of the antibody or fragment includes a light chain variable region comprising an amino acid sequence of SEQ ID NO:206 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:205.


Likewise, 72C1B6A3 has been shown to be a good antibody. In another embodiment, therefore, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of QSLLNSGNQKNY (SEQ ID NO:1), QSLLNAGNQKNY (SEQ ID NO:17) or QSLLESGNQKNY (SEQ ID NO:18) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:1, 17 or 18, the CDRL2 comprises the amino acid sequence of RAS (SEQ ID NO:7) or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:7, the CDRL3 comprises the amino acid sequence of QNDYIYPYT (SEQ ID NO:8) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of GYTFTTYP (SEQ ID NO:9) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:9, the CDRH2 comprises the amino acid sequence of FHPYNDDT (SEQ ID NO:10) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:10, and the CDRH3 comprises the amino acid sequence of ARRAYGYPYAMDY (SEQ ID NO:11) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:11.


Likewise, each particular amino acid in a CDR can be substituted with another amino acid present in a corresponding CDR from a different antibody. In some embodiments, therefore, the following tables summarize some feasible substitutions based on sequence alignments.









TABLE H1







Example substitutions of amino acid residues in SEQ ID NO: 1









Kabat numbering
Residue
Substitution





27
Q
M


29
L
V


30
L
F


30B
S
G


30E
Q
L or R


30F
K
R


31
N
K or S
















TABLE H2







Example substitutions of amino


acid residues in SEQ ID NO: 7









Kabat




numbering
Residue
Substitution





50
R
G or W


51
A
S


52
S
F
















TABLE H3







Example substitutions of amino


acid residues in SEQ ID NO: 8









Kabat




numbering
Residue
Substitution





89
Q
H


91
D
A, G, N, S or V


92
Y
F or L


93
I
F, Y or S


94
Y
F


96
Y
C, L, W, or F


97
T
A
















TABLE H4







Example substitutions of amino


acid residues in SEQ ID NO: 9









Kabat




numbering
Residue
Substitution





26
G
D


27
Y
F or L


28
T
A or S


29
F
I or L


30
T
I, N, P or S


31
T
K, N, S or G


32
Y
F, G or N


33
P
A, G, L, I, S or Y
















TABLE H5







Example substitutions of amino


acid residues in SEQ ID NO: 10









Kabat




numbering
Residue
Substitution





51
F
I or M


52
H
N, I, L, R, S, T or W


  52A
P
A, G, S, T or Y


53
Y
D, G, K, N, S or T


54
N
D, G, R, S or T


55
D
G, R, S or T


56
D
G, R, S, Y or deletion


57
T
E, H, I, N, P or S
















TABLE H6







Example substitutions of amino


acid residues in SEQ ID NO: 11











Kabat





numbering
Residue
Substitution















93
A
G, I, N, P or Y



94
R
A, K, N, S or T



95
R
F, A, T, E, I, L, S, V, H, Q, D, N or deletion



96
A
Y, R, I, G, D, S, L, K or deletion



97
Y
A, F, W, L, S or R



98
G
P



99
Y
H or N



100
P
S, A, T or V



 100A
Y
F, L or M



101
A
D



102
M
Y, F, H, N or S










In some embodiments of the antibody or fragment thereof of 23, the CDRL1 comprises the amino acid sequence of SEQ ID NO:1, 17 or 18, the CDRL2 comprises the amino acid sequence of SEQ ID NO:7, the CDRL3 comprises the amino acid sequence of SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of SEQ ID NO:9, the CDRH2 comprises the amino acid sequence of SEQ ID NO:10, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:11.


Non-limiting examples of a light chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:124, 185-187 and 203-204, or a biological equivalents, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:124, 185-187 and 203-204.


Non-limiting examples of a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO:153 and 181-184, or a biological equivalent, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:153 and 181-184.


In some embodiments, in the antibody or fragment thereof, the CDRL1 comprises the amino acid sequence of SEQ ID NO:17, the CDRL2 comprises the amino acid sequence of SEQ ID NO:7, the CDRL3 comprises the amino acid sequence of SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of SEQ ID NO:9, the CDRH2 comprises the amino acid sequence of SEQ ID NO:10, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:11.


The antibody or fragment thereof, in some embodiments, includes a light chain variable region comprising an amino acid sequence of SEQ ID NO:203 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:181, or their corresponding biological equivalents.


Tables A′-D′ provide the CDR sequences according to Kabat numbering. It is apparent to the skilled artisan that the substitutions disclosed above can be readily translated to the CDR according to a different numbering scheme.


In some embodiments, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of SEQ ID NO:210, 304 or 305 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:210, 304 or 305, the CDRL2 comprises the amino acid sequence of SEQ ID NO:229 or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:229, the CDRL3 comprises the amino acid sequence of SEQ ID NO:8 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of SEQ ID NO:242 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:242, the CDRH2 comprises the amino acid sequence of SEQ ID NO:263 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:263, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:289 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:289.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:210, 304 or 305, the CDRL2 comprises the amino acid sequence of SEQ ID NO:229, the CDRL3 comprises the amino acid sequence of SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of SEQ ID NO:242, the CDRH2 comprises the amino acid sequence of SEQ ID NO:263, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:289.


Non-limiting examples of a light chain variable region include an amino acid sequence selected from the group consisting of SEQ ID NO:124, 185-187 and 203-204, or a biological equivalent, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:124, 185-187 and 203-204.


Non-limiting examples of a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO:153 and 181-184, or a biological equivalent, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:153 and 181-184.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:304, the CDRL2 comprises the amino acid sequence of SEQ ID NO:229, the CDRL3 comprises the amino acid sequence of SEQ ID NO:8, the CDRH1 comprises the amino acid sequence of SEQ ID NO:242, the CDRH2 comprises the amino acid sequence of SEQ ID NO:263, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:289. A non-limiting example antibody or fragment thereof includes a light chain variable region comprising an amino acid sequence of SEQ ID NO:203 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:181.


Also, 4F11E2 has been shown to be a good antibody. In another embodiment, therefore, provided is an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of QSLLNSGNRKNY (SEQ ID NO:12), QSLLESGNRKNY (SEQ ID NO:23) or QSLLNAGNRKNY (SEQ ID NO:24) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:12, 23 or 24, the CDRL2 comprises the amino acid sequence of WAS (SEQ ID NO:2) or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of QNAYSYPFT (SEQ ID NO:13) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of GFTFSTFG (SEQ ID NO:14) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:14, the CDRH2 comprises the amino acid sequence of ITSGNSPI (SEQ ID NO:15), ITSGQSPI (SEQ ID NO:25), or ITSGESPI (SEQ ID NO:26) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:15, 25 or 26, and the CDRH3 comprises the amino acid sequence of ARSSYYGNSMDY (SEQ ID NO:16), ARSSYYGQSMDY (SEQ ID NO:27), ARSSYYGESMDY (SEQ ID NO:28), or ARSSYYGNAMDY (SEQ ID NO:29) or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:16, 27, 28 or 29.


Likewise, each particular amino acid in a CDR can be substituted with another amino acid present in a corresponding CDR from a different antibody. In some embodiments, therefore, the following tables summarize some feasible substitutions based on sequence alignments.









TABLE I1







Example substitutions of amino


acid residues in SEQ ID NO: 12









Kabat




numbering
Residue
Substitution





27
Q
M


29
L
V


30
L
F


 30B
S
G


 30E
R
L or Q


 30F
K
R


31
N
K or S
















TABLE I2







Example substitutions of amino


acid residues in SEQ ID NO: 2









Kabat




numbering
Residue
Substitution





50
W
G or R


51
A
S


52
S
F
















TABLE I3







Example substitutions of amino


acid residues in SEQ ID NO: 13









Kabat




numbering
Residue
Substitution





89
Q
H


91
A
G, D, N, S or V


92
Y
F or L


93
S
F, I or Y


94
Y
F


96
F
C, L, W, or Y


97
T
A
















TABLE I4







Example substitutions of amino


acid residues in SEQ ID NO: 14









Kabat




numbering
Residue
Substitution





26
G
D


27
F
Y or L


28
T
A or S


29
F
I or L


30
S
I, N, P or T


31
T
K, N, S or G


32
F
Y, G or N


33
G
A, I, L, P, S or Y
















TABLE I5







Example substitutions of amino


acid residues in SEQ ID NO: 15









Kabat




numbering
Residue
Substitution





51
I
F or M


52
T
H, I, L, R, S, N or W


 52A
S
A, G, P, T or Y


53
G
D, Y, K, N, S or T


54
N
D, G, R, S or T


55
S
G, R, D or T


56
P
G, D, R, S, Y or deletion


57
I
E, H, T, N, P or S
















TABLE I6







Example substitutions of amino


acid residues in SEQ ID NO: 16











Kabat





numbering
Residue
Substitution







93
A
G, I, N, P or Y



94
R
A, K, N, S or T



95
S
F, R, T, E, I, L, A, V, H, Q, D, N or deletion



96
S
A, R, I, G, D, Y, L, K or deletion



97
Y
F, A, Y, W, L, S or R



98
Y
G or P



99
N
H or Y



100
S
A, T or V



  100A
M
L or F



101
D
A



102
Y
F, H, N or S










In some embodiments, in the antibody or fragment thereof, the CDRL1 comprises the amino acid sequence of SEQ ID NO:12, 23 or 24, the CDRL2 comprises the amino acid sequence of SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of SEQ ID NO:14, the CDRH2 comprises the amino acid sequence of SEQ ID NO:15, 25 or 26, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:16, 27, 28 or 29.


Non-limiting examples of a light chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:129, 178-180 and 201-202, or their biological equivalents, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:129, 178-180 and 201-202.


Non-limiting examples of a heavy chain variable region includes an amino acid sequence selected from the group consisting of SEQ ID NO:159, 175-177 and 196-200, or their biological equivalents, e.g., a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:159, 175-177 and 196-200.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:24, the CDRL2 comprises the amino acid sequence of SEQ ID NO:2, the CDRL3 comprises the amino acid sequence of SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of SEQ ID NO:14, the CDRH2 comprises the amino acid sequence of SEQ ID NO:26, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:16.


In some embodiments, the antibody or fragment thereof includes a light chain variable region comprising an amino acid sequence of SEQ ID NO:202 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:197, or their corresponding biological equivalents.


Tables A′-D′ provide the CDR sequences according to Kabat numbering. It is apparent to the skilled artisan that the substitutions disclosed above can be readily translated to the CDR according to a different numbering scheme.


Some embodiments of the present disclosure provide an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of SEQ ID NO:216, 308 or 309 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:216, 308 or 309, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227 or an amino acid sequence having one or two amino acid substitution from SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:13 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of SEQ ID NO:246 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:246, the CDRH2 comprises the amino acid sequence of SEQ ID NO:268, 310 or 311 or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:268, 310 or 311, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:294, 312, 313 or 314, or an amino acid sequence having one, two or three amino acid substitution from SEQ ID NO:294, 312, 313 or 314.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:216, 308 or 309, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of SEQ ID NO:246, the CDRH2 comprises the amino acid sequence of SEQ ID NO:268, 310 or 311, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:294, 312, 313 or 314.


Non-limiting examples of a light chain variable region include an amino acid sequence selected from the group consisting of SEQ ID NO:129, 178-180 and 201-202, or a biological equivalent, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:129, 178-180 and 201-202.


Non-limiting examples of a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO:159, 175-177 and 196-200, or a biological equivalents, such as a peptide having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:159, 175-177 and 196-200.


In some embodiments, the CDRL1 comprises the amino acid sequence of SEQ ID NO:309, the CDRL2 comprises the amino acid sequence of SEQ ID NO:227, the CDRL3 comprises the amino acid sequence of SEQ ID NO:13, the CDRH1 comprises the amino acid sequence of SEQ ID NO:246, the CDRH2 comprises the amino acid sequence of SEQ ID NO:311, and the CDRH3 comprises the amino acid sequence of SEQ ID NO:294. A non-limiting example of the antibody or fragment includes a light chain variable region comprising an amino acid sequence of SEQ ID NO:202 and a heavy chain variable region comprising an amino acid sequence of SEQ ID NO:197.


In some embodiments, the antibodies are humanized antibodies. Humanized antibodies, as shown in Example 9, can include one or more back mutations to the mouse counterpart. Examples of such back mutations are shown in Table 3. In some embodiments, the antibody or fragment can include one, two, three, four, five or more of the back mutations.


In some embodiments, the anti-claudin 18.2 antibody of the present disclosure includes a VL of any one of SEQ ID NO: 117-144, 178-180, 185-187, 192-195, 201-202, 203-204 or 206-207, and a VH of any one of SEQ ID NO: 145-174, 175-177, 181-184, 188-191, 196-200, or 205 or their respective biological equivalents. A biological equivalent of a VH or VL is a sequence that includes the designated amino acids while having an overall 80%, 85%, 90%, 95%, 98% or 99% sequence identity. A biological equivalent of SEQ ID NO:145, therefore, can be a VH that has an overall 80%, 85%, 90%, 95%, 98% or 99% sequence identity to SEQ ID NO:145 but retains the CDRs, and optionally retains one or more, or all of the back-mutations.


It will also be understood by one of ordinary skill in the art that antibodies as disclosed herein may be modified such that they vary in amino acid sequence from the naturally occurring binding polypeptide from which they were derived. For example, a polypeptide or amino acid sequence derived from a designated protein may be similar, e.g., have a certain percent identity to the starting sequence, e.g., it may be 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identical to the starting sequence.


In certain embodiments, the antibody comprises an amino acid sequence or one or more moieties not normally associated with an antibody. Exemplary modifications are described in more detail below. For example, an antibody of the disclosure may comprise a flexible linker sequence, or may be modified to add a functional moiety (e.g., PEG, a drug, a toxin, or a label).


Antibodies, variants, or derivatives thereof of the disclosure include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from binding to the epitope. For example, but not by way of limitation, the antibodies can be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the antibodies may contain one or more non-classical amino acids.


In some embodiments, the antibodies may be conjugated to therapeutic agents, prodrugs, peptides, proteins, enzymes, viruses, lipids, biological response modifiers, pharmaceutical agents, or PEG.


The antibodies may be conjugated or fused to a therapeutic agent, which may include detectable labels such as radioactive labels, an immunomodulator, a hormone, an enzyme, an oligonucleotide, a photoactive therapeutic or diagnostic agent, a cytotoxic agent, which may be a drug or a toxin, an ultrasound enhancing agent, a non-radioactive label, a combination thereof and other such agents known in the art.


The antibodies can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antigen-binding polypeptide is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.


The antibodies can also be detectably labeled using fluorescence emitting metals such as 152Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA). Techniques for conjugating various moieties to an antibody are well known, see, e.g., Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. (1985); Hellstrom et al., “Antibodies For Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al., (eds.), Marcel Dekker, Inc., pp. 623-53 (1987); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy”, in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), Academic Press pp. 303-16 (1985), and Thorpe et al., “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates”, Immunol. Rev. (52:119-58 (1982)).


Bi-Functional Molecules


As a tumor antigen targeting molecule, an antibody or antigen-binding fragment specific to claudin 18.2 can be combined with a second fragment specific to an immune cell to generate a bispecific antibody.


In some embodiments, the immune cell is selected from the group consisting of a T cell, a B cell, a monocyte, a macrophage, a neutrophil, a dendritic cell, a phagocyte, a natural killer cell, an eosinophil, a basophil, and a mast cell.


In some embodiment, the second specificity is to CD3, CD47, PD1, PD-L1, LAG3, TIM3, CTLA4, VISTA, CSFR1, A2AR, CD73, CD39, CD40, CEA, HER2, CMET, 4-1BB, OX40, SIRPA CD16, CD28, ICOS, CTLA4, BTLA, TIGIT, HVEM, CD27, VEGFR, or VEGF.


Different format of bispecific antibodies are also provided. In some embodiments, each of the anti-claudin 18.2 fragment and the second fragment each is independently selected from a Fab fragment, a single-chain variable fragment (scFv), or a single-domain antibody. In some embodiments, the bispecific antibody further includes a Fc fragment.


Bifunctional molecules that include not just antibody or antigen binding fragment are also provided. As a tumor antigen targeting molecule, an antibody or antigen-binding fragment specific to claudin 18.2, such as those described here, can be combined with an immune cytokine or ligand optionally through a peptide linker. The linked immune cytokines or ligands include, but not limited to, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, GM-CSF, TNF-α, CD40L, OX40L, CD27L, CD30L, 4-1BBL, LIGHT and GITRL. Such bi-functional molecules can combine the immune checkpoint blocking effect with tumor site local immune modulation.


Polynucleotides Encoding the Antibodies and Methods of Preparing the Antibodies


The present disclosure also provides isolated polynucleotides or nucleic acid molecules encoding the antibodies, variants or derivatives thereof of the disclosure. The polynucleotides of the present disclosure may encode the entire heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules. Additionally, the polynucleotides of the present disclosure may encode portions of the heavy and light chain variable regions of the antigen-binding polypeptides, variants or derivatives thereof on the same polynucleotide molecule or on separate polynucleotide molecules.


Methods of making antibodies are well known in the art and described herein. In certain embodiments, both the variable and constant regions of the antigen-binding polypeptides of the present disclosure are fully human Fully human antibodies can be made using techniques described in the art and as described herein. For example, fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Exemplary techniques that can be used to make such antibodies are described in U.S. Pat. Nos. 6,150,584; 6,458,592; 6,420,140 which are incorporated by reference in their entireties.


Treatment Methods


As described herein, the antibodies, variants or derivatives of the present disclosure may be used in certain treatment and diagnostic methods.


The present disclosure is further directed to antibody-based therapies which involve administering the antibodies of the disclosure to a patient such as an animal, a mammal, and a human for treating one or more of the disorders or conditions described herein. Therapeutic compounds of the disclosure include, but are not limited to, antibodies of the disclosure (including variants and derivatives thereof as described herein) and nucleic acids or polynucleotides encoding antibodies of the disclosure (including variants and derivatives thereof as described herein).


The antibodies of the disclosure can also be used to treat or inhibit cancer. As provided above, claudin 18.2 can be overexpressed in tumor cells, in particular gastric, pancreatic, esophageal, ovarian, and lung tumors. Inhibition of claudin 18.2 has been shown to be useful for treating the tumors.


Accordingly, in some embodiments, provided are methods for treating a cancer in a patient in need thereof. The method, in one embodiment, entails administering to the patient an effective amount of an antibody of the present disclosure. In some embodiments, at least one of the cancer cells (e.g., stromal cells) in the patient over-express claudin 18.2.


Cellular therapies, such as chimeric antigen receptor (CAR) T-cell therapies, are also provided in the present disclosure. A suitable cell can be used, that is put in contact with an anti-claudin 18.2 antibody of the present disclosure (or alternatively engineered to express an anti-claudin 18.2 antibody of the present disclosure). Upon such contact or engineering, the cell can then be introduced to a cancer patient in need of a treatment. The cancer patient may have a cancer of any of the types as disclosed herein. The cell (e.g., T cell) can be, for instance, a tumor-infiltrating T lymphocyte, a CD4+ T cell, a CD8+ T cell, or the combination thereof, without limitation.


In some embodiments, the cell was isolated from the cancer patient him- or her-self. In some embodiments, the cell was provided by a donor or from a cell bank. When the cell is isolated from the cancer patient, undesired immune reactions can be minimized.


Non-limiting examples of cancers include bladder cancer, breast cancer, colorectal cancer, endometrial cancer, esophageal cancer, head and neck cancer, kidney cancer, leukemia, liver cancer, lung cancer, lymphoma, melanoma, pancreatic cancer, prostate cancer, and thyroid cancer. In some embodiments, the cancer is one or more of gastric, pancreatic, esophageal, ovarian, and lung cancers.


Additional diseases or conditions associated with increased cell survival, that may be treated, prevented, diagnosed and/or prognosed with the antibodies or variants, or derivatives thereof of the disclosure include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyo sarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma.


A specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the particular antibodies, variant or derivative thereof used, the patient's age, body weight, general health, sex, and diet, and the time of administration, rate of excretion, drug combination, and the severity of the particular disease being treated. Judgment of such factors by medical caregivers is within the ordinary skill in the art. The amount will also depend on the individual patient to be treated, the route of administration, the type of formulation, the characteristics of the compound used, the severity of the disease, and the desired effect. The amount used can be determined by pharmacological and pharmacokinetic principles well known in the art.


Methods of administration of the antibodies, variants or include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The antigen-binding polypeptides or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Thus, pharmaceutical compositions containing the antigen-binding polypeptides of the disclosure may be administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, drops or transdermal patch), bucally, or as an oral or nasal spray.


The term “parenteral” as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intra-articular injection and infusion.


Administration can be systemic or local. In addition, it may be desirable to introduce the antibodies of the disclosure into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.


It may be desirable to administer the antigen-binding polypeptides or compositions of the disclosure locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction, with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the disclosure, care must be taken to use materials to which the protein does not absorb.


The amount of the antibodies of the disclosure which will be effective in the treatment, inhibition and prevention of an inflammatory, immune or malignant disease, disorder or condition can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease, disorder or condition, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.


As a general proposition, the dosage administered to a patient of the antigen-binding polypeptides of the present disclosure is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight, between 0.1 mg/kg and 20 mg/kg of the patient's body weight, or 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the disclosure may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.


In an additional embodiment, the compositions of the disclosure are administered in combination with cytokines. Cytokines that may be administered with the compositions of the disclosure include, but are not limited to, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, anti-CD40, CD40L, and TNF-α.


In additional embodiments, the compositions of the disclosure are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.


Combination Therapies and Antibody-Drug Conjugates


Combination therapies are also provided, which includes the use of one or more of the anti-claudin 18.2 antibodies or fragments thereof of the present disclosure along with a second anticancer (chemotherapeutic) agent. In some embodiment, the chemotherapeutic agent is conjugated to the antibody or fragment.


Chemotherapeutic agents may be categorized by their mechanism of action into, for example, the following groups:


anti-metabolites/anti-cancer agents such as pyrimidine analogs floxuridine, capecitabine, and cytarabine;


purine analogs, folate antagonists, and related inhibitors;


antiproliferative/antimitotic agents including natural products such as vinca alkaloid (vinblastine, vincristine) and microtubule such as taxane (paclitaxel, docetaxel), vinblastin, nocodazole, epothilones, vinorelbine (NAVELBINE®), and epipodophyllotoxins (etoposide, teniposide);


DNA damaging agents such as actinomycin, amsacrine, busulfan, carboplatin, chlorambucil, cisplatin, cyclophosphamide (CYTOXAN®), dactinomycin, daunorubicin, doxorubicin, epirubicin, iphosphamide, melphalan, merchlorethamine, mitomycin, mitoxantrone, nitrosourea, procarbazine, taxol, taxotere, teniposide, etoposide, and triethylenethiophosphoramide;


antibiotics such as dactinomycin, daunorubicin, doxorubicin, idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin), and mitomycin;


enzymes such as L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine;


antiplatelet agents;


antiproliferative/antimitotic alkylating agents such as nitrogen mustards cyclophosphamide and analogs (melphalan, chlorambucil, hexamethylmelamine, and thiotepa), alkyl nitrosoureas (carmustine) and analogs, streptozocin, and triazenes (dacarbazine);


antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate);


platinum coordination complexes (cisplatin, oxiloplatinim, and carboplatin), procarbazine, hydroxyurea, mitotane, and aminoglutethimide;


hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, and nilutamide), and aromatase inhibitors (letrozole and anastrozole);


anticoagulants such as heparin, synthetic heparin salts, and other inhibitors of thrombin;


fibrinolytic agents such as tissue plasminogen activator, streptokinase, urokinase, aspirin, dipyridamole, ticlopidine, and clopidogrel;


antimigratory agents;


antisecretory agents (breveldin);


immunosuppressives tacrolimus, sirolimus, azathioprine, and mycophenolate;


compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor inhibitors and fibroblast growth factor inhibitors);


angiotensin receptor blockers, nitric oxide donors;


anti-sense oligonucleotides;


antibodies such as trastuzumab and rituximab;


cell cycle inhibitors and differentiation inducers such as tretinoin;


inhibitors, topoisomerase inhibitors (doxorubicin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin, irinotecan, mitoxantrone, topotecan, and irinotecan), and corticosteroids (cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prednisolone);


growth factor signal transduction kinase inhibitors;


dysfunction inducers;


toxins such as Cholera toxin, ricin, Pseudomonas exotoxin, Bordetella pertussis adenylate cyclase toxin, diphtheria toxin, and caspase activators;


and chromatin.


Further examples of chemotherapeutic agents include:


alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN®);


alkyl sulfonates such as busulfan, improsulfan, and piposulfan;


aziridines such as benzodopa, carboquone, meturedopa, and uredopa;


emylerumines and memylamelamines including alfretamine, triemylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, and trimemylolomelamine;


acetogenins, especially bullatacin and bullatacinone;


a camptothecin, including synthetic analog topotecan;


bryostatin;


callystatin;


CC-1065, including its adozelesin, carzelesin, and bizelesin synthetic analogs;


cryptophycins, particularly cryptophycin 1 and cryptophycin 8;


dolastatin;


duocarmycin, including the synthetic analogs KW-2189 and CBI-TMI;


eleutherobin;


pancratistatin;


a sarcodictyin;


spongistatin;


nitrogen mustards such as chlorambucil, chlornaphazine, cyclophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, and uracil mustard;


nitrosoureas such as carmustine, chlorozotocin, foremustine, lomustine, nimustine, and ranimustine;


antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammaII and calicheamicin phiI1), dynemicin including dynemicin A, bisphosphonates such as clodronate, an esperamicin, neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromomophores, aclacinomycins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carrninomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, and zorubicin;


anti-metabolites such as methotrexate and 5-fluorouracil (5-FU);


folic acid analogs such as demopterin, methotrexate, pteropterin, and trimetrexate;


purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, and thioguanine;


pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, and floxuridine;


androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, and testolactone;


anti-adrenals such as aminoglutethimide, mitotane, and trilostane;


folic acid replinishers such as frolinic acid;


trichothecenes, especially T-2 toxin, verracurin A, roridin A, and anguidine;


taxoids such as paclitaxel (TAXOL®) and docetaxel (TAXOTERE®);


platinum analogs such as cisplatin and carboplatin;


aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; hestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformthine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; leucovorin; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; losoxantrone; fluoropyrimidine; folinic acid; podophyllinic acid; 2-ethylhydrazide; procarbazine; polysaccharide-K (PSK); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-tricUorotriemylamine; urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiopeta; chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; methotrexate; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitroxantrone; vancristine; vinorelbine (NAVELBINE®); novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeoloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DFMO); retinoids such as retinoic acid; capecitabine; FOLFIRI (fluorouracil, leucovorin, and irinotecan);


and pharmaceutically acceptable salts, acids, or derivatives of any of the above.


Also included in the definition of “chemotherapeutic agent” are anti-hormonal agents such as anti-estrogens and selective estrogen receptor modulators (SERMs), inhibitors of the enzyme aromatase, anti-androgens, and pharmaceutically acceptable salts, acids or derivatives of any of the above that act to regulate or inhibit hormone action on tumors.


Examples of anti-estrogens and SERMs include, for example, tamoxifen (including NOLVADEX™), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (FARESTON®).


Inhibitors of the enzyme aromatase regulate estrogen production in the adrenal glands. Examples include 4(5)-imidazoles, aminoglutethimide, megestrol acetate (MEGACE®), exemestane, formestane, fadrozole, vorozole (RIVISOR®), letrozole (FEMARA®), and anastrozole (ARIMIDEX®).


Examples of anti-androgens include flutamide, nilutamide, bicalutamide, leuprohde, and goserelin.


Examples of chemotherapeutic agents also include anti-angiogenic agents including, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN®, ENDOSTATIN®, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inbibitor-2, cartilage-derived inhibitor, paclitaxel (nab-paclitaxel), platelet factor 4, protamine sulphate (clupeine), sulphated chitin derivatives (prepared from queen crab shells), sulphated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism including proline analogs ((1-azetidine-2-carboxylic acid (LACA)), cishydroxyproline, d,I-3,4-dehydroproline, thiaproline, α,α′-dipyridyl, beta-aminopropionitrile fumarate, 4-propyl-5-(4-pyridinyl)-2(3h)-oxazolone, methotrexate, mitoxantrone, heparin, interferons, 2 macroglobulin-serum, chicken inhibitor of metalloproteinase-3 (ChIMP-3), chymostatin, beta-cyclodextrin tetradecasulfate, eponemycin, fumagillin, gold sodium thiomalate, d-penicillamine, beta-1-anticollagenase-serum, alpha-2-antiplasmin, bisantrene, lobenzarit disodium, n-2-carboxyphenyl-4-chloroanthronilic acid disodium or “CCA”, thalidomide, angiostatic steroid, carboxy aminoimidazole, and metalloproteinase inhibitors such as BB-94. Other anti-angiogenesis agents include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: beta-FGF, alpha-FGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF, and Ang-1/Ang-2.


Examples of chemotherapeutic agents also include anti-fibrotic agents including, but are not limited to, the compounds such as beta-aminoproprionitrile (BAPN), as well as the compounds disclosed in U.S. Pat. No. 4,965,288 (Palfreyman, et al.) relating to inhibitors of lysyl oxidase and their use in the treatment of diseases and conditions associated with the abnormal deposition of collagen and U.S. Pat. No. 4,997,854 (Kagan et al.) relating to compounds which inhibit LOX for the treatment of various pathological fibrotic states, which are herein incorporated by reference. Further exemplary inhibitors are described in U.S. Pat. No. 4,943,593 (Palfreyman et al.) relating to compounds such as 2-isobutyl-3-fluoro-, chloro-, or bromo-allylamine, U.S. Pat. No. 5,021,456 (Palfreyman et al.), U.S. Pat. No. 5,059,714 (Palfreyman et al.), U.S. Pat. No. 5,120,764 (Mccarthy et al.), U.S. Pat. No. 5,182,297 (Palfreyman et al.), U.S. Pat. No. 5,252,608 (Palfreyman et al.) relating to 2-(1-naphthyloxymemyl)-3-fluoroallylamine, and U.S. Pub. No.: 2004/0248871 (Farjanel et al.), which are herein incorporated by reference.


Exemplary anti-fibrotic agents also include the primary amines reacting with the carbonyl group of the active site of the lysyl oxidases, and more particularly those which produce, after binding with the carbonyl, a product stabilized by resonance, such as the following primary amines: emylenemamine, hydrazine, phenylhydrazine, and their derivatives; semicarbazide and urea derivatives; aminonitriles such as BAPN or 2-nitroethylamine; unsaturated or saturated haloamines such as 2-bromo-ethylamine, 2-chloroethylamine, 2-trifluoroethylamine, 3-bromopropylamine, and p-halobenzylamines; and selenohomocysteine lactone.


Other anti-fibrotic agents are copper chelating agents penetrating or not penetrating the cells. Exemplary compounds include indirect inhibitors which block the aldehyde derivatives originating from the oxidative deamination of the lysyl and hydroxylysyl residues by the lysyl oxidases. Examples include the thiolamines, particularly D-penicillamine, and its analogs such as 2-amino-5-mercapto-5-methylhexanoic acid, D-2-amino-3-methyl-3-((2-acetamidoethyl)dithio)butanoic acid, p-2-amino-3-methyl-3-((2-aminoethyl)dithio)butanoic acid, sodium-4-((p-1-dimethyl-2-amino-2-carboxyethyl)dithio)butane sulphurate, 2-acetamidoethyl-2-acetamidoethanethiol sulphanate, and sodium-4-mercaptobutanesulphinate trihydrate.


Examples of chemotherapeutic agents also include immunotherapeutic agents including and are not limited to therapeutic antibodies suitable for treating patients. Some examples of therapeutic antibodies include simtuzumab, abagovomab, adecatumumab, afutuzumab, alemtuzumab, altumomab, amatuximab, anatumomab, arcitumomab, bavituximab, bectumomab, bevacizumab, bivatuzumab, blinatumomab, brentuximab, cantuzumab, catumaxomab, cetuximab, citatuzumab, cixutumumab, clivatuzumab, conatumumab, daratumumab, drozitumab, duligotumab, dusigitumab, detumomab, dacetuzumab, dalotuzumab, ecromeximab, elotuzumab, ensituximab, ertumaxomab, etaracizumab, farletuzumab, ficlatuzumab, figitumumab, flanvotumab, futuximab, ganitumab, gemtuzumab, girentuximab, glembatumumab, ibritumomab, igovomab, imgatuzumab, indatuximab, inotuzumab, intetumumab, ipilimumab, iratumumab, labetuzumab, lexatumumab, lintuzumab, lorvotuzumab, lucatumumab, mapatumumab, matuzumab, milatuzumab, minretumomab, mitumomab, moxetumomab, narnatumab, naptumomab, necitumumab, nimotuzumab, nofetumomab, ocaratuzumab, ofatumumab, olaratumab, onartuzumab, oportuzumab, oregovomab, panitumumab, parsatuzumab, patritumab, pemtumomab, pertuzumab, pintumomab, pritumumab, racotumomab, radretumab, rilotumumab, rituximab, robatumumab, satumomab, sibrotuzumab, siltuximab, solitomab, tacatuzumab, taplitumomab, tenatumomab, teprotumumab, tigatuzumab, tositumomab, trastuzumab, tucotuzumab, ublituximab, veltuzumab, vorsetuzumab, votumumab, zalutumumab, CC49, and 3F8. Rituximab can be used for treating indolent B-cell cancers, including marginal-zone lymphoma, WM, CLL and small lymphocytic lymphoma. A combination of Rituximab and chemotherapy agents is especially effective.


The exemplified therapeutic antibodies may be further labeled or combined with a radioisotope particle such as indium-111, yttrium-90, or iodine-131.


In a one embodiment, the additional therapeutic agent is a nitrogen mustard alkylating agent. Nonlimiting examples of nitrogen mustard alkylating agents include chlorambucil.


In one embodiment, the compounds and compositions described herein may be used or combined with one or more additional therapeutic agents. The one or more therapeutic agents include, but are not limited to, an inhibitor of Abl, activated CDC kinase (ACK), adenosine A2B receptor (A2B), apoptosis signal-regulating kinase (ASK), Auroa kinase, Bruton's tyrosine kinase (BTK), BET-bromodomain (BRD) such as BRD4, c-Kit, c-Met, CDK-activating kinase (CAK), calmodulin-dependent protein kinase (CaMK), cyclin-dependent kinase (CDK), casein kinase (CK), discoidin domain receptor (DDR), epidermal growth factor receptors (EGFR), focal adhesion kinase (FAK), Flt-3, FYN, glycogen synthase kinase (GSK), HCK, histone deacetylase (HDAC), IKK such as IKKβε, isocitrate dehydrogenase (IDH) such as IDH1, Janus kinase (JAK), KDR, lymphocyte-specific protein tyrosine kinase (LCK), lysyl oxidase protein, lysyl oxidase-like protein (LOXL), LYN, matrix metalloprotease (MMP), MEK, mitogen-activated protein kinase (MAPK), NEK9, NPM-ALK, p38 kinase, platelet-derived growth factor (PDGF), phosphorylase kinase (PK), polo-like kinase (PLK), phosphatidylinositol 3-kinase (PI3K), protein kinase (PK) such as protein kinase A, B, and/or C, PYK, spleen tyrosine kinase (SYK), serine/threonine kinase TPL2, serine/threonine kinase STK, signal transduction and transcription (STAT), SRC, serine/threonine-protein kinase (TBK) such as TBK1, TIE, tyrosine kinase (TK), vascular endothelial growth factor receptor (VEGFR), YES, or any combination thereof.


ASK inhibitors include ASK1 inhibitors. Examples of ASK1 inhibitors include, but are not limited to, those described in WO 2011/008709 (Gilead Sciences) and WO 2013/112741 (Gilead Sciences).


Examples of BTK inhibitors include, but are not limited to, ibrutinib, HM71224, ONO-4059, and CC-292.


DDR inhibitors include inhibitors of DDR1 and/or DDR2. Examples of DDR inhibitors include, but are not limited to, those disclosed in WO 2014/047624 (Gilead Sciences), US 2009/0142345 (Takeda Pharmaceutical), US 2011/0287011 (Oncomed Pharmaceuticals), WO 2013/027802 (Chugai Pharmaceutical), and WO 2013/034933 (Imperial Innovations).


Examples of HDAC inhibitors include, but are not limited to, pracinostat and panobinostat.


JAK inhibitors inhibit JAK1, JAK2, and/or JAK3. Examples of JAK inhibitors include, but are not limited to, filgotinib, ruxolitinib, fedratinib, tofacitinib, baricitinib, lestaurtinib, pacritinib, XL019, AZD1480, INCB039110, LY2784544, BMS911543, and NS018.


LOXL inhibitors include inhibitors of LOXL1, LOXL2, LOXL3, LOXL4, and/or LOXL5. Examples of LOXL inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences).


Examples of LOXL2 inhibitors include, but are not limited to, the antibodies described in WO 2009/017833 (Arresto Biosciences), WO 2009/035791 (Arresto Biosciences), and WO 2011/097513 (Gilead Biologics).


MMP inhibitors include inhibitors of MMP1 through 10. Examples of MMP9 inhibitors include, but are not limited to, marimastat (BB-2516), cipemastat (Ro 32-3555), and those described in WO 2012/027721 (Gilead Biologics).


PI3K inhibitors include inhibitors of PI3Kγ, PI3Kδ, PI3Kβ, PI3Kα, and/or pan-PI3K. Examples of PI3K inhibitors include, but are not limited to, wortmannin, BKM120, CH5132799, XL756, and GDC-0980.


Examples of PI3Kγ inhibitors include, but are not limited to, ZSTK474, AS252424, LY294002, and TG100115.


Examples of PI3Kδ inhibitors include, but are not limited to, PI3K II, TGR-1202, AMG-319, GSK2269557, X-339, X-414, RP5090, KAR4141, XL499, OXY111A, IPI-145, IPI-443, and the compounds described in WO 2005/113556 (ICOS), WO 2013/052699 (Gilead Calistoga), WO 2013/116562 (Gilead Calistoga), WO 2014/100765 (Gilead Calistoga), WO 2014/100767 (Gilead Calistoga), and WO 2014/201409 (Gilead Sciences).


Examples of PI3Kβ inhibitors include, but are not limited to, GSK2636771, BAY 10824391, and TGX221.


Examples of PI3Kα inhibitors include, but are not limited to, buparlisib, BAY 80-6946, BYL719, PX-866, RG7604, MLN1117, WX-037, AEZA-129, and PA799.


Examples of pan-PI3K inhibitors include, but are not limited to, LY294002, BEZ235, XL147 (SAR245408), and GDC-0941.


Examples of SYK inhibitors include, but are not limited to, tamatinib (R406), fostamatinib (R788), PRT062607, BAY-61-3606, NVP-QAB 205 AA, R112, R343, and those described in U.S. Pat. No. 8,450,321 (Gilead Connecticut).


TKIs may target epidermal growth factor receptors (EGFRs) and receptors for fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF). Examples of TKIs that target EGFR include, but are not limited to, gefitinib and erlotinib. Sunitinib is a non-limiting example of a TKI that targets receptors for FGF, PDGF, and VEGF.


Diagnostic Methods


Over-expression of claudin 18.2 is observed in certain tumor samples, and patients having claudin 18.2-over-expressing cells are likely responsive to treatments with the anti-claudin 18.2 antibodies of the present disclosure. Accordingly, the antibodies of the present disclosure can also be used for diagnostic and prognostic purposes.


A sample that preferably includes a cell can be obtained from a patient, which can be a cancer patient or a patient desiring diagnosis. The cell be a cell of a tumor tissue or a tumor block, a blood sample, a urine sample or any sample from the patient. Upon optional pre-treatment of the sample, the sample can be incubated with an antibody of the present disclosure under conditions allowing the antibody to interact with a claudin 18.2 protein potentially present in the sample. Methods such as ELISA can be used, taking advantage of the anti-claudin 18.2 antibody, to detect the presence of the claudin 18.2 protein in the sample.


Presence of the claudin 18.2 protein in the sample (optionally with the amount or concentration) can be used for diagnosis of cancer, as an indication that the patient is suitable for a treatment with the antibody, or as an indication that the patient has (or has not) responded to a cancer treatment. For a prognostic method, the detection can be done at once, twice or more, at certain stages, upon initiation of a cancer treatment to indicate the progress of the treatment.


Compositions


The present disclosure also provides pharmaceutical compositions. Such compositions comprise an effective amount of an antibody, and an acceptable carrier. In some embodiments, the composition further includes a second anticancer agent (e.g., an immune checkpoint inhibitor).


In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. Further, a “pharmaceutically acceptable carrier” will generally be a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.


The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents such as acetates, citrates or phosphates. Antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; and agents for the adjustment of tonicity such as sodium chloride or dextrose are also envisioned. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences by E. W. Martin, incorporated herein by reference. Such compositions will contain a therapeutically effective amount of the antigen-binding polypeptide, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


In an embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.


The compounds of the disclosure can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.


EXAMPLES
Example 1: Generation of Murine Monoclonal Antibodies Against Human Claudin 18 Isoform 2 (CLD 18A2)

a. Immunizations:


Balb/c and C57/BL6 mice were immunized with eukaryotic expression vectors, encoding human claudin 18.2 (CLD 18A2) fragments. 50 μg of plasmid DNA was injected into the quadriceps (intramuscular, i.m.) on day 1 and 10. The presence of antibodies directed against human CLD 18A2 in the serum of the mice was monitored on day 20 by flow cytometry, using HEK293 cells transiently transfected with a nucleic acid encoding human CLD 18A2. Mice with detectable immune responses (FIG. 1) were boosted three and two days prior to fusion by intraperitoneal injection of 5×107 HEK293 cells transiently transfected with a nucleic acid encoding human CLD 18A2.


b. Generation of Hybridomas Producing Human Monoclonal Antibodies to CLD18A2:


Mouse splenocytes were isolated and fused with PEG to a mouse myeloma cell line based on standard protocols. The resulting hybridomas were then screened for production of immunoglobulins with CLD 18A2 specificity using HEK293 cells transfected with a nucleic acid encoding human CLD18 by cell ELISA.


Single cell suspensions of splenic lymphocytes from immunized mice were fused with P3×63Ag8U.1 non-secreting mouse myeloma cells (ATCC, CRL 1597) in a 2:1 ratio using 50% PEG (Roche Diagnostics, CRL 738641). Cells were plated at approximately 3×104/well in flat bottom microtiter plates, followed by about two weeks incubation in selective medium containing 10% fetal bovine serum, 2% hybridoma fusion and cloning supplement (HFCS, Roche Diagnostics, CRL 1 363 735) plus 10 mM HEPES, 0.055 mM 2-mercaptoethanol, 50 μg/ml gentamycin and 1×HAT (Sigma, CRL H0262). After 10 to 14 days individual wells were screened by Cell ELISA for anti-CLD 18A2 monoclonal antibodies (FIG. 2). The antibody secreting hybridomas were re-plated, screened again with HEK293 expressing CLD 18A2 or CLD 18A1 by FACS and, if still positive for CLD18A2 and negative for CLD18A1, were subcloned by limiting dilution. The stable subclones were then cultured in vitro to generate small amounts of antibody in tissue culture medium for characterization. At least one clone from each hybridoma, which retained the reactivity of parent cells (by FACS), was chosen. Three vial cell banks were generated for each clone and stored in liquid nitrogen.


c. Selection of Monoclonal Antibodies Binding to CLD 18A2 not to for CLD18A1:


To determine the isotype of antibodies, an isotype ELISA was performed. The mouse monoAB ID Kit (Zymed, CRL 90-6550) was used to determine Ig subclasses of the identified CLD18A2 reactive monoclonal antibodies. Thirty-two hybridoma cell lines were generated: 64G11B4, 65G8B8, 56E8F10F4, 54A2C4, 44F6B11, 15C2B7, 20F1E10, 72C1B6A3, 58G2C2, 101C4F12, 103A10B2, 40C10E3, 78E8G9G6, 4F11E2, 10G7G11, 12F1F4, 78C10B6G4, 119G11D9, 113G12E5E6, 116A8B7, 105F7G12, 84E9E12, 103F4D4, 110C12B6, 85H12E8, 103H2B4, 103F6D3, 113E12F7, 120B7B2, 111B12D11, 111E7E2, and 100F4G12, with further details as shown below:


64G11B4, mouse monoclonal IgG1, κ antibody


65G8B8, mouse monoclonal IgG1, κ antibody


56E8F10F4, mouse monoclonal IgG1, κ antibody


54A2C4, mouse monoclonal IgG1, κ antibody


44F6B11, mouse monoclonal IgG1, κ antibody


15C2B7, mouse monoclonal IgG1, κ antibody


20F1E10, mouse monoclonal IgG1, κ antibody


72C1B6A3, mouse monoclonal IgG1, κ antibody


58G2C2, mouse monoclonal IgG2a, κ antibody


101C4F12, mouse monoclonal IgG2b, κ antibody


103A10B2, mouse monoclonal IgG2b, κ antibody


40C10E3, mouse monoclonal IgG1, λ antibody


78E8G9G6, mouse monoclonal IgG1, κ antibody


4F11E2, mouse monoclonal IgG1, κ antibody


10G7G11, mouse monoclonal IgG1, κ antibody


12F1F4, mouse monoclonal IgG1, κ antibody


78C10B6G4, mouse monoclonal IgG1, κ antibody


119G11D9, mouse monoclonal IgG1, κ antibody


113G12E5E6, mouse monoclonal IgG1, κ antibody


116A8B7, mouse monoclonal IgG1, κ antibody


105F7G12, mouse monoclonal IgG1, κ antibody


84E9E12, mouse monoclonal IgG1, κ antibody


103F4D4, mouse monoclonal IgG1, κ antibody


110C12B6, mouse monoclonal IgG1, κ antibody


85H12E8, mouse monoclonal IgG1, κ antibody


103H2B4, mouse monoclonal IgG1, κ antibody


103F6D3, mouse monoclonal IgG1, κ antibody


113E12F7, mouse monoclonal IgG2a, κ antibody


120B7B2, mouse monoclonal IgG2a, κ antibody


111B12D11, mouse monoclonal IgG2a, κ antibody


111E7E2, mouse monoclonal IgG2a, κ antibody


100F4G12, mouse monoclonal IgG3, κ antibody.


Example 2. Hybridoma Sequencing

Hybridoma cells (1×107) were harvested and total RNA was extracted using Tri Reagent as described above for spleen tissue. cDNA was prepared using SuperScript III kit according to the manufacturer's instruction, described above. The resulting cDNA product was used as template for PCR with primers VhRevU and VhForU, the resulting 300 bp PCR product was cleaned up using a PCR clean-up kit and sequenced with the same primer. PCR reaction was also performed with light chain V-region specific primer VkRev7 and VkFor (for variable region only) or KappaFor primers (for entire kappa light chain). Sequencing reactions were performed on cleaned PCR product to obtain DNA sequences for the antibodies, 64G11B4, 65G8B8, 56E8F10F4, 54A2C4, 44F6B11, 15C2B7, 20F1E10, 72C1B6A3, 58G2C2, 101C4F12, 103A10B2, 40C10E3, 78E8G9G6, 4F11E2, 10G7G11, 12F1F4, 78C10B6G4, 119G11D9, 113G12E5E6, 116A8B7, 105F7G12, 84E9E12, 103F4D4, 110C12B6, 85H12E8, 103H2B4, 103F6D3, 113E12F7, 120B7B2, 111B12D11, 111E7E2, and 100F4G12. Their variable (VH and VL) sequences are shown in Table 1 below.









TABLE 1







Sequences of the variable regions of the antibodies









Antibody




chain
Sequence
SEQ ID NO:












Light chains




64G11B4
DIVMTQSPSSLTVTAGEKVTMNCKSSQSLLNSGNQRNYLTWYQQKPGQPP
117



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQADDLAVYYCQNDYFY




PFTFGAGTNLELK



65G8B8
DIMMTQSPSSLTVTTGEKVTLTCKSSQSLLNSGNLKNYLTWYQQKPGHPP
118



KLLIYWASTRESGVPVRFTGSGSGTDFTLTISSVQAEDLTVYYCQNVYIY




PFTFGSGTKLEMR



56E8F10F4
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPP
119



KLLIYWASTRESGVPDRFTGSGSGTYFTLTISSVQAADLAVYYCQNDYYF




PFTFGSGTKLEIK



54A2C4
DTVMTQFPSSLSVSAGEKVTMSCKSSQSLLNGGNQKNYLAWYQQKPGQPP
120



KLLIYGASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDLYY




PWTFGGGTKLEFK



44F6B11
DIVMTQSPSSLTVTAGEKVIMSCKSNQSLLNSGNQKKYLTWYQQKPGQSP
121



KLLIYWASTRESGVPDRFTGSESGTDFTLTISSVRAEDLAVYYCQNGYSY




PFTFGSGTKLEMK



15C2B7
DIVMTQSPSSLTVTAGGKVTVSCKSSQSLLNSGNQKNYLTWYQQKPGQPP
122



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQTEDLAVYYCQNNYYF




PLTFGAGTKLELK



20F1E10
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLFNSGNQRNYLTWYQQKPGQPP
123



KLLIYWASTRESGVPDRFTGSGSGTDFILTITKVQAEDLAVYYCQNVYSY




PLTFGAGTKLELK



72C1B6A3
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQRPGQPP
124



KLLIYRASSRESGVPVRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYIY




PYTFGGGTKLEMN



58G2C2
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPP
125



TLLIFWAFTRESGVPDRFTGSGSGTDFTLTINSVQAEDLAVYYCQNSYSY




PFTFGSGTKLEIK



101C4F12
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQRNYLTWYQQKPGQPP
126



RLLIYWSSTRDSGVPDRFTGSGSRTDFTLTISSVQAEDLAVYYCQNNFIY




PLTFGAGTKLELK



103B2
DIVMTQSPSSLTVTPGEKVTMSCRSSMSLFNSGNQKSYLSWYHQKPGQPP
127



KLLIYWASTRDSGVPVRFTGSGSGTDFTLTISSVQAEDLAVYYCHNDYIY




PLTFGAGTKLELK



78E8G9G6
DIVMTQSPSSLTVTAGEKVTMNCRSIQSLLNSGNQKNYLSWYQQKPGQPP
128



KLLIYWASTRESGVPDRFTGSGSGTDFTLTIRSVLDEDLAVYYCQNSYSY




PFTFGSGTKLEMK



4F11E2
DIVMTQSPSSLTVTAGEKVTLTCRSSQSLLNSGNRKNYLTWYQQIPGQPP
129



KLLIYWASTRESGVPDRFTGSGSGTYFTLTISSVQAEDLAVYYCQNAYSY




PFTFGSGTKLEKK



10G7G11
DIVMTQSPSSLTVTAGEKVTMTCKSSQSLFNSGNQRNYLTWYQRKPGQPP
130



KLLIYWASTRESGVPDRFTGSGSGTYFTLTVSSVQAEDLAVYYCQNAYYF




PFTFGSGTKLEKK



12F1F4
DIVMTQSPSSLTVTARERVSMTCKSSQSLFNSGNQRNYLTWYQQKPGQPP
131



KLLIYWSSTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAIYFCQNNYYY




PFTFGSGTKLEIK



78C10B6G4
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQRPGQPP
124



KLLIYRASSRESGVPVRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYTY




PYTFGGGTKLEMN



119G11D9
DIVMTQSPSSLTVTAGERVTMRCRSTQSLFNSGNQKNYLTWYQQKPGQPP
132



KLLIYWASTRESGVPDRFTGGGSGTDFTLTISSVQAEDLAVYYCQNAYYY




PLTFGAGTKLERK



113G12E5E6
DIVMTQSPSSLTVTAGERVTMSCKPSQSLLNSGNQKNYLAWYQQKPGQPP
133



KLLLYWASTRESGVPDRFKGSGSGTDFTLTISSVQAEDLAVYYCQNAYFY




PCTFGGGTKLEMK



116A8B7
DIVMTQSPSSLTVTAGEKVTMRCRSTQSLFNSGNQRNYLTWYQQKPGQPP
134



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNAYYY




PLTFGVGTKLERK



105F7G12
DIVMTQSPSSLTVTAGERVTMSCKSSQSLLNSGNQKNYLAWYQQKPGQPP
135



KLLLYWASTRESGVPDRFKGSGSGTDFTLTISSVQAEDLAVYYCQNAYFY




PCTFGGGTKLEMK



84E9E12
DIVMTQSPSSLTVTTGEKVTMSCKSSQSVFNSGNQKNYLTWYQQKPGQPP
136



KLLVYWASTRESGVPARFTGSGSGTVFTLTISSVQAEDLAVYYCQNDYYF




PLTFGAGTRLELK



103F4D4
DIVMTQSPSSQTVTAGEKVTLSCRSSQSLLNGGNQKNYLTWYQQKPGQPP
137



KLLIYWASTRESGVPDRFTGSGSGTYFTFTISSVQAEDLAVYYCQNAYFY




PFTFGAGTKLELK



110C12B6
DIVMTQSPSSLTVTAGEKVTMRCRSTQSLFNSGNQRNYLTWYQQKPGQPP
134



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNAYYY




PLTFGVGTKLERK



85H12E8
DIVMTQSPSSLTVTAGEKVTMNCKSSQSLLNSGNQRNYLSWYQQEPGQPP
138



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISNIQAEDLALYFCQNAYFY




PFTFGSGTKLEIK



103H2B4
DILMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQSP
139



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNNYFY




PLTFGVGTKLELK



103F6D3
DIVMTQSPSSQTVTAGEKVTLSCRSSQSLLNGGNQKNYLTWYQQKPGQPP
137



KLLIYWASTRESGVPDRFTGSGSGTYFTFTISSVQAEDLAVYYCQNAYFY




PFTFGAGTKLELK



113E12F7
DIVMTQSPSSLTVTTGEKVTMSCKSSQSLFNSGNQKNYLTWYQQKPGQPP
140



KLLIYWASTRESGVPDRFTGSGSGTYFTLTISSVQAEDLAVYYCQNNYTY




PLAFGTGTKLELK



120B7B2
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQRPGQPP
141



KLLMYWASTRESGVPDRFTGSGSGTDFTLTISSGQAEDLAIYFCQNGYYF




PFTFGSGTKLETK



111B12D11
DIVMTQSPSSLTVTAGEKVTMRCRSSQSLFNSGNQRNYLTWYQQKPGQPP
142



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNNYTY




PLAFGAGTKLELK



111E7E2
DIVMTQSPSSLTVTAGEKVTMSCKSSQSLFNSGNQKNYLTWYQQKPGQPP
143



KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNNYIY




PLAFGAGTKLELK



100F4G12
DIVMTQSPSSLTVTAGEKVTMRCKSTQSLLNSGNQRNYLTWYQQKPGQSP
144



KLLIYWASTRESGVPERFTGSGSGTDFTLTISSVQAEDLAVYYCQNAYYY




PLTFGPGTKLERK






Heavy Chain




64G11B4
QVQLHQSGTELVRPGTSVKVSCKASGYAFTNYLLEWVKQRPGQGLEWIGE
145



INPGNGGSNYNEKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARIY




YGNSFAYWGQGTLVTVSA



65G8B8
QVQLKESGPGLVAPSQSLSITCTVSGFSLTSYGVSWVRQPPGKGLEWLGV
146



IWGDGNTIYHSALKSRLSISRDNSKRQVFLKVNSLQIDDTATYYCAKQGL




YGHAMDYWGQGTSVIVSS



56E8F10F4
DVQLVESGGGLVQPGGSRKLSCTASGFTFNSFGMNWVRQAPEKGLEWVAF
147



ISGGSNTIHYLDTVKGRFTISRDNPKNTLFLQMTSLRSEDTAMYYCTRLA




LGNAMDYWGQGTSVIVSS



54A2C4
EVQHVETGGGLVQPKGSLKLSCAASGFTFNTNAMNWVRQAPGKGLEWVAR
148



IRSKSNNYATYYADSVKDRFTISRDDSQSMLYVQMNNLKTEDTAMYYCVS




GAYYGNSKAFDYWGQGTLVTVSA



54A2C4′
QVQLHQSGTELVRPGTSVKVSCKASGYAFTNYLLEWVKQRPGQGLEWIGE
145



INPGNGGSNYNEKFKGKATLTADKSSSTAYMQLSSLTSVDSAVYFCARIY




YGNSFAYWGQGTLVTVSA



54A2C4″
QVQLQQSGAELARPGASVKMSCKASGYTFPTYSIHWLKQGPGQGLEWIGY
149



INPSTIYTNYNQKFKYKATLTADKSSSTAYIQLSSLTSDDSAVYYCAREG




YGRGNAMDYWGQGTSVTVSS



44F6B11
EVQLVESGGDLVKPGGSLKLSCAASGFTFSNYGMSWVRQTPDKRLEWVAT
150



FSYGDSHNYYSDSVKGRFTISRDIAKDALYLQMSSLRSEDTAIYYCARFG




RGNTMDYWGQGTSVTVSL



15C2B7
QIQLVQSGPELRKPGETVKISCKASGYTFTNYGMNWVKQAPGKGLKWMAW
151



INANTGEPTYAEEFKGRFAFSLETSARSAYLQINSLKNEDTATYFCARLT




RGNSFDYWGQGTTLTVSS



20F1E10
QIQLVQSGPELKKPGETVKISCKASGYTFTKYGMNWVRQAPGKGLKWMGW
152



ISTNTGEPTYAEEFKGRFAFSLETSASTAFLQINNLKNEDTATYFCARLV




RGNSFDFWGQGITLTVSS



72C1B6A3
QVQLQQSGGELVKPGASVKMSCKAFGYTFTTYPIEWMKQNHGKSLEWIGN
153



FHPYNDDTKYNEKFKGKAKLTVEKSSSTVYLEVSRLTSDDSAVYYCARRA




YGYPYAMDYWGQGTSVTVSS



58G2C2
QVHLQQSGAEVVRPGTSVKVSCKASGYAFTNYLIEWIKKRPGQGLEWVGV
154



INPGRSGTNYNEKFKGKATLTADKSSSTAYMQLSSLTSDDSAVYFCARTR




YGGNAMDYWGQGTSVTVSS



101C4F12
QVQLKESGPGQVAPSQSLSIACTVSGFSLSSYGVHWVRQPPGKGLEWLGV
155



IWAGGSTNYDSALMSRLTISKDNSRTRVFLKMNSLQTDDTAIYYCARSLY




GNSLDSWGPGTTLTVSS



103B2
QVQLKESGPGLVAPSQSLSITCTVSGLSLTSFGVHWIRQPPGKGLEWLGV
156



IWAGGSTNYNSALMSRLSISKDNSKSQVYLKMHSLQTDDTAMYYCARSLY




GNSFDYWGQGTALTVSS



40C10E3
QVQLKESGPGLVAPSQSLSITCTVSGFSLSSYGVNWVRQPPGKGLEWLAA
157



IRSDGIITYNSVLKSRLRISKDNSKSQVFLKMNSLQTDDTAMFYCARWFR




GNVLDYWGQGTSVTVSS



78E8G9G6
QVQLKESGPGLVAPSQSLSITCTVSGFSLISYGVHWVRQPPGKGLEWLGV
158



IWAGGRTNYNSALMSRLSISKDNSKSQVFLKMNSLQTYDTAMYYCARDRY




GGNSLDYWGQGTSVTVSS



4F11E2
DVQLVESGGGLVQPGGSRKLSCAASGFTFSTFGMHWVRQAPEKGLEWVAY
159



ITSGNSPIYFTDTVKGRFTISRDNPKNTLFLQMTSLGSEDTAVYYCARSS




YYGNSMDYWGQGTSVTVSS



10G7G11
QVQLKESGPGLVAPSQSLSITCTISGFSLNTYGVHWVRQPPGKGLEWLVV
160



MLSDGNTVYNSSLKSRLSLTKDNSKSQLLLKMNSLQTDDTAIYYCARHKA




YGNAMDYWGQGTSVTVSS



12F1F4
QVQLKESGPGLVAPSQSLSITCTVSGFSLINYGVSWVRQPPGKGLEWLGV
161



IWGDGNTNYQSALRSRLSIRKDTSKSQVFLKLNSVHTDGTATYYCAKVGR




GNAMDHWGQGISVIVSS



78C10B6G4
QVQLKESGPGLVAPSQSLSITCTVSGFSLINYGVSWVRQPPGKGLEWLGV
162



IRGDGNTNYQSALRSRLSIRKDTSKSQVFLKLNSVHTDGTATYYCAKVGR




GNAMDHWGQGISVIVSS



119G11D9
EVQLQQSGPELVKPGASVKMSCKASGYTFTGFLMHWVKQKPGQGLEWIGY
163



INPYNDGTKYSEKFKGKATLTSDKSSSTAFMELSSLTSDDSAVYYCARLD




YGNAMDYWGQGTSVTVSS



113G12E5E6
QVQLKQSGPGLVQPSQSLSITCTVSDFSLTKYGVHWFRQSPGKGLEWLGV
164



IWTGGNTDYNPALIPRLSFRKDNSKSQVFFKMNSLQSSDTAVYYCARNGY




YGNAMDYWGQGTSVTVSS



116A8B7
EVQLQQSGPELVKPGASVKMSCKSSGYTFTGFLMHWVKQKPGQGLEWIGY
165



INPYNDGTKYSEKFKGKATLTSDKSSSTAYMELSSLTSDDSAVYYCGRLD




YGNAMDYWGQGTSVTVSS



105F7G12
QVQLKQSGPGLVQPSQSLSITCTVSDFSLTKYGVHWFRQSPGKGLEWLGV
164



IWTGGNTDYNPALIPRLSFRKDNSKSQVFFKMNSLQSSDTAVYYCARNGY




YGNAMDYWGQGTSVTVSS



84E9E12
DVQLQESGPGLVKPSQSLSLSCSVTGYSITSGYFWTWFRQFPGNKLEWMG
166



YISYDGSNNYNPSLKNRISITRDTSKNQFFLKLNSVTTEDTATYYCASFR




FFAYWGQGTLVTVSA



103F4D4
QVQLQQSGAELARPGASVKMSCKASGYTFPTYSIHWLKQGPGQGLEWIGY
149



INPSTIYTNYNQKFKYKATLTADKSSSTAYIQLSSLTSDDSAVYYCAREG




YGRGNAMDYWGQGTSVTVSS



110C12B6
EVQLQQSGPELVKPGASVKMSCKSSGYTFTGFLMHWVKQKPGQGLEWIGY
165



INPYNDGTKYSEKFKGKATLTSDKSSSTAYMELSSLTSDDSAVYYCGRLD




YGNAMDYWGQGTSVTVSS



85H12E8
QVQLKESGPGLVAPSQSLSITCTVSGFSLSNYGVSWVRQPPGKGLEWLGV
167



IWAGGNTNYNSALMSRLRISKDNSKSQVFLKMNSLQTDDTARYYCARHGY




GKGNAMDNWGQGTSVTVSS



103H2B4
QVQLQQPGAEPVKPGASVKLSCKASGYSFTNFLTHWVRQRPGQGLEWIGE
168



INPTNGRTYYNEKFKRKATLTVDKSSTTVYMQLSNLTPEDSAVFYCARIY




YGNSMDYWGQGTLVTVSA



103F6D3
QVQLQQSGAELARPGASVKMSCKASGYTFPTYSIHWLKQGPGQGLEWIGY
169



INPNTIYTNYNQKFKYKTTLTADKSSSTAYIQLSSLTSDDSAVYYCAREG




YGRGNAMDYWGQGTSVTVSS



113E12F7
QVQLKESGPGLVAPSQSLSITCTVTGFSLSSYGVHWVRQPPGKGLEWLGV
170



IWAGGSTNYDSALMSRLSISKDRSKSQVFLKMTSLQTDDTAMYYCARSLY




GNSFDHWGQGTTLTVSS



120B7B2
EVQLQQSGPELVKPGASVKMSCKASGYTFTGYIIQWMKQKPGLGLEWIGF
171



INPYNDGTKYNEQFKGKATLTSDKSSNAAYMELSSLTSEDSAVYYCARAY




FGNSFAYWGQGTLVTVSA



111B12D11
QVQLKESGPGLVAPSQSLSITCTVSGFSLTSYGVHWVRQPPGKGLEWLGV
172



IWAGGSTNYDSTLMSRLSISKDRSKSQVFLKMTSLQTDDTAMYYCARSLY




GNSFDHWGQGTTLTVSS



111E7E2
QVQLKESGPGLVAPSQSLSITCTVSGFSLTSYGAHWVRQPPGKGLEWLGV
173



IWAGGSTNYDSALMSRLSISKDRSKSQVFLKMTSLQTDDTAMYYCARSLY




GNSFDHWGQGTTLTVSS



100F4G12
EVQLQQSGPELVKPGASVKMSCKASGYTFTGFLMHWVKQKPGQGLEWIGY
174



INPYNDGTKYSERFKGKATLTSDKSSSTAYMELSSLTSDDSAVYYCARLD




YGNAMDYWGQGTSVTVSS









Example 3. Production and Purification of Monoclonal Antibodies Reactive to CLD18A2

To produce mg amounts of antibody for functional characterization, hybridoma cells were seeded in dialysis based bioreactors (CELLine CL1000, Integra, Chur, CH) at 2×106 cells/ml. Antibody containing supernatant was harvested once weekly. Mouse monoclonal antibody was purified using Melon Gel (Pierce, Rockford, USA) and concentrated by ammonium sulphate precipitation. Antibody concentration and purity was estimated by sodium dodecylsulphate gel electrophoresis and coomassie staining.


Example 4. Binding of Murine Monoclonal Antibodies Reactive to CLD18A2

MKN45 cells over-expressed CLD18A2 were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary antibodies indicated as FIG. 3 in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the purified murine antibody could bind to MKN45 cells transfected with human CLD18A2 by flow cytometry with high EC50, compared with positive reference antibody.


Example 5. Binding of Murine Monoclonal Antibodies Reactive to CLD18A2 Mutant

SU620 cells that endogenously expressed CLD18A2 bearing M149L mutation were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary antibodies indicated as FIG. 4 in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the purified murine antibody could bind to SU620 cells endogenously expressing human CLD18A2 bearing M149L mutation by flow cytometry with high EC50, while the refrence antibody did not (FIG. 4).


Example 6. Binding of Murine Monoclonal Antibodies Reactive to Mouse and Cyno CLD18A2

To evaluate these antibodies cross-reactivities with mouse and cyno CLD18A2, HEK293 cells over-expressed mouse, cyno or human CLD18A2 were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary antibodies indicated as FIG. 3a in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the purified murine antibodies can bind to mouse and cyno CLD18A2 by flow cytometry with high EC50, at least like the reference anbibodies (FIGS. 5, 6 and 7).


Example 7 Binding of Chimeric Antibodies Reactive to CLD18A2

The murine VH and VK genes were produced synthetically and then respectively cloned into vectors containing the human gamma 1 and human kappa constant domains. The purified chimeric antibodies were produced from transfected CHOs cells.


MKN45 cells that stably expressed human CLD18A2 or CLD18A1, were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary chimeric antibodies indicated as FIG. 4 in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the chimeric antibodies can bind to human CLD18A2 with high EC50, while not CLD18A1 (FIGS. 8 and 9).


Example 8. Antibody-Dependent Cellular Cytotoxicity (ADCC) of Chimeric Antibodies

The ADCC Reporter Bioassay uses an alternative readout at an earlier point in ADCC MOA pathway activation: the activation of gene transcription through the NFAT (nuclear factor of activated T-cells) pathway in the effector cell. In addition, the ADCC Reporter Bioassay uses engineered Jurkat cells stably expressing the FcγRIIIa receptor, V158 (high affinity) variant, and an NFAT response element driving expression of firefly luciferase as effector cells. Antibody biological activity in ADCC MOA is quantified through the luciferase produced as a result of NFAT pathway activation; luciferase activity in the effector cell is quantified with luminescence readout (FIG. 1). Signal is high, and assay background is low.


Serial dilutions of claudin 18.2 chimeric monoclonal antibody or Ref. Ab were incubated for 6 hours of induction at 37° C. with engineered Jurkat effector cells (ADCC Bioassay Effector Cells), with or without ADCC Bioassay Target Cells (expressing claudin 18.2). Luciferase activity was quantified using Bio-Glo™ Reagent (Table 2). The results show that these chimeric antibodies have very strong ADCC activities.









TABLE 2







EC50 of the tested antibodies











EC50



Antibody
(pM)














4F11E2
22.18



12F1F4
36.77



64G11B4
125.7



72C186A3
46.32



78E8G9G6
15.86



103F6D3
79.53



120B7B2
5.806



Ref. Ab
458.5










Example 9. Humanization of the 4F11E2, 72C1B6A3 and 120B7B2 Mouse mAbs

The mAb 4F11E2, 72C1B6A3 and 120B7B2 variable region genes were employed to create humanized MAbs. In the first step of this process, the amino acid sequences of the VH and VL of MAb were compared against the available database of human Ig gene sequences to find the overall best-matching human germline Ig gene sequences.


The amino acid sequences of the humanized antibodies are listed in Table 3 below.









TABLE 3







Humanized sequences









Name
Sequence
SEQ ID NO:





4F11VH_1
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTFGMHWVRQAPGKGLEWVSY
175


(grafted VH)
ITSGNSPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS




YYGNSMDYWGQGTLVTVSS






4F11VH_2
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTFGMHWVRQAPGKGLEWVAY
176



ITSGNSPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS




YYGNSMDYWGQGTLVTVSS






4F11VH_3
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTFGMHWVRQAPGKGLEWVAY
177



ITSGNSPIYFTDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARSS




YYGNSMDYWGQGTLVTVSS






4F11VL_1
DIVMTQSPDSLAVSLGERATINCRSSQSLLNSGNRKNYLTWYQQKPGQPP
178


(grafted VL)
KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNAYSY




PFTFGGGTKLEIK






4F11VL_2
DTVMTQSPDSLAVSLGERATINCRSSQSLLNSGNRKNYLTWYQQKPGQPP
179



KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQNAYSY




PFTFGGGTKLEIK






4F11VL_3
DTVMTQSPDSLAVSLGERVTLNCRSSQSLLNSGNRKNYLTWYQQKPGQPP
180



KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQNAYSY




PFTFGGGTKLEIK






72C1VH_ 1
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYPIEWVRQAPGQRLEWMGN
181


(grafted VH)
FHPYNDDTKYNEKFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCARRA




YGYPYAMDYWGQGTLVTVSS






72C1VH_2
QVQLVQSGAEVVKPGASVKVSCKASGYTFTTYPIEWMRQAPGQRLEWMGN
182



FHPYNDDTKYNEKFKGRVTITVDTSASTAYMELSSLRSEDTAVYYCARRA




YGYPYAMDYWGQGTLVTVSS






72C1VH_3
QVQLVQSGAEVVKPGASVKVSCKASGYTFTTYPIEWMKQAPGQRLEWMGN
183



FHPYNDDTKYNEKFKGRVTITVDTSASTAYMEVSSLRSEDTAVYYCARRA




YGYPYAMDYWGQGTLVTVSS






72C1VH_4
QVQLVQSGAEVVKPGASVKMSCKASGYTFTTYPIEWMKQAPGQRLEWMGN
184



FHPYNDDTKYNEKFKGRVTLTVDTSASTVYLEVSSLRSEDTAVYYCARRA




YGYPYAMDYWGQGTLVTVSS






72C1VL_1
DIVMTQSPDSLAVSLGERATINCKSSQSLLNSGNQKNYLTWYQQKPGQPP
185


(grafted VL)
KLLIYRASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNDYIY




PYTFGGGTKLEIK






72C1VL_2
DIVMTQSPDSLAVSLGERATISCKSSQSLLNSGNQKNYLTWYQQKPGQPP
186



KLLIYRASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNDYIY




PYTFGGGTKLEIK






72C1VL_3
DIVMTQSPDSLAVSLGERVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPP
187






KLLIYRASSRESGVPDRFSGSGSGTDFTLTISSVQAEDVAVYYCQNDYIY




PYTFGGGTKLEIK






120B7VH_1
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYIIQWVRQAPGQRLEWMGF
188


(grafted VH)
INPYNDGTKYNEQFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCARAY




FGNSFAYWGQGTLVTVSS






120B7VH_2
QVQLVQSGAEVVKPGASVKVSCKASGYTFTGYIIQWMRQAPGQRLEWMGF
189



INPYNDGTKYNEQFKGRVTITSDTSASAAYMELSSLRSEDTAVYYCARAY




FGNSFAYWGQGTLVTVSS






120B7VH_3
QVQLVQSGAEVVKPGASVKVSCKASGYTFTGYIIQWMKQAPGQRLEWIGF
190



INPYNDGTKYNEQFKGRATITSDTSASAAYMELSSLRSEDTAVYYCARAY




FGNSFAYWGQGTLVTVSS






120B7VH_4
EVQLVQSGAEVVKPGASVKMSCKASGYTFTGYIIQWMKQAPGQRLEWIGF
191



INPYNDGTKYNEQFKGRATLTSDTSASAAYMELSSLRSEDTAVYYCARAY




FGNSFAYWGQGTLVTVSS






120B7VL_1
DIVMTQSPDSLAVSLGERATINCKSSQSLLNSGNQKNYLTWYQQKPGQPP
192


(grafted VL)
KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNGYYF




PFTFGGGTKLEIK






120B7VL_2
DIVMTQSPDSLAVSLGERATISCKSSQSLLNSGNQKNYLTWYQQKPGQPP
193



KLLMYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNGYYF




PFTFGGGTKLEIK






120B7VL_3
DIVMTQSPDSLAVSLGERATISCKSSQSLLNSGNQKNYLTWYQQKPGQPP
194



KLLMYWASTRESGVPDRFSGSGSGTDFTLTISSGQAEDVAVYFCQNGYYF




PFTFGGGTKLEIK






120B7VL_4
DIVMTQSPDSLAVSLGERVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPP
195



KLLMYWASTRESGVPDRFSGSGSGTDFTLTISSGQAEDVAVYFCQNGYYF




PFTFGGGTKLEIK









The humanized VH and VL genes were produced synthetically and then respectively cloned into vectors containing the human gamma 1 and human kappa constant domains. The pairing of the human VH and the human VL created the humanized antibodies (see Table 4).









TABLE 4





Humanized antibodies with their VH an VL regions







4F11E2










VHVL
4F11VH_1
4F11VH_2
4F11VH_3





4F11VL_1
hu4F11.1
hu4F11.4
hu4F11.7


4F11VL_2
hu4F11.2
hu4F11.5
hu4F11.8


4F11VL_3
hu4F11.3
hu4F11.6
hu4F11.9










72C1B6A3











VHVL
72C1VH_1
72C1VH_2
72C1VH_3
72C1VH_4





72C1VL_1
hu72C1.10
hu72C1.13
hu72C1.16
hu72C1.19


72C1VL_2
hu72C1.11
hu72C1.14
hu72C1.17
hu72C1.20


72C1VL_3
hu72C1.12
hu72C1.15
hu72C1.18
hu72C1.21










120B7B2











VHVL
120B7VH_1
120B7VH_2
120B7VH_3
120B7VH_4





120B7VL_1
hu120B7.22
hu120B7.26
hu120B7.30
hu120B7.34


120B7VL_2
hu120B7.23
hu120B7.27
hu120B7.31
hu120B7.35


120B7VL_3
hu120B7.24
hu120B7.28
hu120B7.32
hu120B7.36


120B7VL_4
hu120B7.25
hu120B7.29
hu120B7.33
hu120B7.37









Example 10. Binding of Humanized Antibodies Reactive to CLD18A2

MKN45 cells that stably expressed human CLD18A2 or CLD18A1, were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary humanized antibodies indicated as FIG. 4 in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the indicated humanized antibodies can bind to human CLD18A2 with high EC50, while not CLD18A1 (FIGS. 10 and 11).


Example 11. Binding of PTM (Post-Translational Modification) De-Risk Humanized Antibodies Reactive to CLD18A2

Post-translational modifications (PTMs) can cause problems during the development of a therapeutic protein such as increased heterogeneity, reduced bioactivity, reduced stability, immunogenicity, fragmentation and aggregation. The potential impact of PTMs depends on their location and in some cases on solvent exposure. The CDRs of sequence were analyzed for the following potential PTMs: Asparagine deamidation, Aspartate isomerization, free Cysteine thiol groups, N-glycosylation, oxidation, fragmentation by potential hydrolysis site etc.


To reduce the risk of developing PTM in 4F11E2, 72C1B6A3 and 120B7B2, some concerned amino acids in the VH and VL were mutated. And then nine antibodies were generated:

















Clones
HC:LC*
No.




















4F11E2
HC N55Q-LC N31E
1




HC N55Q-LC S32A
2




HC N55E-LC S32A
3




HC N55E&N104Q-LC S32A
8




HC N55E&N104E-LC S32A
9




HC N55E&S105A-LC S32A
10



72C1B6A3
HC WT-LC N31E
4




HC WT-LC S32A
5



120B7B2
HC G57D&S104A-LC-N96E&N31E
6




HC G57D&S104A-LC-S32A&G97A
7







*The amino acid location (e.g., N55) is according to the amino acid residue number in the corresponding VH or VL amino acid sequence, not Kabat or Chothia.



















Antibody
Mutant
Sequence (mutation highlighted)
SEQ ID NO:







4F11E2
HC N55Q
EVQLVESGGGLVQPGGSLRLSCAASGFITSTFGMHWVRQAPGKGLEWVSY
196




ITSGQSPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS





YYGNSMDYWGQGTLVTVSS




HC N55E
EVQLVESGGGLVQPGGSLRLSCAASGFTESTEGMHWVRQAPGKGLEWVSY
197




ITSGESPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS





YYGNSMDYWGQGTLVTVSS




HC N55E &
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTFGMHWVRQAPGKGLEWVSY
198



N104Q
ITSGESPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS





YYGQSMDYWGQGTLVTVSS




HC N55E &
EVQLVESGGGLVQPGGSLRLSCAASGFTESTEGMHWVRQAPGKGLEWVSY
199



N104E
ITSGESPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS





YYGESMDYWGQGTLVTVSS




HC N55E &
EVQLVESGGGLVQPGGSLRLSCAASGFITSTFGMHWVRQAPGKGLEWVSY
200



S105A
ITSGESPIYFTDTVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARSS





YYGNAMDYWGQGTLVTVSS




LC N31E
DIVMTQSPDSLAVSLGERATINCRSSQSLLESGNRKNYLTWYQQKPGQPP
201




KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNAYSY





PFTFGGGTKLEIK




LC S32A
DIVMTQSPDSLAVSLGERATINCRSSQSLLNAGNRKNYLTWYQQKPGQPP
202




KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNAYSY





PFTFGGGTKLEIK






72C1B6A3
HC WT
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYPIEWVRQAPGQRLEWMGN
181




FHPYNDDTKYNEKFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCARRA





YGYPYAMDYWGQGTLVTVSS




LC S32A
DIVMTQSPDSLAVSLGERATINCKSSQSLLNAGNQKNYLTWYQQKPGQPP
203




KLLIYRASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNDYIY





PYTFGGGTKLEIK




LC N31E
DIVMTQSPDSLAVSLGERATINCKSSQSLLESGNQKNYLTWYQQKPGQPP
204




KLLIYRASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNDYIY





PYTFGGGTKLEIK






120B7B2
HC G57D &
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYIIQWVRQAPGQRLEWMGF
205



S104A
INPYNDDTKYNEQFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCARAY





FGNAFAYWGQGTLVTVSS




LC-S32A &
DIVMTQSPDSLAVSLGERATINCKSSQSLLNAGNQKNYLTWYQQKPGQPP
206



G97A
KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQNAYYF





PFTFGGGTKLEIK




LC-N96E &
DIVMTQSPDSLAVSLGERATINCKSSQSLLESGNQKNYLTWYQQKPGQPP
207



N31E
KLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQEGYYF





PFTFGGGTKLEIK










MKN45 cells that stably expressed human CLD18A2 or CLD18A1 were harvested from flasks. 100 μl of 1×106 cells/ml of cells were incubated with primary mutated humanized antibodies indicated as FIG. 4 in 3-fold serial dilutions starting from 100 nM to 0.003 nM for 30 minutes on ice. After being washed with 200 μl of FACS buffer twice, cells were incubated with secondary antibody for 30 minutes on ice. Cells were washed with 200 μl of FACS buffer twice and transferred to BD Falcon 5 ml tube and analyzed by FACS. The results of the study showed that the indicated antibodies can bind to human CLD18A2 with high EC50, while not CLD18A1 (FIGS. 12 and 13).


To evalute the de-risked variants of 4F11E2d (HC N55E/LC S32A) and 4F11E2d (H N55E N104Q/LC S32A) antigen binding potency, the variants were tested in a cell-based binding assay. Serially diluted anti-CLDN18.2 antibodies, starting from 100 nM, were incubated with 105 cells for 30 minutes on ice. After being washed with FACS buffer, cells were then incubated with APC labeled secondary antibody for another 30 minutes on ice. Cells bound with antibodies were analyzed by FACS. The variants showed potent binding to cell surface claudin 18.2 (FIG. 14).


Example 12. Antibody-Dependent Cellular Cytotoxicity (ADCC) of PTM De-Risked Humanized Antibodies

Serial dilutions of claudin 18.2 PTM de-risked humanized antibodies or Ref. Ab were incubated for 6 hours of induction at 37° C. with engineered Jurkat effector cells (ADCC Bioassay Effector Cells), with or without ADCC Bioassay Target Cells (expressing claudin 18.2). Luciferase activity was quantified using Bio-Glo™ Reagent (Table 5). The results show that these humanized antibodies have very strong ADCC activities.



















EC50



No.
Tested antibody
(μM)




















1
4E11E2-HC N55Q-LC N31E
238.1



2
4E11E2-HC N55Q-LC S32A
413.9



3
4E11E2-HC N55E-LCS32A
148.1



4
72C1B6A3-HC WT-LC N31E
1651



5
72C1B6A3-HC WT-LCS32A
190.5



6
120B7B2-HC G57D&104A-
492.6




LC-N96E&N31E




7
120B7B2-HC G57D&
113.9




104A-LC-S32A&G97A




Ref. Ab
Ref. Ab
158.3










Example 13. Epitope Mapping

All amino acids of extracellular domain of claudin 18.2 were single mutated to A. The each mutated or wildtype claudin 18.2 was transfected into Hek293 cells. The expression of claudin 18.2 was evaluated by indicated antibodies. The results are shown in FIG. 14 (only amino acid residues at which the mutation reduced bindings are shown).


As shown in FIG. 15, amino acids W30, N45, Y46, G48, L49, W50, C53, V54, R55, E56, S58, F60, E62, C63, R80, Y169, and G172 are involved in the binding of the three tested antibodies, 4F11E2 (H4F), 72C186A3 (H72C1) and 120B7B2 (120), or the reference antibody 175D10 (IMAB362). W30 appeared to form a cluster of residues at the first half of the first extracellular domain of the claudin 18.2 protein. N45, Y46, G48, L49, W50, C53, V54, R55, E56, S58, F60, E62 and C63 appeared to be a second cluster of residues within the same extracellular domain. Y169 and G172, on the other hand, are located at or close to the second extracellular domain.


Example 14. Comparison of Humanized 4F11E2, 72C1B6A3 and 120B7B2 Antibodies with Benchmark 175D10 Claudin 18.2 Antibody

Cell Based Binding


To compare the humanized anti-claudin18.2 antibodies: 4F11E2 (HC N55E/LC S32A), 72C1B6A3 (HC WT/LC S32A) and 120B7B2 (HC G57D S104A/LC S32A G97A) to benchmark antibody 175D10 (IMAB362), this example determined the cell-based binding in human claudin 18.2 expressed cells. CHO-K1 cells that stably expressed human CLD18A2 were sorted for high expressor and low expressor based on the level of human CLDN18.2 expression. Serially diluted anti-CLDN18.2 antibodies, starting from 100 nM, were incubated with 105 cells for 30 minutes on ice. After being washed with FACS buffer, cells were then incubated with APC labeled secondary antibody for another 30 minutes on ice. Cells bound with antibodies were analyzed by FACS.


As shown in the FIG. 16, 4F11E2, 72C1B6A3 and 120B7B2 showed superior binding to 175D10 in both claudin 18.2 high and low CHO-K1 cells.


ADCC Assay


To further compare the ADCC effect of humanized anti-claudin18.2 antibodies: 4F11E2 (HC N55E/LC S32A), 72C1B6A3 (HC WT/LC S32A) and 120B7B2 (HC G57D S104A/LC S32A G97A) to benchmark antibody 175D10 (IMAB362), this example performed a cell based ADCC assay. Briefly, NK92 cells were cocultured with claudin18.2 overexpressed 293 cells in the presence of different dose anti-claudin 18.2 antibodies. As shown in FIG. 17, 4F11E2, 72C1B6A3 and 120B7B2 showed superior ADCC potency to the 175D10 antibody.


For certain therapeutic antibodies, enhanced ADCC may increase the therapeutic window to antibody-based target therapy Enhanced ADCC may be achieved through engineering the Fc region such as with the S239D/I332E mutations. In a NK92 cell based ADCC assay, the 4H11E2, 72C1B6A3 and 120B7B2 antibodies with S239D/I332E mutations in the Fc region mediated stronger NK92-mediated cell killing of claudin 18.2 overexpressed 293 cells as compared to the control antibody 175D10 with the same S239D/I332E mutations (FIG. 18).


Antibody-Dependent Cellular Phagocytosis (ADCP)


The effect of anti-CLDN 18.2 mAbs on the tumor cell phagocytosis by macrophages was evaluated in an in vitro assay in which CLDN18.2 positive NUG-C4 cells were co-cultured with human differentiated macrophages in the presence of different concentration of anti-CLDN18.2 mAbs. In short, CD14+ monocytes were purified from human peripheral blood mononuclear cells (PBMCs) and in vitro differentiated into mature macrophages for 6 days. The monocyte derived macrophages (MDMs) were collected and re-plated in 24-well dishes overnight as effector cells. NUG-C4 expressing CLDN 18.2-eGFP as target cells were added to MDMs at a ratio of 5 tumor cells per phagocyte in the presence of different concentrations of anti-CLDN18.2 mAbs. After 3 hours' incubation, non-phagocytosed target cells were washed away with PBS and the remaining phagocytes were collected and stained with macrophage marker CD14 followed by flow cytometry analysis. Phagocytosis index was calculated by quantitating the percent of GFP+ cells in CD14+ cells, normalized to that of IgG control.


As shown in FIG. 19, all C18.2 mAbs significantly enhanced the phagocytosis of NUG-C4 cells in a concentration-dependent manner In both wildtype IgG1 and S239D/I332E mutated IgG1 formats, 4H11E2, 72C1B6A3 and 120B7B2 antibodies showed stronger ADCP effect than the reference antibody 175D10.


Taken together, this example demonstrates that the newly developed 4F11E2, 72C1B6A3 and 120B7B2 antibodies had stronger cell-based binding and ADCC/ADCP potency than the reference antibody 175D10. It is contemplated that the improved properties of these new antibodies can be attributed to the higher binding specificity of these antibodies as compared to that of the reference antibody 175D10. For instance, 175D10's interaction with claudin 18.2 is strong across the spectrum in FIG. 15, which includes strong binding to D28, Q33, N38 and V43, and then G59 and V79. The new antibodies, 4F11E2, 72C1B6A3 and 120B7B2, by contrast, have higher specificity to W30 within the first half of the first extracellular domain, and higher specificity to G48 through E56 within the second half of the first extracellular domain. The new antibodies also have slightly stronger binding to Y46 which is also in the second half. Their binding to D28, Q33, N38, V43, G59 and V79 is considerably weaker, which likely contributed to the improved ADCC and ADCP of the new antibodies.


The present disclosure is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the disclosure, and any compositions or methods which are functionally equivalent are within the scope of this disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present disclosure without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.


All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A method for treating cancer, comprising administering to a cancer patient an antibody or fragment thereof having binding specificity to a wild-type human claudin 18.2 (CLDN18.2) protein, wherein the antibody or fragment thereof comprises a light chain variable region comprising light chain complementarity determining regions CDRL1, CDRL2, and CDRL3 and a heavy chain variable region comprising heavy chain complementarity determining regions CDRH1, CDRH2, and CDRH3, and wherein: the CDRL1 comprises the amino acid sequence of SEQ ID NO:216, 308 or 309,the CDRL2 comprises the amino acid sequence of SEQ ID NO:227,the CDRL3 comprises the amino acid sequence of SEQ ID NO:13,the CDRH1 comprises the amino acid sequence of SEQ ID NO:246,the CDRH2 comprises the amino acid sequence of SEQ ID NO:268, 310 or 311, andthe CDRH3 comprises the amino acid sequence of SEQ ID NO:294, 312, 313 or 314.
  • 2. The method of claim 1, wherein the light chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NO:129, 178-180 and 201-202.
  • 3. The method of claim 2, wherein the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NO:159, 175-177 and 196-200.
  • 4. The method of claim 1, wherein: the CDRL1 comprises the amino acid sequence of SEQ ID NO:309,the CDRL2 comprises the amino acid sequence of SEQ ID NO:227,the CDRL3 comprises the amino acid sequence of SEQ ID NO:13,the CDRH1 comprises the amino acid sequence of SEQ ID NO:246,the CDRH2 comprises the amino acid sequence of SEQ ID NO:311, andthe CDRH3 comprises the amino acid sequence of SEQ ID NO:294.
  • 5. The method of claim 4, wherein the light chain variable region comprises the amino acid sequence of SEQ ID NO:202 and the heavy chain variable region comprises the amino acid sequence of SEQ ID NO:197.
  • 6. The method of claim 1, wherein the antibody or fragment thereof further has a binding specificity to a second target protein.
  • 7. The method of claim 6, wherein the second target protein is selected from the group consisting of CD3, CD47, PD1, PD-L1, LAG3, TIM3, CTLA4, VISTA, CSFR1, A2AR, CD73, CD39, CD40, CEA, HER2, CMET, 4-1BB, OX40, SIRPA CD16, CD28, ICOS, CTLA4, BTLA, TIGIT, HVEM, CD27, VEGFR, and VEGF.
  • 8. The method of claim 1, wherein the cancer is selected from the group consisting of bladder cancer, liver cancer, colon cancer, rectal cancer, endometrial cancer, leukemia, lymphoma, pancreatic cancer, small cell lung cancer, non-small cell lung cancer, breast cancer, urethral cancer, head and neck cancer, gastrointestinal cancer, stomach cancer, oesophageal cancer, ovarian cancer, renal cancer, melanoma, prostate cancer and thyroid cancer.
  • 9. The method of claim 8, wherein the cancer is gastric cancer.
Priority Claims (1)
Number Date Country Kind
PCT/CN2018/087443 May 2018 WO international
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/176,820 filed on Feb. 16, 2021, which is a division of U.S. application Ser. No. 16/962,817 filed on Jul. 16, 2020, which is a U.S. National Stage Application under 35 U.S.C. 371 of International Application No. PCT/CN2019/087591, filed May 20, 2019, which claims priority to International Application No. PCT/CN2018/087443, filed May 18, 2018. The contents of each of the aforementioned are hereby incorporated by reference in their entirety into the present disclosure.

US Referenced Citations (3)
Number Name Date Kind
20150157711 Sahin et al. Jun 2015 A1
20160333109 Sahin et al. Nov 2016 A1
20180055944 Lu et al. Mar 2018 A1
Foreign Referenced Citations (10)
Number Date Country
2311877 Apr 2011 EP
WO 2007059997 May 2007 WO
WO 2013167259 Nov 2013 WO
WO 2013174510 Nov 2013 WO
WO 2014146672 Sep 2014 WO
WO 2015113576 Aug 2015 WO
WO 2016008405 Jan 2016 WO
WO 2017162678 Sep 2017 WO
WO 2018006882 Jan 2018 WO
WO 2019219089 Nov 2019 WO
Non-Patent Literature Citations (9)
Entry
Singh et al., Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. Journal of Hematology & Oncology 2017, 10:105, pp. 1-5.
Kyuno et al., Claudin-18.2 as a therapeutic target in cancers:cumulative findings from basic research and clinical trials. Tissue Barriers, 2022, vol. 10, No. 1, pp. e1967080-64 to e1967080-79.
International Search Report and Written Opinion dated Aug. 19, 2019 for PCT/CN2019/087591. (10 pages).
Paul, William. Fundamental Immunlogy, 3rd Edition, Raven Press, New York, 1993. pp. 292-295.
Vajdos, et al. Comprehensive funcational maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis. J. Mol. Biol. 2002; 320:415-428.
Baumholtz, et al. Functional Validation of CLDN Variants Identified in a Neural Tube Defect Cohort Demonstrates Their Contribution to Neural Tube Defects. Frontiers in Neuroscience. Jul. 2020; 14:Article 664. 18 pages.
Extended European Search Report and Opinion dated Feb. 1, 2022 for EP Application No. 19802921.7. 13 pages.
Rudikoff et al., Single amino acid substitution altering antigen-binding specificity. PNAS. Mar. 1982; vol. 79, No. 6, pp. 1979-1983.
Tamura et al., Structural Correlates of an Anticarcinoma Antibody: Identification of Specificity—Determining Residues (SDRs) and Development of a Minimally Immunogenic Antibody Variant by Retention of SDRs Only. J. Immunol., Feb. 2000; vol. 164, No. 3, pp. 1432-1441.
Related Publications (1)
Number Date Country
20210380681 A1 Dec 2021 US
Divisions (1)
Number Date Country
Parent 16962817 US
Child 17176820 US
Continuations (1)
Number Date Country
Parent 17176820 Feb 2021 US
Child 17395331 US