This invention relates to compressed gas firing mechanisms and more specifically to firing mechanisms used in connection with paintball guns.
In a paintball gun, projectiles are admitted into a gun barrel from a magazine through a radial hole in the upper region of the barrel. Compressed air is then delivered between the breech of the gun and the projectile, and the expansion of the gas propels the paintball down the gun barrel. The alternate opening of the paintball entry port and the gas admitting port is controlled by a bolt assembly that, in a recoiled position, allows a paintball to drop into the gun barrel and in a firing position move that paintball forward and closes the paintball admitting port while at the same time opening the gas delivery port. The envelope of a paintball is commonly made of soft, pliable material that can be easily torn. When a paintball is jammed into the gun barrel or is only partially passed through the paintball admitting port, the bolt tends to chop or crush the paintball smearing viscous paint inside the firing mechanism and rendering the gun inoperable until it has been thoroughly cleaned.
The prior art had produced some anti-chopping bolt assemblies that are built within the bolt and require actuation through some radially moving parts. The complexity of the anti-chopping and crushing mechanism of the prior art tends to reduce gun reliability. Moreover, the axial unbalance of the mechanism tends to increase wear and affect the life of the gun.
This invention results from an attempt to devise a simple, reliable and balanced mechanism for avoiding chopping or crushing a jammed paintball.
The principal and secondary objects of this invention are to provide a simple, reliable and balanced mechanism for preventing discharge of compressed gas into a gun barrel behind a projectile that is jammed and to prevent the chopping or crushing of that projectile by the firing mechanism bolt, while at the same time facilitating and speeding the automatic recoiling of the bolt in order to create a more rapid and smoother automatic firing sequence.
These and other objects of this invention are achieved by using a bolt having an internal channel starting at a radial port in the proximal part of the bolt and going through a 90 degree elbow into an axial channel leading to a discharge port at the distal, leading edge of the bolt. A sleeve slidingly engaged over the bolt has a radial aperture which is resiliently biased in line with the entrance port of the bolt but can slide rearwardly against a spring so that the aperture is no longer in line with the bolt channel port when its leading edge contacts a jammed projectile. The pressure imparted against the elbowed section of the bolt channel by the expanding gas accelerates the recoil of the bolt and sleeve mechanism to allow faster multi-firing sequences.
The preferred embodiment of the invention is described in connection with a paintball firing mechanism. It should be understood that the invention is equally applicable to other types of compressed gas firing systems.
Referring now to
In a second portion 6 of the gun barrel located rearwardly from the first portion, a second radial port 7 admits compressed gas fed from source 8 such as a a gas cartridge. A bolt assembly 9 is translated axially across the first and second portions of the gun barrel to alternately control the admission of paintballs through the first port or the admission of compressed gas through the second port.
As more specifically illustrated in
As shown in
The pressure exerted by the gas expansion against the elbow zone 16 of the bolt channel helps the bolt assembly to recoil backward toward its initial position.
The spring 21 is stiff enough to maintain the alignment of the sleeve aperture 13 with the bolt intake port 15 during normal operation.
When the leading edge of the sleeve 10 contacts an obstacle such as a projectile that is only partially engaged through the first port 4, the sleeve slides back against the spring 21 toward the barrier block 20 causing a misalignment of of the aperture 13 and the intake port 15 as illustrated in
An axial slot 25 in the trailing portion of the sleeve is engaged by a nib 26 projecting radially from the axle 19 in order to prevent rotational movement of the sleeve in relation to the bolt.
While the preferred embodiment of the invention has been described, modifications can be made and other embodiments may be devised without departing from the spirit of the invention and the scope of the appended claims.