The present technology, roughly described, includes a battery cell having a cathode, an anode, an electrolyte, and a dendrite absorber material. The dendrite absorber material reacts with lithium dendrite that forms on the anode after cycling the battery cell through charging and discharging cycles. The dendrite absorption material interacts with the lithium dendrite via lithium fusion. As a result of the lithium fusion, the dendrite absorber forms a lithium alloy and prevents expansion of the dendrite past the dendrite absorber material within the cell battery. This helps prevent short-circuiting between the anode and cathode due to lithium dendrite, which would cause performance degradation and safety issues such as fires.
In embodiments, a lithium-ion battery cell includes a casing, a cathode, an anode, an electrolyte, and a dendrite absorber material. The anode includes lithium ions, and the cathode and anode are within the casing. The electrolyte is between the anode and the cathode, and the dendrite lithium material forms on the anode due at least in part to lithium ion migration from the cathode to the anode. The dendrite absorber material is between the anode and the cathode as well. The dendrite absorber reacts with the dendrite lithium material that forms at the anode and extends toward the cathode. The reaction between the dendrite absorber and the dendrite lithium material reducing an extension of dendrite lithium material extending from the anode to the cathode.
The present technology includes a battery cell having a cathode, an anode, an electrolyte, and a dendrite absorber material. The dendrite absorber material reacts with lithium dendrite that forms on the anode after cyling the battery cell through charging and discharging cycles. The dendrite absorption material interacts with the lithium dendrite via lithium fusion. As a result of the lithium fusion, the dendrite absorber forms a lithium alloy and prevents expansion of the dendrite past the dendrite absorber material within the cell battery. This helps prevent short-circuiting between the anode and cathode due to lithium dendrite, which would cause performance degradation and safety issues such as fires.
In operation, a lithium-ion migrates from the anode to the cathode through the battery cell electrolyte. The dendrite lithium deposits at the anode over time and multiple charge and discharge cycles. Over time, the dendrite lithium formation at the anode extends through the electrolyte towards the cathode. The dendrite growth reaches the dendrite absorber material, which can be placed within the battery cell electrolyte between the anode and the cathode. Lithium fusion occurs into the dendrite absorber material, and a lithium absorber alloy is formed.
In addition to implementing a dendrite absorber material, a ceramic separation layer may also be implemented within a battery cell. The configuration of the dendrite absorber material and the ceramic separation layer may vary. For example, the dendrite absorber material may be closer to the anode or cathode with respect to the ceramic separator material. In some instances, the dendrite absorber material and ceramic layer may alternate between an anode and cathode, wherein there are more than one of each of the dendrite absorber material and ceramic layer. Different implementations of a dendrite absorber material and ceramic layer are possible, and included within the scope of the present technology.
Charge control 114 may receive a charge from battery charging source 120 and control how the charge is applied to lithium battery 116. Battery management system 112 may monitor lithium battery 116, and provide information to charge control 114 so that charging of the lithium battery can be performed as efficiently as possible in order to maintain the health of lithium battery 116.
The dendrite absorber material may be formed from a plurality of materials. Examples of materials that can be used to implement a dendrite absorber material include silicon monoxide, zinc, silver, tin, gold, and bismuth.
The dendrite absorber material may be a thickness that is conducive to the functionality discussed herein. In some instances, a layer of the dendrite absorber material has a thickness of between 5 nanometers and 50 micrometers. In some instances, the dendrite absorber material has a thickness between 200 nanometers and 10 micrometers.
The ceramic layer, which may be implemented as a conventional ceramic or lithium ion conductor ceramic, may be implemented as one of a variety of materials, including but not limited to LATSPO, LISICON, LICGC, LAGP, LLZO, LZO, LAGTP, LiBETI, LiBOB, LiTf, LiTF, LLTO, LLZP, LTASP, LTZ, or MgO.
The solid-state electrolyte may be implemented in a variety of ways, including but not limited to LPS, LSPSC, LGPS, LBSO, LATSPO, LISICON, LICGC, LAGP, LLZO, LZO, LAGTP, LiBETI, LiBOB, LiTf, LiTF, LLTO, LLZP, LTASP, LiFSI, LiTFSI, and LTZP.
The dendrite extension, and the present technology, reaches a dendrite absorber material at step 550. The dendrite extension may reach the dendrite absorber material positioned directly in front of the anode, positioned behind a ceramic isolation layer, or otherwise positioned in the path of the dendrite extension between the anode and the cathode. Lithium diffusion occurs at the dendrite absorber material when the dendrite extension reaches the dendrite absorber material. As a result of the lithium diffusion, a lithium absorber alloy is formed at the dendrite absorber material. Once the lithium absorber alloy is formed, the dendrite will not extend past the lithium absorber material, thereby greatly reducing the risk of fire due to short-circuiting between the anode and cathode due to dendrite lithium formation.
The dendrite absorber material placed between an anode and cathode a battery cell serves to curb the dendrite growth from the anode towards the cathode. In addition to a dendrite absorber material, one or more ceramic isolation layers may also be implemented between an anode and cathode. Several configurations of dendrite absorber materials and ceramic isolation layers are possible within a battery cell. Some exemplary configurations of implementing a dendrite absorption material and a ceramic isolation layer are discussed with respect to
The foregoing detailed description of the technology herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen to best explain the principles of the technology and its practical application to thereby enable others skilled in the art to best utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the technology be defined by the claims appended hereto.