Disclosed herein are nanoparticle compositions and methods for preventing corrosion of metals and metal alloys.
The microstructure of metals and metal alloys is composed of grains separated by grain boundaries. Under certain conditions, these grain interfaces can be very reactive, leading to localized corrosive attack at the grain boundary and at areas adjacent to grain boundaries. Such intergranular corrosion can lead to detrimental weakening or failure of metals and alloys, even metals and alloys that are otherwise relatively corrosion-resistant.
Intergranular corrosion can often be a consequence of the fact that impurities and/or segregation effects are elevated at the grain boundaries, leading to areas of reduced corrosion resistance. In many instances, grain boundaries on the surface of a metal or metal alloy material can become anodic and have an electric potential relative to adjacent portions of the surface of the metal or alloy. This effect detrimentally leads to corrosion along the grain boundary, affecting the mechanical properties of the material at the micro level and eventually at the bulk level, and can even cause a loss of material as entire grains become dislodged due to boundary deterioration.
Methods of minimizing this type of corrosion typically require additional heating and quenching steps during manufacturing of the stock material, or require the incorporation of stabilizing elements or strong carbide formers within the metal or metal alloy prior to formation and/or working of the material. While such methods may be beneficial, they are not suitable in many circumstances, require additional materials to be added during manufacturing, and/or require additional manufacturing steps and associated costs.
Coatings, such as paint, can sometimes provide effective corrosion prevention, but particularly in industrial settings, coatings are often impractical, too expensive, or unwanted. For example, in closed-loop heat exchange systems, coatings would impede the flow of heat from one section of the heat exchanger to the other, Additionally, for many pipes or other internal surfaces, applications of paint or other coatings is simply impractical.
In some instances, particularly in closed loop systems, a significant quantity (typically around 2,000 parts per million (ppm)) of a reducing agent such as nitrite (NO2−) is added to the water to minimize the oxidative capability of the water and also attempt to maintain a pH of the water at approximately pH 11 to help reduce the amount of hydrogen ion (H+) present in the water so as to inhibit or at least minimize hydrogen propagation, which is another cause of corrosion of metallic surfaces.
In pipeline settings where material is flowing through that pipe (as opposed to a closed-loop system) the use of reducing agents is not as applicable. As such, other applications in a pipeline setting include use of more expensive and exotic alloys or difficult and expensive surface treatments for the internal pipe.
Accordingly, there has been and remains a need to find anti-corrosion compositions and methods for preventing corrosion of metals and metal alloys. Such compositions and methods should be able to reliably limit the corrosive effects of intergranular corrosion without requiring excess manufacturing steps or the pre-formation addition of materials.
Disclosed herein are nanoparticle compositions and application methods for providing anti-corrosion properties to metals and alloys. The anti-corrosion nanoparticle compositions can be applied to a surface of a metal or metal alloy in order to limit intergranular corrosion on the surface of the metal or alloy.
Anti-corrosion nanoparticle compositions can include metal nanoparticles, such as spherical-shaped nanoparticles and/or coral-shaped nanoparticles, which, when applied to a surface of a metal or metal alloy, align with grain boundaries of the metal or metal alloy to reduce or eliminate intergranular corrosion at the grain boundaries and at areas adjacent to the grain boundaries. In some embodiments, anti-corrosion nanoparticle compositions include both spherical-shaped nanoparticles and coral-shaped nanoparticles.
As used herein, nanoparticles are defined as very small particles having a size between about 1 to 100 nm, although under some circumstances, particles of a size somewhat greater than 100 nm can also behave as a whole unit and therefore, in some embodiments, meet the general definition of a nanoparticle.
In certain embodiments, an anti-corrosion nanoparticle composition includes: (1) a carrier configured to be applied to a metal or metal alloy; and (2) a plurality of non-ionic metal nanoparticles suspended in the carrier and selected in size and shape to locate along and/or within grain boundaries of a metal or alloy surface.
In certain embodiments, an anti-corrosion nanoparticle composition includes: (1) a carrier configured to be applied to a surface of a metal or metal alloy; (2) an electrolytic modifier; and (3) a plurality of non-ionic metal nanoparticles suspended in the carrier and selected in size and shape to locate along and/or within grain boundaries of a metal or alloy surface.
In some embodiments, the electrolytic modifier can be a reducing agent, such as one or more of a nitrite, sulfite, or phosphite. The reducing agent may be included to function in conjunction (e.g., synergistically) with the metal nanoparticles to further provide corrosion inhibiting effects. An effective concentration of reducing agent may vary depending on the type and/or composition of the metallic surface being treated. In some embodiments, the reducing agent is included at a concentration of between about 50 to 200 ppm, with higher concentrations also remaining effective, but with the foregoing lower concentrations beneficially providing similar results without the added cost.
An effective concentration of metal nanoparticles may vary somewhat depending on the composition of nanoparticle used and the metallic surface being treated but will typically comprise a minimum concentration of between approximately 0.5 ppm and 15 ppm, or about 0.5 ppm and 5 ppm, with a more preferred range of between approximately 0.5 ppm and 3 ppm, and an even more preferred range of between about 1 ppm and 2 ppm, with higher concentrations (e.g., above about 5 ppm or above about 15 ppm) also remaining effective, but with the foregoing lower concentrations beneficially providing effective results without the added cost.
Application of the anti-corrosion compositions involve adhering or otherwise affixing the nanoparticles onto a metallic surface. This can be accomplished through a variety of methods including simple exposure or soaking of the surface with an anti-corrosion composition for a sufficient time to allow nanoparticle adherence to the metallic surface. In one embodiment, the metallic surface is heated, and an anti-corrosion composition is sprayed onto the surface. The liquid carrier of the anti-corrosion composition is allowed to evaporate, leaving the nanoparticles affixed to the surface. In some embodiments, an electrostatic charge is introduced to the metallic surface to more readily draw the metallic nanoparticles of the anti-corrosion composition onto the metallic surface.
Once the nanoparticles have been effectively affixed on the metallic surface, ongoing treatment of the metallic surface can be accomplished through maintenance of at least an effective concentration of an electrolytic modifier (e.g., a reducing agent) in the environment of the metallic surface being treated. After an initial treatment, as nanoparticles become aligned at grain boundaries of the metallic surface, subsequent treatments can beneficially have significantly reduced quantities of nanoparticles to maintain the same anti-corrosion effect.
In certain embodiments, a method of applying an anti-corrosion nanoparticle composition includes: (1) applying a nanoparticle composition comprised of a carrier and a plurality of non-ionic metal nanoparticles to a surface of a metal or metal alloy, (2) removing the liquid carrier to yield a nanoparticle treated surface in which at least a portion of the nonionic metal nanoparticles locate along and/or within grain boundaries of the metal or metal alloy to provide resistance to corrosion of the metal or alloy.
In certain embodiments, a method of manufacturing an anti-corrosion metal or metal alloy includes: (1) obtaining a metal or metal alloy, (2) applying a nanoparticle composition comprised of a liquid carrier and a plurality of non-ionic metal nanoparticles to a surface of the metal or alloy, and (3) removing the liquid carrier to yield a nanoparticle treated surface in which at least a portion of the nonionic metal nanoparticles locate along and/or within grain boundaries of the metal or alloy to provide resistance to corrosion of the metal or alloy.
In some embodiments, metal nanoparticles can comprise spherical-shaped metal nanoparticles and/or coral-shaped metal nanoparticles. In some embodiments the coral-shaped metal nanoparticles can be used together with spherical-shaped metal nanoparticles to help carry and/or potentiate the spherical-shaped metal nanoparticles.
In some embodiments, nanoparticle compositions (including spherical-shaped, coral-shaped, or multi-component nanoparticle compositions) include a carrier capable of holding the nanoparticles in solution while still maintaining the functionality of the nanoparticles.
In preferred embodiments, the metal nanoparticles are formed from elements or alloys that are not readily corroded in the environment in which they will be used. In some embodiments, at least a portion of the metal nanoparticles are antimony (Sb) nanoparticles that function to preclude hydrogen propagation and thereby further inhibit the mechanisms known to be part of the corrosion process.
These and other advantages and features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention.
Disclosed herein are nanoparticle compositions for providing anti-corrosion properties to metals and/or metal alloys. Also disclosed herein are methods for applying anti-corrosion nanoparticle compositions to metals or metal alloys in order to provide corrosion resistance to the metal or metal alloy, and methods for manufacturing a metal or alloy with a corrosion resistant surface.
Surprisingly, it has now been found that by selecting nanoparticles having the appropriate size distribution and/or surface properties, and suspending the nanoparticles in a suitable carrier to form an anti-corrosion nanoparticle composition, applying the composition to a metal or metal alloy leads to enhanced corrosion resistance of the metal or alloy.
Nanoparticle Configurations
In some embodiments, the metal nanoparticles may comprise or consist essentially of nonionic, ground state metal nanoparticles. Examples include spherical-shaped metal nanoparticles, coral-shaped metal nanoparticles, or a blend/combination of spherical-shaped metal nanoparticles and coral-shaped metal nanoparticles.
In some embodiments, metal nanoparticles useful for making nanoparticle compositions comprise spherical nanoparticles, preferably spherical-shaped metal nanoparticles having a solid core. The term “spherical-shaped metal nanoparticles” refers to nanoparticles that are made from one or more metals, preferably nonionic, ground state metals, having only internal bond angles and no external edges or bond angles. In this way, the spherical nanoparticles are highly resistant to ionization, highly stable, and highly resistance to agglomeration. Such nanoparticles can exhibit a high absolute value ξ-potential (positive or negative), which permits the spherical nanoparticles to remain dispersed within a polar solvent without a surfactant, which is a surprising and unexpected result.
In some embodiments, spherical-shaped metal nanoparticles can have a diameter of about 40 nm or less, about 35 nm or less, about 30 nm or less, about 25 nm or less, about 20 nm or less, about 15 nm or less, about 10 nm or less, about 7.5 nm or less, or about 5 nm or less. In some embodiments, nanoparticles are no smaller than about 1 nm.
In some embodiments, spherical-shaped nanoparticles can have a particle size distribution such that at least 99% of the nanoparticles have a diameter within 30% of the mean diameter of the nanoparticles, or within 20% of the mean diameter, or within 10% of the mean diameter. In some embodiments, spherical-shaped nanoparticles can have a mean particle size and at least 99% of the nanoparticles have a particle size that is within ±3 nm of the mean diameter, ±2 nm of the mean diameter, or ±1 nm of the mean diameter. In some embodiments, spherical-shaped nanoparticles can have a ξ-potential with an absolute value (positive or negative) of at least 10 mV, preferably at least about 15 mV, more preferably at least about 20 mV, even more preferably at least about 25 mV, and most preferably at least about 30 mV.
Examples of methods and systems for manufacturing spherical-shaped nanoparticles are disclosed in U.S. Pat. Pub. No. 2013/0001833 to William Niedermeyer, which is incorporated herein by reference.
In some embodiments, nonionic metal nanoparticles useful for making nanoparticle compositions may also comprise coral-shaped nanoparticles. The term “coral-shaped metal nanoparticles” refers to nanoparticles that are made from one or more metals, preferably nonionic, ground state metals having a non-uniform cross section and a globular structure formed by multiple, non-linear strands joined together without right angles. Similar to spherical-shaped nanoparticles, coral-shaped nanoparticles may have only internal bond angles and no external edges or bond angles. In this way, coral-shaped nanoparticles can be highly resistant to ionization, highly stable, and highly resistance to agglomeration. Such coral-shaped nanoparticles can exhibit a high absolute value ξ-potential (positive or negative), which permits the coral-shaped nanoparticles to remain dispersed within a polar solvent without a surfactant, which is a surprising and expected result.
In some embodiments, coral-shaped nanoparticles can have lengths ranging from about 15 nm to about 100 nm, or about 25 nm to about 95 nm, or about 40 nm to about 90 nm, or about 60 nm to about 85 nm, or about 70 nm to about 80 nm. In some embodiments, coral-shaped nanoparticles can have a particle size distribution such that at least 99% of the nanoparticles have a length within 30% of the mean length, or within 20% of the mean length, or within 10% of the mean length. In some embodiments, coral-shaped nanoparticles can have a ξ-potential with an absolute value (positive or negative) of at least 10 mV, preferably at least about 15 mV, more preferably at least about 20 mV, even more preferably at least about 25 mV, and most preferably at least about 30 mV.
Examples of methods and systems for manufacturing coral-shaped nanoparticles are disclosed in U.S. Pat. Pub. No. 2016/0082514, to William Niedermeyer, which is incorporated herein by this reference.
The metal nanoparticles, including spherical-shaped and coral-shaped nanoparticles, may comprise any desired metal, mixture of metals, or metal alloy, including at least one of silver, gold, platinum, palladium, rhodium, osmium, ruthenium, rhodium, rhenium, molybdenum, copper, iron, nickel, tin, beryllium, cobalt, antimony, chromium, manganese, zirconium, tin, zinc, tungsten, titanium, vanadium, lanthanum, cerium, heterogeneous mixtures thereof, or alloys thereof.
In preferred embodiments, the nanoparticles comprise precious metals such as gold, silver, platinum, and palladium. In some embodiments the nanoparticles will be made from alloys of the precious metals that are combined with antimony, bismuth, lead, or other elements with the capability to prevent or inhibit hydrogen propagation. In some embodiments, the nanoparticles are formed from stainless steels, austenite nickel-chromium alloys (e.g., sold under the trade name Inconel®) and/or nickel-based alloys (e.g., nickel-copper-iron-manganese alloys such as those sold under the trade name Monel®).
Multi-Component Nanoparticle Compositions
In some embodiments, coral-shaped metal nanoparticles can be used in conjunction with spherical-shaped metal nanoparticles. In general, spherical-shaped metal nanoparticles can be smaller than coral-shaped metal nanoparticles and in this way can provide very high surface area for catalyzing desired reactions or providing other desired benefits. On the other hand, the generally larger coral-shaped nanoparticles can exhibit higher surface area per unit mass compared to spherical-shaped nanoparticles because coral-shaped nanoparticles have internal spaces and surfaces rather than a solid core and only an external surface. In some cases, providing nanoparticle compositions containing both spherical-shaped and coral-shaped nanoparticles can provide synergistic results. For example, coral-shaped nanoparticles can help carry and/or potentiate the activity of spherical-shaped nanoparticles in addition to providing their own unique benefits.
In some embodiments, the nanoparticle compositions may include both spherical-shaped and coral-shaped nanoparticles. In some embodiments, the mass ratio of spherical-shaped nanoparticles to coral-shaped nanoparticles in the nanoparticle composition can be in a range of about 1:1 to about 50:1, or about 2.5:1 to about 25:1, or about 5:1 to about 20:1, or about 7.5:1 to about 15:1, or about 9:1 to about 11:1, or about 10:1. The particle number ratio of spherical-shaped nanoparticles to coral-shaped nanoparticles in the nanoparticle composition can be in a range of about 10:1 to about 500:1, or about 25:1 to about 250:1, or about 50:1 to about 200:1, or about 75:1 to about 150:1, or about 90:1 to about 110:1, or about 100:1.
In some embodiments, the compositions will include at least one spherical-shaped nanoparticle component and at least one larger coral-shaped nanoparticle component. In these embodiments, the at least one selected spherical-shaped nanoparticle component will be present in the solution in a range of between about 1 ppm and about 15 ppm (e.g., at least 1 ppm and at mostly ppm) and more particularly in the range of between about 1 ppm and about 5 ppm (e.g., at least 1 ppm and at most 5 ppm). Additionally, in some embodiments, the larger coral-shaped nanoparticles will be present in the solution in a range of between about 1 ppm and about 5 ppm (e.g., at least 1 ppm and at most 5 ppm) and more particularly between about 1 ppm and about 3 ppm (e.g., at least 1 ppm and at most 3 ppm). It should be understood that the upper concentration is not restricted as much by efficacy, but more by product formulation cost. Thus, in other embodiments, the spherical-shaped nanoparticle component may present at a concentration above 5 ppm and/or the coral-shaped nanoparticle component may be present at a concentration above 3 ppm.
Some embodiments may include a stabilizing agent. For example, there are times when it is desirable to have different specifically sized nanoparticles within the same solution to take advantage of each of the different properties and effects of the different particles. A stabilizing agent may therefore be included to enhance the overall long-term stability of these particles to equalize or diminish the effects of unequal forces exerted on the various particles, minimizing or preventing agglomeration of the particles. Agglomeration effects may become even more pronounced when a solution is either heated or cooled significantly above or below standard room temperature conditions.
The stabilizing agent may itself be beneficial for use in anti-corrosion applications. Examples of stabilizing agents include alcohols (e.g., ethanol, propanol, butanol, etc.), as alcohols have been observed to effectively maintain nanoparticles of different sizes and different shapes within a given solution. In addition, amine compounds such as mono-, di-, and tri-ethanol amine may be used as stabilizing agent or part thereof. A stabilizing agent may additionally function as a carrier (and vice versa), as described in more detail below, or may be added as a separate component (e.g., in addition to a carrier) to a nanoparticle composition.
Corrosion Resistance
As explained above, intergranular corrosion can occur when localized impurities or segregation effects lead to the formation of galvanic couples across the grain boundary, resulting in detrimental oxidation, hydrogen propagation, and other undesirable corrosive effects. As illustrated in
Surprisingly, it has been found that application of an anti-corrosion composition of the present invention provides corrosion resistance to the treated metal or alloy. Without being bound to a particular theory, it is theorized that when nanoparticles 430 locate at the grain boundary, the localized galvanic couplings driving the intergranular corrosion are disrupted and/or the localized electric potentials at or near the grain boundaries are equilibrated.
Carriers
The anti-corrosion composition can also include a carrier for delivering the metal nanoparticles to the metal or metal alloy to be treated for corrosion resistance. The carrier can be a liquid, gel, or solid. The nanoparticles can be readily incorporated into any number of carriers that may then become the basis for a wide array of products including sprays, coatings, dry fog solutions, soaking solution, and wiping solutions, for example.
Some carriers may be more suitable than others depending on the metal or alloy to be treated and/or depending on the desired method of application. For example, the volatility of the carrier may be selected to allow for quick evaporation of the carrier and relatively rapid deposition of the nanoparticles onto the metal or alloy to be treated.
Additionally, or alternatively, a liquid carrier may be selected to provide a desired surface tension when applied to a metal or metal alloy surface in order to provide a desired wetting effect. For example, a liquid carrier may be selected in order to provide a high degree of wetting when applied to the surface of a metal or alloy, such as a carrier that forms a contact angle of between about 0 degrees and about 90 degrees, or between about 0 degrees and about 60 degrees, or between about 0 degrees and about 45 degrees when applied to the surface to be treated. In some embodiments, such carriers may include alcohols or alcohol/water mixtures.
Additional examples of carriers that can be used to formulate anti-corrosion compositions in addition or alternative to those disclosed herein include, but are not limited to, alcohols (e.g., methanol, ethanol, isopropyl alcohol, glycols, other lower alcohols), ketones, esters, ethers, and other organic solvents.
Gels known in the art can be used as carriers, such as gels containing one or more of the foregoing liquid components together with known gelling agents. As compared to a liquid carrier, an anti-corrosion composition with a gel or gel-like carrier can be more easily applied in certain situations. For example, when a metal or metal alloy surface to be treated is not in a position that lends itself to liquid application, or where a liquid carrier may not offer the desired application coverage (e.g., when the target surface to be treated is facing down and a liquid carrier lacks the viscosity to maintain sufficient duration of contact with the surface).
Additional components may be added to the anti-corrosion nanoparticle composition. Such additives can be selected to provide additional desired properties to the composition and/or to enhance or alter properties of the carrier. For example, additives may be added to modify surface tension or viscosity, to improve the stability of the composition, and/or to protect from ultraviolet radiation. Additives may also include thickeners, emulsifiers, adhesion promoters, and the like.
Electrolytic Modifiers & Reducing Agents
In some embodiments, electrolytic modifiers can be added to the composition in order to modify the electrolytic environment in which the nanoparticles reside and/or to function as a reducing agent to assist in preventing oxidation of the metallic surface to which the composition is applied. In some embodiments, such electrolytic modifiers can be added to alter the adsorption and/or adherence of nanoparticles to the grain boundaries of the metal or alloy to which the anti-corrosion composition is applied. In preferred embodiments, an electrolytic modifier is added in order to increase the adsorption and/or adherence of nanoparticles to areas along or within the grain boundaries of the metal or alloy such that a higher proportion of nanoparticles within the anti-corrosion composition locate at these areas and/or a higher proportion remain at these areas after application.
In some embodiments, electrolytic modifiers can be used to modify the surface properties of the nanoparticles, thereby altering the interactions of the nanoparticles with the surface environment of the metal or alloy when applied to the metal or alloy. For example, one or more electrolytic modifiers may be added in order to increase the amount and/or strength of electronic coupling of nanoparticles to the areas of the metal or alloy surface along and/or within the grain boundaries.
Electrolytic modifiers can include, for example, electrolytes and polyelectrolytes. For example, one or more salts can be added to the anti-corrosion composition. Non-limiting examples of salts include cations such as sodium (Na+), potassium (K+), magnesium (Mg+2), calcium (Ca+2), ammonium (NH4+), iron (e.g., ferrous (Fe(II) or ferric (Fe(III)), copper (e.g., cuprous (Cu(I) or Cupric Cu(II)), zinc, nickel, etc., and can include anions of nitrite (NO2−), phosphate (PO4−3), sulfate (SO4−2), carbonate (CO3−2), nitrate (NO3−), chloride (Cl−), and the like. Suitable polyelectroloytes include, for example, polystyrene sulfonate, polymethacrylic acid, polyallylamine, polysodium acrylate, polyvinyl amine, polyethylimine, polyphosphates, and other polyelectrolytes and polyampholytes.
Electrolytic modifiers can also include acids (e.g., hydrochloric, nitric, acetic, sulfuric, citric, carbonic, phosphoric, oxalic, etc.) or bases (e.g., sodium hydroxide, sodium bicarbonate, calcium hydroxide, potassium hydroxide, ammonia, etc.).
In some preferred embodiments, one or more electrolytic modifiers can function as reducing agents to assist in preventing oxidation of the metallic surface to which the composition is applied. For example, one or more of a nitrite, sulfite, phosphite or polyphosphate may be added in a range of about 50 ppm and 200 ppm. Although higher concentrations are also effective, the foregoing concentration ranges have shown to be effective and beneficially provide effective results without the need for the additional expense of higher concentrations. An example of a suitable polyphosphate is sodium hexametaphosphate.
In embodiments in which a reducing agent is included (e.g., to provide a desired synergistic anti-corrosion effect with the nanoparticles), anti-corrosion effects may be maintained even while subsequent treatments can reduce the concentration of nanoparticles applied. For example, in a closed-loop systems such as an evaporative-loop cooling tower system, fresh make-up water being added to the system may still contain between 50 ppm and 200 ppm of reducing agent, but the concentration of nanoparticles can be reduced to less than 0.5 ppm or less than 0.1 ppm, or even eliminated entirely while still maintaining the same level of anti-corrosion activity.
In another example, in a pipeline application, once the interior surface of the pipe has been treated such that the nanoparticles are affixed to that interior pipe surface, maintenance of that interior pipe surface can be accomplished with limited or no additional application of nanoparticles. In some circumstances, an effective concentration of reducing agent may be maintained within the aqueous phase of material flowing through that pipeline.
In another example, in captive water systems, where the corrosion is caused by water that is not flowing or otherwise being evaporated such as bilge water in the bottom of ships, a sufficient concentration of nanoparticles (and optionally a reducing agent) may be added to the captive water to create an anti-corrosion composition, and no further addition of nanoparticles will be typically required.
Parameters
Various parameters of the anti-corrosion nanoparticle composition can be varied according to a desired anti-corrosion application. Parameters include, for example, nanoparticle configuration (e.g., particle shape, particle size and size distribution, particle type(s) and blend ratios), nanoparticle concentration, and carrier features (e.g., viscosity, volatility, pH, electrical conductivity, presence of additives, and presence of electrolytic modifiers such as reducing agents). Each of these parameters and sub-parameters can be varied based on a selected application of the anti-corrosion composition. Influencing factors can include, for example, the type of metal or alloy to be treated, the desired method of application (e.g., spraying, coating, soaking), and/or the level of intergranular corrosion exhibited by the material to be treated.
For example, an anti-corrosion composition can be formulated, at least in part, based on a measured or expected size and/or shape of intergranular spaces. In such embodiments, nanoparticle sizes can be selected such that, upon application of the anti-corrosion composition to the metal or metal alloy, the nanoparticles fit between the grains of the material and more effectively disrupt the galvanic coupling driving intergranular corrosion or putting the material at risk of intergranular corrosion.
In another example, an anti-corrosion composition can be formulated, at least in part, based on comparing measured or expected surface properties of the nanoparticles with measured or expected surface properties of the targeted grain boundaries (e.g., average electrical potential across grain boundaries). In such embodiments, nanoparticles and/or electrolytic modifiers may be selected so as to provide the nanoparticles with surface properties that enable greater electronic coupling of the nanoparticles at the grain boundary and/or between grains of the material to be treated.
In some embodiments, a nanoparticle composition can be formulated so that the metal nanoparticles are included in a concentration so that a measured quantity of the nanoparticle composition, when applied onto the surface of a metal or metal alloy, will provide a predetermined concentration or quantity of metal nanoparticles and/or will provide ongoing anti-corrosion efficacy for an extended period of time. The nanoparticle composition can have a higher concentration of nanoparticles that become diluted when mixed with other liquids applied to the treatment surface, for example. Depending on the metal or alloy surface to be treated, the nature of the nanoparticles being added, and the type of carrier being used, the nanoparticle composition may contain about 0.5 ppm to about 100 ppm of metal nanoparticles by weight, or about 1 ppm to about 50 ppm, or about 2 ppm to about 25 ppm, or about 3 ppm to about 20 ppm metal nanoparticles by weight. In other embodiments, nanoparticle compositions may contain about 0.5 ppm and 15 ppm, or about 0.5 ppm and 5 ppm, with a more preferred range of between approximately 0.5 ppm and 3 ppm, and an even more preferred range of between about 1 ppm and 2 ppm.
Methods of Application
In certain embodiments, methods for applying an anti-corrosion composition includes soaking, spraying, or otherwise exposing the metallic surface for a time sufficient to allow nanoparticle adherence to the surface. It has been observed that under typical temperature conditions (e.g., about room temperature), adherence of the nanoparticles can be accomplished in about 4 hours or less.
In some embodiments, adherence of the nanoparticles to the metal surface is accelerated and/or accentuated by heating the metallic surface (to a temperature of between 120 and 160° F., for example), and applying an anti-corrosion composition onto the surface (e.g., as a spray or mist) sufficient to thoroughly wet the surface and then allow the liquid of the anti-corrosion composition to rapidly evaporate, thereby leaving the nanoparticles affixed to the surface.
In some embodiment adherence of the nanoparticles to the metal surface can be accelerated and/or accentuated by the introduction of an electrostatic charge to the metallic surface. By way of example, it has been observed that under typical temperature conditions, adherence of the nanoparticles utilizing an electrostatic charge to the metallic surface can be accomplished in as little as approximately 30 minutes or less.
In certain embodiments, a method of applying an anti-corrosion nanoparticle composition includes: (1) applying a nanoparticle composition comprised of a carrier and a plurality of non-ionic metal nanoparticles to a surface of a metal or alloy, (2) removing the liquid carrier to yield a nanoparticle treated surface in which at least a portion of the nonionic metal nanoparticles locate along and/or within grain boundaries of the metal or alloy to provide resistance to corrosion of the metal or alloy. Removal of the liquid carrier may include removal as a liquid or vapor.
In some embodiments, anti-corrosion nanoparticle compositions of the present disclosure can be applied to metals and/or alloys. For example, anti-corrosion compositions can be applied to metals and/or alloys known to be at risk for intergranular corrosion, or expected to undergo intergranular corrosion based on factors such as material type, prior manufacturing processes (e.g., extruding and/or intensive working), and/or expected use of the metal or alloy.
In some embodiments, an anti-corrosion composition can be applied to an austenitic stainless steel including chromium or to nickel alloys in which chromium has been added. Such steels/alloys are often susceptible to intergranular corrosion caused by chromium depletion at the grain boundaries as a result of precipitation of chromium carbides. High carbon steel may also benefit from the anti-corrosion composition as result of possible alteration of grain boundaries by carbon. Anti-corrosion compositions can also be applied to metals or alloys known to be susceptible to knifeline attack, such as 347 stainless steel and other stainless steels including niobium.
Anti-corrosion compositions of the present disclosure can also be applied to aluminum or titanium metals and to aluminum and titanium based alloys. For example, anti-corrosion compositions can be applied to aluminum-based and titanium-based materials with grain boundaries susceptible to intergranular corrosion caused by segregation of iron impurities and concentration at the grain boundaries. Other embodiments include application of an anti-corrosion composition to aluminum alloys having levels of copper which can promote the formation of localized galvanic couples at the grain boundaries of the alloy. Other embodiments include application of an anti-corrosion composition to brass, such as brass having elevated zinc content at or near the grain boundaries.
Anti-corrosion compositions can also be applied to closed-circuit applications, such as heat-exchangers, evaporative coolers, etc., to open circuit applications such as pipelines, and to stagnant fluid applications such as bilge areas.
In some embodiments, the anti-corrosion treatment is repeated one or more times, or a subsequent, different treatment or combination of treatments is subsequently applied.
Methods of Manufacture
In certain embodiments, a method of manufacturing an anti-corrosion metal or alloy includes: (1) obtaining a metal or metal alloy, (2) applying a nanoparticle composition comprised of a liquid carrier and a plurality of non-ionic metal nanoparticles to a surface of the metal or metal alloy, and (3) removing the liquid carrier to yield a nanoparticle treated surface in which at least a portion of the nonionic metal nanoparticles locate along and/or within grain boundaries of the metal or alloy to provide resistance to corrosion of the metal or alloy.
In certain embodiments, a method of manufacturing an anti-corrosion metal or alloy includes: (1) obtaining a metal or metal alloy, (2) obtaining a nanoparticle composition comprised of a carrier and a plurality of non-ionic metal nanoparticles with the metal or alloy, (3) integrating the nanoparticle composition with the metal or alloy prior to or during a manufacturing process of the metal or alloy such that at least a portion of the nonionic metal nanoparticles locate along and/or within grain boundaries of the metal or alloy to provide resistance to corrosion of the metal or alloy.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 100 ppm sodium nitrite and 1 ppm Ag nanoparticles made using laser ablation with an average size of the Ag nanoparticles being approximately 10 nm was provided into which a mild steel coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 3 years.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 100 ppm sodium nitrite and 1 ppm Au nanoparticles made using laser ablation with an average size of the Au nanoparticles being between approximately 40-60 nm was provided into which a mild steel coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 3 years.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 100 ppm sodium nitrite and 0.5 ppm of Ag nanoparticles made using laser ablation with an average size of the Ag nanoparticles being approximately 10 nm and 0.5 ppm of Au nanoparticles made using laser ablation with an average size of the Au nanoparticles being between approximately 40-60 nm (for a total of 1.0 ppm of total nanoparticle concentration) was provided into which a mild steel coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 3 years.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 3.0 with acetic acid, 100 ppm sodium nitrite and 2.0 ppm of AgSb alloyed nanoparticles made using laser ablation with an average size of the nanoparticles being between approximately 20-25 nm was provided into which a mild steel coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 1 month.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 50 ppm sodium nitrite and 2.0 ppm of AgSb alloy nanoparticles made using laser ablation with an average size of the nanoparticles being between approximately 20-25 nm was provided into which a mild steel coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 6 month2.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 100 ppm sodium nitrite and 1 ppm Au nanoparticles made using laser ablation with an average size of the Au nanoparticles being between approximately 40-60 nm was provided into which a copper coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 3 years.
A corrosion inhibiting composition containing distilled deionized water adjusted to pH 6.0 with sulfuric acid, 100 ppm sodium nitrite and 1 ppm Au nanoparticles made using laser ablation with an average size of the Au nanoparticles being between approximately 40-60 nm was provided into which a admiralty brass coupon was placed. No measurable corrosion by weight loss or visible corrosion observed for 3 years.
Although the foregoing has been described in some detail by way of illustrations and examples for purposes of clarity and understanding, it will be understood by those of skill in the art that numerous and various modifications can be made. Therefore, it should be clearly understood that the forms disclosed herein are illustrative only and are not intended to limit the scope of the present disclosure.
This application claims the benefit of U.S. Provisional Patent Application No. 62/146,587, filed Apr. 13, 2015, and U.S. Provisional Patent Application No. 62/170,882, filed on Jun. 4, 2015, the disclosures of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3133023 | Vogel | May 1964 | A |
4515740 | Schuettenberg et al. | May 1985 | A |
5047448 | Tanaka | Sep 1991 | A |
5227608 | Yoshida | Jul 1993 | A |
5390864 | Alexander | Feb 1995 | A |
5585020 | Becker et al. | Dec 1996 | A |
5677075 | Fujita | Oct 1997 | A |
6232264 | Lukehart | May 2001 | B1 |
6239453 | Yamada et al. | May 2001 | B1 |
6509070 | Voevodin et al. | Jan 2003 | B1 |
6660379 | Lakowicz | Dec 2003 | B1 |
6720006 | Hanke | Apr 2004 | B2 |
7014737 | Harutyunyan et al. | Mar 2006 | B2 |
7252814 | De Mello | Aug 2007 | B2 |
7332351 | Tan et al. | Feb 2008 | B2 |
7371457 | Oldenburg et al. | May 2008 | B2 |
7374730 | Simard et al. | May 2008 | B2 |
7384560 | Martens et al. | Jun 2008 | B2 |
7449679 | Plewa | Nov 2008 | B2 |
7509993 | Turng et al. | Mar 2009 | B1 |
7527824 | Becker | May 2009 | B2 |
7553801 | Alexander et al. | Jun 2009 | B2 |
7625637 | Kim | Dec 2009 | B2 |
7662731 | Itoh et al. | Feb 2010 | B2 |
7682970 | Grigoropoulos et al. | Mar 2010 | B2 |
7700032 | Lu et al. | Apr 2010 | B1 |
7884160 | Wang et al. | Feb 2011 | B2 |
7967876 | Aradi | Jun 2011 | B2 |
7985367 | Hiromatsu et al. | Jul 2011 | B2 |
8097233 | Porterat | Jan 2012 | B2 |
8435602 | Seal | May 2013 | B1 |
8490586 | Gardenier | Jul 2013 | B2 |
8524139 | Toth | Sep 2013 | B2 |
8685293 | Coppa et al. | Apr 2014 | B1 |
8709531 | Miller | Apr 2014 | B2 |
8802234 | Che | Aug 2014 | B2 |
8883865 | DiFrancesco | Nov 2014 | B2 |
8992815 | Hu | Mar 2015 | B2 |
9463510 | Hendi et al. | Oct 2016 | B2 |
9512377 | Binder | Dec 2016 | B2 |
9627713 | Moganty et al. | Apr 2017 | B2 |
9885001 | Niedermeyer | Feb 2018 | B2 |
10099191 | Lu | Oct 2018 | B1 |
20010031564 | Suzuki et al. | Oct 2001 | A1 |
20020051823 | Yan | May 2002 | A1 |
20030012686 | Andersen et al. | Jan 2003 | A1 |
20030086859 | Kawakami et al. | May 2003 | A1 |
20030102099 | Yadav et al. | Jun 2003 | A1 |
20030108612 | Xu | Jun 2003 | A1 |
20030228525 | Kozawa | Dec 2003 | A1 |
20040103936 | Andriessen | Jun 2004 | A1 |
20040214001 | Oldenburg et al. | Oct 2004 | A1 |
20050061779 | Blumenfeld | Mar 2005 | A1 |
20050061785 | Schroder | Mar 2005 | A1 |
20050153071 | Bouvrette | Jul 2005 | A1 |
20050158506 | Waki | Jul 2005 | A1 |
20050247866 | Plewa | Nov 2005 | A1 |
20050258149 | Glukhoy | Nov 2005 | A1 |
20050260276 | Yang | Nov 2005 | A1 |
20060049034 | Lee | Mar 2006 | A1 |
20060142853 | Wang et al. | Jun 2006 | A1 |
20070003603 | Karandikar | Jan 2007 | A1 |
20070029185 | Tung | Feb 2007 | A1 |
20070125196 | Zhong et al. | Jun 2007 | A1 |
20070140951 | O'Brien | Jun 2007 | A1 |
20070141259 | House | Jun 2007 | A1 |
20070207335 | Karandikar | Sep 2007 | A1 |
20070287202 | Maehashi et al. | Dec 2007 | A1 |
20080006524 | Liu | Jan 2008 | A1 |
20080035682 | Coffey et al. | Feb 2008 | A1 |
20080044148 | Robinson | Feb 2008 | A1 |
20080050448 | Wilson | Feb 2008 | A1 |
20080143021 | Ehrentraut | Jun 2008 | A1 |
20080161631 | Axtell et al. | Jul 2008 | A1 |
20080263940 | Parish et al. | Oct 2008 | A1 |
20080292673 | Crudden | Nov 2008 | A1 |
20090000186 | Sanders et al. | Jan 2009 | A1 |
20090028947 | Rahman | Jan 2009 | A1 |
20090039316 | Hirai | Feb 2009 | A1 |
20090061230 | Berkei | Mar 2009 | A1 |
20090104179 | Boyden | Apr 2009 | A1 |
20090148484 | Lin | Jun 2009 | A1 |
20090175948 | Jiang | Jul 2009 | A1 |
20090191288 | Squires | Jul 2009 | A1 |
20090246530 | Murakami et al. | Oct 2009 | A1 |
20100040655 | Ren et al. | Feb 2010 | A1 |
20100050872 | Lee | Mar 2010 | A1 |
20100068299 | van der Krieken et al. | Mar 2010 | A1 |
20100072645 | Hiromatsu et al. | Mar 2010 | A1 |
20100080957 | Chinn | Apr 2010 | A1 |
20100092367 | Porterat | Apr 2010 | A1 |
20100154591 | Islam | Jun 2010 | A1 |
20100167958 | Lin | Jul 2010 | A1 |
20100172997 | Omary | Jul 2010 | A1 |
20100180413 | Jeong | Jul 2010 | A1 |
20100183739 | Newman | Jul 2010 | A1 |
20100187091 | Pierce et al. | Jul 2010 | A1 |
20100196192 | Liu et al. | Aug 2010 | A1 |
20100212221 | Aradi | Aug 2010 | A1 |
20100255110 | Yoon | Oct 2010 | A1 |
20100272650 | Tsukada | Oct 2010 | A1 |
20100272770 | De Windt | Oct 2010 | A1 |
20100301013 | Conneely | Dec 2010 | A1 |
20110039078 | Fournet et al. | Feb 2011 | A1 |
20110052460 | Coffey et al. | Mar 2011 | A1 |
20110129536 | Donati | Jun 2011 | A1 |
20110155643 | Tov | Jun 2011 | A1 |
20110192450 | Liu | Aug 2011 | A1 |
20110193025 | Ichikawa et al. | Aug 2011 | A1 |
20110196044 | Hu | Aug 2011 | A1 |
20110201527 | Lin | Aug 2011 | A1 |
20110206753 | Karpov | Aug 2011 | A1 |
20110228890 | Dean et al. | Sep 2011 | A1 |
20110244056 | Santra | Oct 2011 | A1 |
20110297653 | Ehrentraut | Dec 2011 | A1 |
20120088066 | Aytug et al. | Apr 2012 | A1 |
20120124899 | Difrancesco | May 2012 | A1 |
20120136164 | Ying et al. | May 2012 | A1 |
20120138347 | Bahnmuller | Jun 2012 | A1 |
20120138862 | Hogan | Jun 2012 | A1 |
20120164073 | Xu et al. | Jun 2012 | A1 |
20120174472 | Mills | Jul 2012 | A1 |
20120183674 | Bonn-Savage | Jul 2012 | A1 |
20120301528 | Uhlmann | Nov 2012 | A1 |
20120301531 | Uhlmann | Nov 2012 | A1 |
20120313200 | Jackrel et al. | Dec 2012 | A1 |
20120328701 | Edelson | Dec 2012 | A1 |
20130001833 | Niedermeyer | Jan 2013 | A1 |
20130078510 | Reynolds et al. | Mar 2013 | A1 |
20130152823 | El-Sayed | Jun 2013 | A1 |
20130203849 | Ben Yehuda | Aug 2013 | A1 |
20130224477 | Xu | Aug 2013 | A1 |
20130273116 | Jespersen et al. | Oct 2013 | A1 |
20130334104 | Marsh | Dec 2013 | A1 |
20130337998 | Irving | Dec 2013 | A1 |
20140024026 | Alocilja | Jan 2014 | A1 |
20140178513 | Matthews | Jun 2014 | A1 |
20140221543 | Wang | Aug 2014 | A1 |
20140274830 | Pol et al. | Sep 2014 | A1 |
20140288194 | Niedermeyer | Sep 2014 | A1 |
20140370293 | Johnson | Dec 2014 | A1 |
20150008313 | Loboda | Jan 2015 | A1 |
20150030919 | Koazawa | Jan 2015 | A1 |
20150066135 | Weber et al. | Mar 2015 | A1 |
20150190550 | Nusko | Jul 2015 | A1 |
20160081347 | Niedermeyer | Mar 2016 | A1 |
20160082513 | Niedermeyer | Mar 2016 | A1 |
20160082514 | Niedermeyer | Mar 2016 | A1 |
20160083146 | Han | Mar 2016 | A1 |
20160083665 | Niedermeyer | Mar 2016 | A1 |
20160083901 | Niedermeyer | Mar 2016 | A1 |
20160144350 | Aizenberg | Oct 2016 | A1 |
20160298243 | Tarbet et al. | Oct 2016 | A1 |
20160372243 | Cassignol | Dec 2016 | A1 |
20170129975 | Hallinan et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2560837 | Mar 2007 | CA |
WO2006126823 | Nov 2006 | CN |
101128550 | Feb 2008 | CN |
101180372 | May 2008 | CN |
101415644 | Apr 2009 | CN |
101716684 | Jun 2010 | CN |
101932752 | Dec 2010 | CN |
102120619 | Jul 2011 | CN |
102753628 | Oct 2012 | CN |
103796946 | May 2014 | CN |
103891558 | Jul 2014 | CN |
104014811 | Sep 2014 | CN |
102005044360 | Mar 2007 | DE |
2140958 | Jan 2010 | EP |
2559436 | Feb 2013 | EP |
2008527169 | Jul 2008 | JP |
2010001528 | Jan 2010 | JP |
20060021749 | Mar 2006 | KR |
2006026026 | Mar 2006 | WO |
2006053225 | May 2006 | WO |
2006062826 | Jun 2006 | WO |
2008043396 | Apr 2008 | WO |
2009025955 | Feb 2009 | WO |
2009044146 | Apr 2009 | WO |
2009046081 | Apr 2009 | WO |
2009066011 | May 2009 | WO |
2009091900 | Jul 2009 | WO |
2011045627 | Apr 2011 | WO |
2012082364 | Jul 2012 | WO |
2013006430 | Jan 2013 | WO |
WO2013141879 | Sep 2013 | WO |
2014066850 | May 2014 | WO |
2014096556 | Jun 2014 | WO |
2014137352 | Sep 2014 | WO |
2016007112 | Jan 2016 | WO |
2016007113 | Jan 2016 | WO |
Entry |
---|
Hopp Bela et al, “Production of nanostructures on bulk metal samples by laser ablation for fabrication of low-reflective surfaces”, applied physics a materials science & processing, Springer Berlin Heidelberg. |
Yuteng Wan et al., “Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor”, Talanta, vol. 99, pp. 394-403. |
U.S. Appl. No. 15/415,562, filed Jun. 20, 2018. |
Jacobson, “These six diseases should worry you more than Ebola”, Inside Energy Oct. 2014; [online] retrieved on Jan. 29, 2017 from http://www.pbs.org/newshour/updates/six-diseases-actually-worry/; 10 pages. |
Pal et al., “Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle?”, Applied and Environmental Microbiology, 2007; 73(6): 1712-1720. |
Rawashdeh et al., “Antibacterial Mechanisms of Metallic Nanoparticles: A Review”, Dynamic Biochemistry, Process Biotechnology and Molecular Biology 2009 pp. 12-20. |
Sahu et al., “Flower Shaped Silver Nanostructures: An Efficient Bacteria Exterminator”, A Search for Antibacterial Agents; Chapter 2; [online] retrieved from: http://www.intechopen.com/books/a-search-for-antibacterial-agents; 2007; 73(6): 1712-1720. |
U.S. Appl. No. 15/088,863, filed Apr. 1, 2016, Office Action dated Feb. 3, 2017. |
U.S. Appl. No. 13/175,708, filed Jul. 1, 2011, Office Action dated Feb. 10, 2017. |
U.S. Appl. No. 14/861,442, filed Sep. 22, 2015, Final Office Action dated Feb. 22, 2017. |
Santos et al., “Enhancemetn of antibiotic effect via gold:silver-alloy nanoparticles”, J. Nanopart Res (2012) 14:859, pp. 1-8. |
U.S. Appl. No. 14/861,442, filed Sep. 22, 2105, Office Action dated Sep. 29, 2016. |
U.S. Appl. No. 14/864,243, filed Sep. 22, 2015, Office Action dated Nov. 2, 2016. |
U.S. Appl. No. 14/861,243, filed Sep. 22, 2015, Final Office Action dated Jul. 26, 2016. |
Barcikowski et al., “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow”, Appl. Phys. Lett. 91, 083113 (2007). |
Jana et al., “Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles”, Langmuir 2001, 17, 6782-6786. |
Mafuné et al., “Formation of Stable Platinum Nanoparticles by Laser Ablation in Water”, J. Phys. Chem. B 2003, 107, 4218-4223. |
Phuoc et al, “Synthesis of Ag-deoionized water nanofluids using multi-beam laser ablation in fluids”, Optics and Lasers in Engineering 45 (2007) 1099-1106. |
Riabinina et al., “Influence of pressure on the Pt nanoparticle growth modes during pulsed laser ablation”, Journal of Applied Physics 108, 034322 (2010, published online Aug. 12, 2010). |
Sylvestre et al., “Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media”, J Phys. Chem. B 2004, 108, 16864-16869. |
Sweeney et al., “Rapid Purification and Size Separation of Gold Nanoparticles via Diafiltration”, J. Am. Chem. Soc. 2006, 128, 3190-3197 (Published on web Feb. 18, 2006). |
U.S. Appl. No. 14/298,594, Jun. 6, 2014, Office Action dated Mar. 21, 2017. |
U.S. Appl. No. 15/088,863, filed Apr. 1, 2016, Tarbet et al. |
Badawy et al., “Surface Charge-Dependent Toxicity of Silver Nanoparticles”, Environ. Sci. Technol. 2011, 45, 283-287. |
Chien et al., “Synthesis of nanoparticles: sunlight formation of gold nanodecahedra for ultra-sensitive lead-ion detection”, Green Chem., vol. 13, pp. 1162-1166, May 2011. |
International Search Report for PCT App. No. PCT/US2012/044907 dated Jan. 13, 2013. |
International Search Report for PCT App. No. PCT/US2015/051642 dated Dec. 14, 2015. |
International Search Report for PCT App. No. PCT/US2015/051639 dated Dec. 17, 2015. |
International Search Report for PCT App. No. PCT/US2015/051640 dated Dec. 17, 2015. |
International Search Report for PCT App. No. PCT/US2015/051643 dated Dec. 17, 2015. |
International Search Report for PCT App. No. PCT/US2015/051649 dated Dec. 17, 2015. |
International Search Report for PCT App. No. PCT/US2015/051646 dated Dec. 18, 2015. |
Liu et al., “A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application”, Chem. Commun., vol. 46, pp. 472-474, 2010. |
U.S. Appl. No. 13/175,708, filed Jul. 1, 2011, Office Action dated May 30, 2014. |
U.S. Appl. No. 13/175,708, filed Jul. 1, 2011, Final Office Action dated Nov. 13, 2014. |
U.S. Appl. No. 13/175,708, filed Jul. 1, 2011, Office Action dated Jul. 6, 2015. |
U.S. Appl. No. 14/861,243, filed Sep. 22, 2015, Office Action dated Mar. 9, 2016. |
U.S. Appl. No. 13/175,708, filed Jul. 1, 2011, Final Office Action dated Mar. 28, 2016. |
U.S. Appl. No. 14/861,318, filed Sep. 22, 2015, Office Action dated Apr. 25, 2016. |
U.S. Appl. No. 14/861,318, filed Sep. 22, 2015, Notice of Allowance dated May 20, 2016. |
U.S. Appl. No. 14/861,318, filed Sep. 22, 2015, Corrected Notice of Allowance dated Jun. 15, 2016. |
U.S. Appl. No. 15/415,562, filed Jan. 25, 2017, Niedermeyer. |
Prabhu et al., “Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects”, International Nano Letters, 2012, 2:32, pp. 1-10. |
U.S. Appl. No. 14/861,562, filed Sep. 22, 2015, Office Action dated Dec. 7, 2016. |
U.S. Appl. No. 14/861,243, filed Sep. 22, 2015, Final Office Action dated Jan. 27, 2017. |
U.S. Appl. No. 15/808,088, filed Nov. 9, 2017, Niedermeyer. |
U.S. Appl. No. 15/976,447, filed May 10, 2018, Niedermeyer. |
U.S. Appl. No. 15/825,912, filed Nov. 29, 2017, Tarbet. |
U.S. Appl. No. 16/012,508, filed Jun. 19, 2018, Niedermeyer. |
Mycozil, “The Benefits of Colloidal Silver for Toenail Fungus”, http://www.nailfungustoenail.com/benefitsofcolloidalsilverfortoenailfungus.html. |
Malvern, “The use of the Malvern Zetasizer for the measurement of Zeta Potential”, article from the Internet, http://www.malvern.co.alLaboratory/zetaintm.htm> 10 pages, printed on Feb. 12, 2002. |
Malvern, “Zeta Potential Theory, Dispersion stability”, article from the Internet, http://www.malvern.co.uk/Laboratory/zettheo.htm>, 3 pages, printed on Feb. 12, 2002. |
Theodorou et al., “Inhalation of Silver Nanomaterials—Seeing the Risks”, International Journal of Molecular Sciences, 2014, 15, 23936-23974. |
Hultin, “A Guide to Solvents and Reagents in Introductory Organic Chemistry for students in 2.222”, Obtained from https://home.cc.umanitoba.ca/-hultin/chem2220/Support/solvents_and_reagents.pdf on Jan. 25, 2018, originally published Feb. 12, 2002—17 pages. |
NOAA Ocean Service Education, “Corals”, downloaded from https://oceanservice.noaa.gov/education/kits/corals/coral03_growth.html on Sep. 5, 2017. |
Leisure Pro, “Coral Identification: Types of Coral (Part 1—Hard Coral)”, downloaded from http://www.leisurepro.com/blog/explorethe-blue/coral-identification-types-of-coral-part-1 on Sep. 2017. |
International Coral Reef Initiative, “What are Corals”, downloaded from http://www.iciforum.org/about-coral-reefs/what-are-corals on Sep. 5, 2017. |
U.S. Appl. No. 14/298,594, Oct. 17, 2017, Office Action cited in U.S. Appl. No. 14/298,594 dated Oct. 17, 2017. |
U.S. Appl. No. 14/861,243, Sep. 25, 2017, Office Action cited in U.S. Appl. No. 14/861,243 dated Sep. 25, 2017. |
U.S. Appl. No. 14/861,243, Feb. 2, 2018, Office Action cited in U.S. Appl. No. 14/861,243 dated Feb. 2, 2018. |
U.S. Appl. No. 14/861,375, Apr. 3, 2018, Office Action cited in U.S. Appl. No. 14/861,375 dated Apr. 3, 2018. |
U.S. Appl. No. 14/861,375, Sep. 8, 2017, Office Action cited in U.S. Appl. No. 14/861,375 dated Sep. 8, 2017. |
U.S. Appl. No. 14/861,442, Aug. 23, 2017, Office Action cited in U.S. Appl. No. 14/861,442 dated Aug. 23, 2017. |
U.S. Appl. No. 14/861,500, Sep. 22, 2017, Office Action cited in U.S. Appl. No. 14/861,500 dated Sep. 22, 2017. |
U.S. Appl. No. 14/861,562, Jun. 23, 2017, Office Action cited in U.S. Appl. No. 14/861,562 dated Jun. 23, 2017. |
U.S. Appl. No. 15/088,863, Jul. 11, 2017, Office Action cited in U.S. Appl. No. 15/088,863 on Jul. 11, 2017. |
U.S. Appl. No. 15/415,562, May 23, 2017, Office Action cited U.S. Appl. No. 15/415,562 dated May 23, 2017. |
U.S. Appl. No. 15/415,562, Sep. 5, 2017, Office Action cited in U.S. Appl. No. 15/415,562 dated Sep. 5, 2017. |
U.S. Appl. No. 15/415,562, Jan. 31, 2018, Office Action cited in U.S. Appl. No. 15/415,562 dated Jan. 31, 2018. |
Thanaa Majied Al-Nori, “Antibacterial activity of Silver and Gold Nanoparticles against Streptococus, Staphylococcus aureus and E. coli”, A1—Mustansiriya J. Sci, vol. 23, No. 3, 2012. |
Kewal K. Jain MD, FRACS, FFPM., “The Handbook of Nanomedicine” Humana Press, 2008. |
International Search Report cited in PCT/US18/62864 dated Nov. 28, 2018. |
Xiang Dongxi, “Study of Silver—nanoparticles on antiviral action”, Journal of Dalian Medical University, vol. 31, No. 6, 2009. |
U.S. Appl. No. 16/202,078, filed Nov. 27, 2018, Niedermeyer. |
Hamm et al. “Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes”, J Mater Chem A, 2014; 2(3): 792-803. |
He et al. “Ionic liquid and nanoparticle hybrid systems: Emerging applications”, 2017. Advances in Colloid and Interface Science, 2017; 244: 54-70. |
Nakashima et al. “Preparation of fusion materials based on ionic liquids and cationic gold nanoparticles”, Polymer Journal, 2015; 47:171-176. |
Choudhury et al. “A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles”, Nature Communications, 2015; DOI: 10.1038/ncomms10101. |
Gurevitch et al. “Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries”, Journal of the Electrochemical Society, 2013; 160(9): A1611-A1617. |
Korf et al. “Piperidine tethered nanoparticle-hybrid electrolyte for lithium metal batteries”, J Mater. Chem., 2014; 2: 11866-11873. |
Lu et al. “Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries”, Angew. Chem. Int. Ed., 2014; 53: 488-492. |
Pan et al. “Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries”, Adv. Mater., 2015; 27: 5995-6001. |
Tu et al. “Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries”, Adv. Energy Mater., 2014; 4: 1300654. |
Daissy Paredes, et al., “Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli OI57:h7 and methicillin-resistant Staphylococcus aureus (Mrsa)”, Apr. 3, 2014, International Journal of Nanomedicine, pp. 1717-1729. |
Guangnian Xu, et al.“Progress in preparation of nano-silver”, 2019, Materials Review, vol. 24, No. 11, pp. 139-142. |
Xinxia Yue, et al., “Preparation of silver nanoparticles by tea extracts and its application in the antibacterial finishing of cotton fabric”, 2014, Shanghai Textile Science & Technology, vol. 42, No. 5, pp. 45-49. |
U.S. Appl. No. 15/825,912, filed Jul. 15, 2019, Office Action. |
U.S. Appl. No. 16/012,508, filed Dec. 11, 2018, Office Action. |
U.S. Appl. No. 16/012,508, filed May 31, 2019. Office Action. |
Number | Date | Country | |
---|---|---|---|
20160298243 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62146587 | Apr 2015 | US | |
62170882 | Jun 2015 | US |