The present invention relates generally to control of a pump, and more particularly to control of a variable speed pumping system for a pool, a spa, or other aquatic application.
Conventionally, a pump to be used in an aquatic application such as a pool or a spa is operable at a finite number of predetermined speed settings (e.g., typically high and low settings). Typically, these speed settings correspond to the range of pumping demands of the pool or spa at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings typically are not readily changed to accommodate changes in the aquatic application conditions and/or pumping demands.
Generally, pumps of this type are often operated in a non-supervised manner. However, a number of problems can develop in the aquatic application that can pose a risk to damage of the pump and/or even injury to a user (i.e., a swimmer) of the aquatic application. Examples of these problems can include a deadhead condition and an entrapment condition. In one example, a deadhead condition can be caused by an obstruction or the like in the plumbing downstream from the pump. The obstruction can be caused by various reasons, such as sedimentary build-up that occurs over time, a foreign object that is lodged in the plumbing, or a valve that has been inadvertently closed. The obstruction can cause damage to the pumping system, such as by a “water hammer” effect and/or by excessive loading of the pumping system. In another example, entrapment can occur when part of a user's body becomes attached to a suction drain (e.g., pool drains, skimmers, equalizer fittings, vacuum fittings and/or intakes for water features, such a fountains, slides or the like) because of the powerful suction of the pumping system. Though most pools and spas include suction drain grates, the grates can be loose, missing, and/or damaged over time. Thus, when a user stands or sits on the loose, missing or damaged drain grate, the suction from the pumping system can hold the user underwater and can cause drowning or other injuries.
Accordingly, it would be beneficial to provide a pump that could be readily and easily adapted to respond to a deadhead and/or entrapment condition to protect the users and/or the pumping system. Further, the pumping system should be responsive to a change of conditions and/or user input instructions.
In accordance with one aspect, the present invention provides a pumping system for at least one aquatic application. The pumping system includes a pump, a motor coupled to the pump, an interface associated with the pump designed to receive input instructions from a user, and a controller in communication with the motor. The controller determines a blockage condition based on a power consumption value of the motor, and further includes an auto-restart function that is designed to allow the pump to automatically restart after detection of the blockage.
In accordance with another aspect, the present invention provides a pumping system for at least one aquatic application. The pumping system comprises a pump, a motor coupled to the pump, and a controller in communication with the motor. The controller determines a blockage condition based on a comparison of a current power consumption value of the motor to either a baseline value of power consumption of the motor or a previous power consumption value of the motor. The controller performs a condition check to determine whether a speed of the motor has recently changed, and shuts down the pumping system based on the comparison of the current power consumption only after determining that the speed change did not occur during a transition or stabilization stage of the speed change.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements throughout the figures, and in order to clearly and concisely illustrate the present invention, certain features may be shown in somewhat schematic form.
An example variable-speed pumping system 10 in accordance with one aspect of the present invention is schematically shown in
The pool 14 is one example of an aquatic application with which the present invention may be utilized. The phrase “aquatic application” is used generally herein to refer to any reservoir, tank, container or structure, natural or man-made, having a fluid, capable of holding a fluid, to which a fluid is delivered, or from which a fluid is withdrawn. Further, “aquatic application” encompasses any feature associated with the operation, use or maintenance of the aforementioned reservoir, tank, container or structure. This definition of “aquatic application” includes, but is not limited to pools, spas, whirlpool baths, landscaping ponds, water jets, waterfalls, fountains, pool filtration equipment, pool vacuums, spillways and the like. Although each of the examples provided above includes water, additional applications that include liquids other than water are also within the scope of the present invention. Herein, the terms pool and water are used with the understanding that they are not limitations on the present invention.
A water operation 22 is performed upon the water moved by the pump 16. Within the shown example, water operation 22 is a filter arrangement that is associated with the pumping system 10 and the pool 14 for providing a cleaning operation (i.e., filtering) on the water within the pool. The filter arrangement 22 is operatively connected between the pool 14 and the pump 16 at/along an inlet line 18 for the pump. Thus, the pump 16, the pool 14, the filter arrangement 22, and the interconnecting lines 18 and 20 form a fluid circuit or pathway for the movement of water.
It is to be appreciated that the function of filtering is but one example of an operation that can be performed upon the water. Other operations that can be performed upon the water may be simplistic, complex or diverse. For example, the operation performed on the water may merely be just movement of the water by the pumping system (e.g., re-circulation of the water in a waterfall or spa environment).
Turning to the filter arrangement 22, any suitable construction and configuration of the filter arrangement is possible. For example, the filter arrangement 22 may include a skimmer assembly for collecting coarse debris from water being withdrawn from the pool, and one or more filter components for straining finer material from the water.
The pump 16 may have any suitable construction and/or configuration for providing the desired force to the water and move the water. In one example, the pump 16 is a common centrifugal pump of the type known to have impellers extending radially from a central axis. Vanes defined by the impellers create interior passages through which the water passes as the impellers are rotated. Rotating the impellers about the central axis imparts a centrifugal force on water therein, and thus imparts the force flow to the water. Although centrifugal pumps are well suited to pump a large volume of water at a continuous rate, other motor operated pumps may also be used within the scope of the present invention.
Drive force is provided to the pump 16 via a pump motor 24. In the one example, the drive force is in the form of rotational force provided to rotate the impeller of the pump 16. In one specific embodiment, the pump motor 24 is a permanent magnet motor. In another specific embodiment, the pump motor 24 is an induction motor. In yet another embodiment, the pump motor 24 can be a synchronous or an asynchronous motor. The pump motor 24 operation is infinitely variable within a range of operation (i.e., zero to maximum operation). In one specific example, the operation is indicated by the RPM of the rotational force provided to rotate the impeller of the pump 16. Thus, either or both of the pump 16 and/or the motor 24 can be configured to consume power during operation.
A controller 30 provides for the control of the pump motor 24 and thus the control of the pump 16. Within the shown example, the controller 30 includes a variable speed drive 32 that provides for the infinitely variable control of the pump motor 24 (i.e., varies the speed of the pump motor). By way of example, within the operation of the variable speed drive 32, a single phase AC current from a source power supply is converted (e.g., broken) into a three-phase AC current. Any suitable technique and associated construction/configuration may be used to provide the three-phase AC current. The variable speed drive supplies the AC electric power at a changeable frequency to the pump motor to drive the pump motor. The construction and/or configuration of the pump 16, the pump motor 24, the controller 30 as a whole, and the variable speed drive 32 as a portion of the controller 30, are not limitations on the present invention. In one possibility, the pump 16 and the pump motor 24 are disposed within a single housing to form a single unit, and the controller 30 with the variable speed drive 32 are disposed within another single housing to form another single unit. In another possibility, these components are disposed within a single housing to form a single unit. Further still, the controller 30 can receive input from a user interface 31 that can be operatively connected to the controller in various manners.
The pumping system 10 has means used for control of the operation of the pump. In accordance with one aspect of the present invention, the pumping system 10 includes means for sensing, determining, or the like one or more parameters or performance values indicative of the operation performed upon the water. Within one specific example, the system includes means for sensing, determining or the like one or more parameters or performance values indicative of the movement of water within the fluid circuit.
The ability to sense, determine or the like one or more parameters or performance values may take a variety of forms. For example, one or more sensors 34 may be utilized. Such one or more sensors 34 can be referred to as a sensor arrangement. The sensor arrangement 34 of the pumping system 10 would sense one or more parameters indicative of the operation performed upon the water. Within one specific example, the sensor arrangement 34 senses parameters indicative of the movement of water within the fluid circuit. The movement along the fluid circuit includes movement of water through the filter arrangement 22. As such, the sensor arrangement 34 can include at least one sensor used to determine flow rate of the water moving within the fluid circuit and/or includes at least one sensor used to determine flow pressure of the water moving within the fluid circuit. In one example, the sensor arrangement 34 can be operatively connected with the water circuit adjacent to the location of the filter arrangement 22. It should be appreciated that the sensors of the sensor arrangement 34 may be at different locations than the locations presented for the example. Also, the sensors of the sensor arrangement 34 may be at different locations from each other. Still further, the sensors may be configured such that different sensor portions are at different locations within the fluid circuit. Such a sensor arrangement 34 would be operatively connected 36 to the controller 30 to provide the sensory information thereto. Further still, one or more sensor arrangement(s) 34 can be used to sense parameters or performance values of other components, such as the motor (e.g., motor speed or power consumption) or even values within program data running within the controller 30.
It is to be noted that the sensor arrangement 34 may accomplish the sensing task via various methodologies, and/or different and/or additional sensors may be provided within the system 10 and information provided therefrom may be utilized within the system. For example, the sensor arrangement 34 may be provided that is associated with the filter arrangement and that senses an operation characteristic associated with the filter arrangement. For example, such a sensor may monitor filter performance. Such monitoring may be as basic as monitoring filter flow rate, filter pressure, or some other parameter that indicates performance of the filter arrangement. Of course, it is to be appreciated that the sensed parameter of operation may be otherwise associated with the operation performed upon the water. As such, the sensed parameter of operation can be as simplistic as a flow indicative parameter such as rate, pressure, etc.
Such indication information can be used by the controller 30, via performance of a program, algorithm or the like, to perform various functions, and examples of such are set forth below. Also, it is to be appreciated that additional functions and features may be separate or combined, and that sensor information may be obtained by one or more sensors.
With regard to the specific example of monitoring flow rate and flow pressure, the information from the sensor arrangement 34 can be used as an indication of impediment or hindrance via obstruction or condition, whether physical, chemical, or mechanical in nature, that interferes with the flow of water from the aquatic application to the pump such as debris accumulation or the lack of accumulation, within the filter arrangement 34. As such, the monitored information is indicative of the condition of the filter arrangement.
The example of
Within another example (
It should be appreciated that the pump unit 112, which includes the pump 116 and a pump motor 124, a pool 114, a filter arrangement 122, and interconnecting lines 118 and 120, may be identical or different from the corresponding items within the example of
Turning back to the example of
Although the system 110 and the controller 130 may be of varied construction, configuration and operation, the function block diagram of
The performance value 146 can be determined utilizing information from the operation of the pump motor 124 and controlled by the adjusting element 140. As such, a feedback iteration can be performed to control the pump motor 124. Also, operation of the pump motor and the pump can provide the information used to control the pump motor/pump. As mentioned, it is an understanding that operation of the pump motor/pump has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump.
As mentioned, the sensed, determined (e.g., calculated, provided via a look-up table, graph or curve, such as a constant flow curve or the like, etc.) information can be utilized to determine the various performance characteristics of the pumping system 110, such as input power consumed, motor speed, flow rate and/or the flow pressure. In one example, the operation can be configured to prevent damage to a user or to the pumping system 10, 110 caused by an obstruction, such as a deadhead or entrapment condition. Thus, the controller (e.g., 30 or 130) provides the control to operate the pump motor/pump accordingly. In other words, the controller (e.g., 30 or 130) can repeatedly monitor one or more performance value(s) 146 of the pumping system 10,110, such as the input power consumed by, or the speed of, the pump motor (e.g., 24 or 124) to sense or determine a parameter a parameter indicative of a blockage.
Turning to one aspect that is provided by the present invention, the system (e.g., 10 or 110) can operate to alter operation of the pump in response to a determination of a blockage. Within another aspect of the present invention, the system (e.g., 10 or 110) can operate to control the motor in repose to a comparison between a performance value 146 and a value indicative of a blockage. Within yet another aspect of the present invention, the system 10, 110 can alter operation of the pump when a performance value 146 exceeds a threshold value. In still yet another aspect of the present invention, the system 10, 110 can control the pump in response to a comparison of a plurality of performance values 146.
It is to be appreciated that although similar methodology can be used to detect various blockage conditions within an aquatic application, such as deadhead and entrapment conditions, it can be beneficial to have different detection methods for each blockage condition to be detected. For example, it is desirable to relatively quickly detect and/or react to an entrapment condition to protect a user and/or the pumping system. Conversely, it can be desirable to relatively slowly detect and/or react to a dead-head condition that can be caused by sedimentary blockage over a lengthy period of time. Thus, as used herein, a “fast detection” method refers to situations involving relatively quick detection and/or reaction to a blockage (i.e., an entrapment condition or the like), while a “slow detection” method refers to situations involving relatively slow detection and/or reaction to a blockage (i.e., a deadhead condition). In one example, a “fast detection” method can alert the system upon a first occurrence of an event (i.e., the first detection of a blockage, such as an entrapment condition), while a “slow detection” method can alert the system only upon a number of cumulative or consecutive occurrences (i.e., upon a pre-determined number of blockage detections, such as sedimentary build-up over time).
Turning to one specific example, attention is directed to the process chart that is shown in
The process 200 is initiated at step 202, which is merely a title block, and proceeds to step 204. At steps 204 and 206, information can be retrieved from a filter menu such as the user interface 31, 131. The information may take a variety of forms and may have a variety of contents. As one example, the information can include user inputs related to the sensitivity of the system for detecting a system blockage. Thus, a user can make the system more or less sensitive to various blockage conditions, such as the aforementioned entrapment and/or deadhead conditions, and can even change the sensitivity to each blockage condition individually. In addition or alternatively, the information of steps 204 and 206 can be calculated or otherwise determined (e.g., stored in memory or found in a look-up table, graph, curve or the like). The information of steps 204 and 206 can include various forms, such as a value (e.g., “Yes” or “No”, a numerical value, or even a numerical value within a range of values) or a percentage (e.g., for determining a percentage change in the determined and/or measured performance values of the system 10, 110). It should be appreciated that such information (e.g., values, percentages, etc.) is desired and/or intended, and/or preselected/predetermined.
Subsequent to step 206, the process 200 can proceed to step 208 where even further information can be retrieved from a filter menu or the like (e.g., user interface 31, 131). In one example, the additional information can relate to an “auto restart” feature that can be adapted to permit the pumping system 10, 110 to automatically restart in the event that it has been slowed and/or shut down due to the detection of a blockage (e.g., entrapment or deadhead condition). As before, the information of step 208 can include various forms, such as a value (e.g., 0 or 1, or “yes” or “no”), though it can even comprise a physical switch or the like. It is to be appreciated that various other information can be input by a user to alter control of the blockage detection system.
Subsequent to step 208, the process 200 can proceed to step 210. As shown by
In step 210, the process 200 can determine a value indicative of a blockage that inhibits the movement of water through the pumping system 10, 110. In one example, step 210 can determine (e.g., calculate, get from memory or a look-up table, graph, curve etc.) a baseline value for detection of a deadhead condition (i.e., slow detection). As shown in
Subsequent to step 210, the process 200 can proceed to step 212 to determine whether a deadhead condition exists (i.e., slow detection). Thus, the process 200 can be configured in step 212 to make a comparison between a performance value and the previously-determined value indicative of a blockage. In one example, the current power (P[n]) consumed by the pump unit 12, 112 and/or the pump motor 24, 124 can be compared to the previously determined baseline value (DHD_BL). Thus, as shown, step 212 can be in the form of an “if-then” comparison such that if the current power consumption (P[n]) is less than or greater than the previously determined baseline value (DHD_BL), step 212 can output a true or false parameter, respectively.
As stated previously, “slow detection” (i.e., deadhead detection) can require a number of occurrences (blockage detections) before triggering the system. Thus, as shown, in the event of a true parameter output (i.e., the present power consumption is less than the baseline value, or P[n] <DHD_BL), the process 200 can proceed onto step 214 whereby a means for counting can increase a counter or the like, such as by increasing a counter by a value of +1. Similarly, in the event of a false parameter output (i.e., P[n]>DHD_BL), the process 200 can proceed onto step 216 whereby the means for counting can decrease or reset a counter or the like, such as by decreasing the counter by a value of −1 or resetting the counter to 0. Thus, it is to be appreciated that such a counter value can comprise a second performance value and a predetermined number of occurrences can comprise a second threshold value of the pumping system 10, 110.
It is also to be appreciated that while the means for counting can be configured to count a discrete number of occurrences (e.g., 1, 2, 3), it can also be configured to monitor and/or react to non-discrete trends in data. For example, instead of counting a discrete number of consecutive occurrences of an event, the means for counting could be configured to monitor an increasing or decreasing performance value and to react when the performance value exceeds a particular threshold. In addition or alternatively, the means for counting can be configured to monitor and/or react to various changes in a performance value with respect to another value, such as time, another performance value, another value indicative of a blockage, or the like.
In addition or alternatively, the determination of a deadhead condition as shown in step 212 can also include various other “if-then” statements or the like. For example, as shown, three separate “if-then” sub-statements must be true in order for the entire “if-then” statement to be true. Step 212 can include various sub-statements related to various other parameters that can be indicative of a slowly blocked system. For example, the sub-statements can include a comparison of changes to various other performance values, such as other aspects of power, motor speed, flow rate, and/or flow pressure. In one example, as shown, the first sub-statement can make a comparison of a power error determination in the controller 30, 130 and/or a comparison of the current motor speed compared to predetermined maximum and minimum operating values. In another example, the second sub-statement can make a comparison between the current and previous motor speeds, and can even make a determination as to whether a speed change was recently ordered by a user or by the controller 30, 130 that could affect the power consumed by the motor 24, 124. Various numbers and types of sub-statements can be used depending upon the particular system. Further still, the determination of step 212 can be configured to interact with (i.e., send or receive information to or from) a second means for controlling the pump. The second means for controlling the pump can include various other elements, such as a separate controller, a manual control system, and/or even a separate program running within the first controller 30, 130. The second means for controlling the pump can provide information for the various sub-statements as described above. For example, the information provided can include motor speed, power consumption, flow rate or flow pressure, or any changes therein, or even any changes in additional features cycles of the pumping system 10, 110 or the like.
Subsequent to steps 214 and 216, the process 200 can proceed onto step 218 to determine whether an entrapment condition exists (i.e., fast detection or “power gradient detection”). In one example, the current power (P[n]) consumed by the pump unit 12, 112 and/or the pump motor 24, 124 can be compared to a previously determined power consumption (P[n−1]) thereof. Thus, the current power (P[n]) consumption can be compared against the previous power consumption (P [n−1]) of a previous program or time cycle (i.e., the power consumption determination made during the preceding program or time cycle that occurred 100 milliseconds prior). As shown, the change in power consumption (dP/dt) between a first time period and a second time period can comprise a difference value that can include subtracting the previous power consumption (P[n−1]) from the present power consumption (P[n]), though various other comparisons, including other parameters, can also be used. Thus, when there is a sudden decrease in power consumption as compared between program time cycles (i.e., between the first and second time periods), such as might occur in an entrapment condition if a person or other object became lodged against an input 18, 118 to the pump 16, 116, the process 200 can quickly detect the blockage condition and react appropriately.
Subsequent to step 218, the process proceeds to step 220 (see
In one example, as shown in step 220, if the motor speed has recently changed, the process 200 can determine a baseline value (i.e., a value indicative of a blockage) based upon the motor speed change and corresponding oscillations in power consumption. Thus, as shown in step 222, when the motor speed has recently changed, the baseline value (PGD_BL) can be based on a fixed trigger value, such as a constant, a value from a look-up table, graph, curve, or the like. For example, the baseline value can be based on a predetermined constant that can provide a trigger level capable of preventing erroneous triggering of a blocked system detection during the speed change transition and settling times, while still permitting blocked system detection in the event of severe power gradient changes caused by an actual entrapment condition.
In another example, as shown in step 224, if the motor speed has not recently changed, the process 200 can determine a baseline value (PGD_BL) based upon (i.e., calculated) a percentage of a the present power consumption (P[n]) of the pump unit 12, 112 and/or the motor 24, 124. Additionally, the baseline value can also be dependent upon a value obtained the user interface 31, 131, such as the percentage value obtained in step 204. Thus, as shown, the power gradient (i.e., “fast detection”) baseline value can be calculated as a percentage (PGD %) of the present power consumption (P[n]). Thus, for example, if the present change in power consumption (P[n]) exceeds a percentage of the present power consumption (P[n]), then a blocked system condition can be triggered.
Subsequent to steps 222 and 224, the process 200 can make a final determination of whether the pumping system 10, 110 is actually blocked. First, the process 200 can determine whether an entrapment condition exists (“fast detection”). In step 226, the process 200 can compare the change in power consumption (dP/dt) to the power gradient baseline (PGD_BL). Thus, as shown, step 226 can be in the form of an “if-then” comparison such that if the change in power consumption (difference value dP/dt) is less than or greater than the previously determined baseline value (PGD_BL), step 226 can output a true or false parameter, respectively. Thus, as shown, in the event of a true parameter output (i.e., dP/dt<PGD_BL), the process 200 can proceed onto step 228 to indicate that the system is blocked. Conversely, in the event of a false parameter output (i.e., dP/dt>PGD_BL), then the system can proceed onto step 230.
During step 230, the process 200 can determine whether a deadhead condition exists (“slow detection”). In step 230, the process 200 can compare the deadhead counter to a threshold value, such as a predetermined limit, that can comprise a value indicative of a blockage. Thus, as shown, step 230 can also be in the form of an “if-then” comparison such that if the current counter value or the like is less than or greater than the previously determined threshold value, step 230 can output a true or false parameter, respectively. Thus, as shown, in the event of a true parameter output (i.e., counter>threshold), the process 200 can proceed onto step 232 to indicate that the system is blocked. Conversely, in the event of a false parameter output (i.e., counter<threshold), then the system can proceed onto step 234. It is to be appreciated that the “system blocked” steps 228, 232 can output the same, similar, or different values indicative of a blocked system.
Subsequent to step 232, the process 200 proceeds onto step 234. As previously described, the process 200 can exist within a repeating “while” or “if-then” loop or the like. Thus, in step 234, a “while” loop operator can determine whether the system is blocked or not (in response to steps 232 and 234). In the event the system is not blocked, the “while” loop step 234 can cause the process 200 to repeat (see
Subsequent to step 236, the process can proceed to either step 238 or 242. In a first example, the process 200 can proceed directly to step 242 to lockout the pump unit 12, 112 and/or the motor 24, 124. The lockout step 242 can inhibit and/or prevent the pump unit 12, 112 and/or the motor 24, 124 from restarting until a user takes specific action. For example, the user can be required to manually restart the pump unit 12, 112 and/or the motor 24, 124 via the user-interface 31, 131, or to take other actions.
In another example, the process 200 can proceed to a second “while” loop or the like in step 238, such as that of the previously mentioned “auto-restart” mechanism (see step 208), that can be configured to automatically restart the pump unit 12, 112 and/or the motor 24, 124 after it has been stopped by an indication of a blocked system. If the “auto-restart” mechanism has been activated in step 208, then the process 200 can proceed to the “while” loop of step 238 to automatically restart the pump unit 12, 112 and/or the motor 24, 124. The process 200 can also include a time delay as shown in step 240 to permit the pumping system 10, 110 a brief reprieve before the pump unit 12, 112 and/or the motor 24, 124 is restarted. As shown, the delay can be 30 seconds, though various other times are also contemplated to be within the scope of the invention. The delay time can be fixed or can be changed via the user interface 31, 131. Further, though not shown, the “auto restart” loop can also include a counter mechanism or the like to prevent the “auto restart” loop from constantly repeating in the event that the pumping system 10, 110 remains blocked after several failed restart attempts. Finally, in the event that the restart counter is exceeded or the auto-restart feature is disabled, the process 200 can proceed to step 242 to lockout the pump unit 12, 112 and/or the motor 24, 124. It is to be appreciated that the foregoing description of the blockage detection process 200 is not intended to provide a limitation upon the present invention, and as such the process 200 can include more or less steps and/or methodologies.
It is also to be appreciated that the controller (e.g., 30 or 130) may have various forms to accomplish the desired functions. In one example, the controller 30 can include a computer processor that operates a program. In the alternative, the program may be considered to be an algorithm. The program may be in the form of macros. Further, the program may be changeable, and the controller 30, 130 is thus programmable.
Also, it is to be appreciated that the physical appearance of the components of the system (e.g., 10 or 110) may vary. As some examples of the components, attention is directed to
In addition to the foregoing, a method of controlling the pumping system 10, 110 for moving water of an aquatic application is provided. The pumping system 10, 110 includes the water pump 12, 112 for moving water in connection with performance of an operation upon the water and the variable speed motor 24, 124 operatively connected to drive the pump 12, 112. The method comprises the steps of determining a value indicative of a blockage that inhibits the movement of water through the pumping system 10, 110, and determining a performance value of the pumping system 10, 110. The method further comprises the steps of comparing the performance value to the value indicative of a blockage, and controlling the motor 24, 124 in response to the comparison between the performance value and the value indicative of a blockage. In addition or alternatively, the method can include any of the various elements and/or operations discussed previously herein, and/or even additional elements and/or operations.
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the scope of the teaching contained in this disclosure. As such, it is to be appreciated that the person of ordinary skill in the art will perceive changes, modifications, and improvements to the example disclosed herein. Such changes, modifications, and improvements are intended to be within the scope of the present invention.
This application is a continuation of U.S. application Ser. No. 11/609,057, filed Dec. 11, 2006, which is a continuation-in-part of U.S. application Ser. No. 10/926,513 filed Aug. 26, 2004 and U.S. application Ser. No. 11/286,888 filed Nov. 23, 2005, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
981213 | Mollitor | Jan 1911 | A |
1993267 | Ferguson | Mar 1935 | A |
2238597 | Page | Apr 1941 | A |
2458006 | Kilgore | Jan 1949 | A |
2488365 | Abbott et al. | Nov 1949 | A |
2494200 | Ramqvist | Jan 1950 | A |
2615937 | Ludwig | Oct 1952 | A |
2716195 | Anderson | Aug 1955 | A |
2767277 | Wirth | Oct 1956 | A |
2778958 | Hamm et al. | Jan 1957 | A |
2881337 | Wall | Apr 1959 | A |
3116445 | Wright | Dec 1963 | A |
3191935 | Uecker | Jun 1965 | A |
3204423 | Resh, Jr. | Sep 1965 | A |
3213304 | Landerg et al. | Oct 1965 | A |
3226620 | Elliott et al. | Dec 1965 | A |
3227808 | Morris | Jan 1966 | A |
3291058 | McFarlin | Dec 1966 | A |
3316843 | Vaughan | May 1967 | A |
3481973 | Wygant | Dec 1969 | A |
3530348 | Connor | Sep 1970 | A |
3558910 | Dale et al. | Jan 1971 | A |
3559731 | Stafford | Feb 1971 | A |
3562614 | Gramkow | Feb 1971 | A |
3566225 | Paulson | Feb 1971 | A |
3573579 | Lewus | Apr 1971 | A |
3581895 | Howard et al. | Jun 1971 | A |
3593081 | Forst | Jul 1971 | A |
3594623 | LaMaster | Jul 1971 | A |
3596158 | Watrous | Jul 1971 | A |
3613805 | Lindstad | Oct 1971 | A |
3624470 | Johnson | Nov 1971 | A |
3634842 | Niedermeyer | Jan 1972 | A |
3652912 | Bordonaro | Mar 1972 | A |
3671830 | Kruger | Jun 1972 | A |
3726606 | Peters | Apr 1973 | A |
1061919 | Miller | May 1973 | A |
3735233 | Ringle | May 1973 | A |
3737749 | Schmit | Jun 1973 | A |
3753072 | Jurgens | Aug 1973 | A |
3761750 | Green | Sep 1973 | A |
3761792 | Whitney | Sep 1973 | A |
3777232 | Woods et al. | Dec 1973 | A |
3778804 | Adair | Dec 1973 | A |
3780759 | Yahle et al. | Dec 1973 | A |
3781925 | Curtis | Jan 1974 | A |
3787882 | Fillmore et al. | Jan 1974 | A |
3792324 | Suarez | Feb 1974 | A |
3800205 | Zalar | Mar 1974 | A |
3814544 | Roberts et al. | Jun 1974 | A |
3838597 | Montgomery et al. | Oct 1974 | A |
3867071 | Hartley | Feb 1975 | A |
3882364 | Wright | May 1975 | A |
3902369 | Metz | Sep 1975 | A |
3910725 | Rule | Oct 1975 | A |
3913342 | Barry | Oct 1975 | A |
3916274 | Lewus | Oct 1975 | A |
3941507 | Niedermeyer | Mar 1976 | A |
3949782 | Athey et al. | Apr 1976 | A |
3953777 | McKee | Apr 1976 | A |
3956760 | Edwards | May 1976 | A |
3963375 | Curtis | Jun 1976 | A |
3972647 | Niedermeyer | Aug 1976 | A |
3976919 | Vandevier | Aug 1976 | A |
3987240 | Schultz | Oct 1976 | A |
4000446 | Vandevier | Dec 1976 | A |
4021700 | Ellis-Anwyl | May 1977 | A |
4041470 | Slane et al. | Aug 1977 | A |
4061442 | Clark et al. | Dec 1977 | A |
4087204 | Niedermeyer | May 1978 | A |
4108574 | Bartley et al. | Aug 1978 | A |
4123792 | Gephart et al. | Oct 1978 | A |
4133058 | Baker | Jan 1979 | A |
4142415 | Jung et al. | Mar 1979 | A |
4151080 | Zuckerman et al. | Apr 1979 | A |
4168413 | Halpine | Sep 1979 | A |
4169377 | Scheib | Oct 1979 | A |
4182363 | Fuller | Jan 1980 | A |
4185187 | Rogers | Jan 1980 | A |
4187503 | Walton | Feb 1980 | A |
4206634 | Taylor | Jun 1980 | A |
4215975 | Niedermeyer | Aug 1980 | A |
4222711 | Mayer | Sep 1980 | A |
4225290 | Allington | Sep 1980 | A |
4228427 | Niedermeyer | Oct 1980 | A |
4233553 | Prince | Nov 1980 | A |
4241299 | Bertone | Dec 1980 | A |
4255747 | Bunia | Mar 1981 | A |
4263535 | Jones | Apr 1981 | A |
4276454 | Zathan | Jun 1981 | A |
4286303 | Genheimer et al. | Aug 1981 | A |
4303203 | Avery | Dec 1981 | A |
4307327 | Streater et al. | Dec 1981 | A |
4309157 | Niedermeyer | Jan 1982 | A |
4314478 | Beaman | Feb 1982 | A |
4319712 | Bar | Mar 1982 | A |
4322297 | Bajka | Mar 1982 | A |
4330412 | Frederick | May 1982 | A |
4353220 | Curwein | Oct 1982 | A |
4366426 | Turlej | Dec 1982 | A |
4369438 | Wilhelmi | Jan 1983 | A |
4370098 | McClain et al. | Jan 1983 | A |
4370690 | Baker | Jan 1983 | A |
4371315 | Shikasho | Feb 1983 | A |
4375613 | Fuller et al. | Mar 1983 | A |
4384825 | Thomas et al. | May 1983 | A |
4399394 | Ballman | Aug 1983 | A |
4402094 | Sanders | Sep 1983 | A |
4409532 | Hollenbeck | Oct 1983 | A |
4419625 | Bejot et al. | Dec 1983 | A |
4420787 | Tibbits et al. | Dec 1983 | A |
4421643 | Frederick | Dec 1983 | A |
4425836 | Pickrell | Jan 1984 | A |
4427545 | Arguilez | Jan 1984 | A |
4428434 | Gelaude | Jan 1984 | A |
4429343 | Freud | Jan 1984 | A |
4437133 | Rueckert | Mar 1984 | A |
4448072 | Tward | May 1984 | A |
4449260 | Whitaker | May 1984 | A |
4453118 | Phillips | Jun 1984 | A |
4456432 | Mannino | Jun 1984 | A |
4462758 | Speed | Jul 1984 | A |
4463304 | Miller | Jul 1984 | A |
4468604 | Zaderej | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4473338 | Garmong | Sep 1984 | A |
4494180 | Streater | Jan 1985 | A |
4496895 | Kawate et al. | Jan 1985 | A |
4504773 | Suzuki et al. | Mar 1985 | A |
4505643 | Millis et al. | Mar 1985 | A |
D278529 | Hoogner | Apr 1985 | S |
4514989 | Mount | May 1985 | A |
4520303 | Ward | May 1985 | A |
4529359 | Sloan | Jul 1985 | A |
4541029 | Ohyama | Sep 1985 | A |
4545906 | Frederick | Oct 1985 | A |
4552512 | Gallup et al. | Nov 1985 | A |
4564041 | Kramer | Jan 1986 | A |
4564882 | Baxter | Jan 1986 | A |
4581900 | Lowe | Apr 1986 | A |
4604563 | Min | Aug 1986 | A |
4605888 | Kim | Aug 1986 | A |
4610605 | Hartley | Sep 1986 | A |
4620835 | Bell | Nov 1986 | A |
4622506 | Shemanske | Nov 1986 | A |
4635441 | Ebbing et al. | Jan 1987 | A |
4647825 | Profio et al. | Mar 1987 | A |
4651077 | Woyski | Mar 1987 | A |
4652802 | Johnston | Mar 1987 | A |
4658195 | Min | Apr 1987 | A |
4658203 | Freymuth | Apr 1987 | A |
4668902 | Zeller, Jr. | May 1987 | A |
4670697 | Wrege | Jun 1987 | A |
4676914 | Mills et al. | Jun 1987 | A |
4678404 | Lorett et al. | Jul 1987 | A |
4678409 | Kurokawa | Jul 1987 | A |
4686439 | Cunningham | Aug 1987 | A |
4695779 | Yates | Sep 1987 | A |
4697464 | Martin | Oct 1987 | A |
4703387 | Miller | Oct 1987 | A |
4705629 | Weir | Nov 1987 | A |
4716605 | Shepherd | Jan 1988 | A |
4719399 | Wrege | Jan 1988 | A |
4728882 | Stanbro | Mar 1988 | A |
4751449 | Chmiel | Jun 1988 | A |
4751450 | Lorenz | Jun 1988 | A |
4758697 | Jeuneu | Jul 1988 | A |
4761601 | Zaderej | Aug 1988 | A |
4764417 | Gulya | Aug 1988 | A |
4764714 | Alley | Aug 1988 | A |
4766329 | Santiago | Aug 1988 | A |
4767280 | Markuson | Aug 1988 | A |
4780050 | Caine et al. | Oct 1988 | A |
4781525 | Hubbard | Nov 1988 | A |
4782278 | Bossi | Nov 1988 | A |
4786850 | Chmiel | Nov 1988 | A |
4789307 | Sloan | Dec 1988 | A |
4795314 | Prybella et al. | Jan 1989 | A |
4801858 | Min | Jan 1989 | A |
4804901 | Pertessis | Feb 1989 | A |
4806457 | Yanagisawa | Feb 1989 | A |
4820964 | Kadah | Apr 1989 | A |
4827197 | Giebeler | May 1989 | A |
4834624 | Jensen | May 1989 | A |
4837656 | Barnes | Jun 1989 | A |
4839571 | Farnham | Jun 1989 | A |
4841404 | Marshall et al. | Jun 1989 | A |
4843295 | Thompson | Jun 1989 | A |
4862053 | Jordan | Aug 1989 | A |
4864287 | Kierstead | Sep 1989 | A |
4885655 | Springer et al. | Dec 1989 | A |
4891569 | Light | Jan 1990 | A |
4896101 | Cobb | Jan 1990 | A |
4907610 | Meincke | Mar 1990 | A |
4912936 | Denpou | Apr 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4949748 | Chatrathi | Aug 1990 | A |
4958118 | Pottebaum | Sep 1990 | A |
4963778 | Jensen | Oct 1990 | A |
4967131 | Kim | Oct 1990 | A |
4971522 | Butlin | Nov 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
4977394 | Manson et al. | Dec 1990 | A |
4985181 | Strada et al. | Jan 1991 | A |
4986919 | Allington | Jan 1991 | A |
4996646 | Farrington | Feb 1991 | A |
D315315 | Stairs, Jr. | Mar 1991 | S |
4998097 | Noth et al. | Mar 1991 | A |
5015151 | Snyder, Jr. et al. | May 1991 | A |
5015152 | Greene | May 1991 | A |
5017853 | Chmiel | May 1991 | A |
5026256 | Kuwabara | Jun 1991 | A |
5041771 | Min | Aug 1991 | A |
5051068 | Wong | Sep 1991 | A |
5051681 | Schwarz | Sep 1991 | A |
5076761 | Krohn | Dec 1991 | A |
5076763 | Anastos et al. | Dec 1991 | A |
5079784 | Rist et al. | Jan 1992 | A |
5091817 | Alley | Feb 1992 | A |
5098023 | Burke | Mar 1992 | A |
5099181 | Canon | Mar 1992 | A |
5100298 | Shibata | Mar 1992 | A |
RE33874 | Miller | Apr 1992 | E |
5103154 | Dropps | Apr 1992 | A |
5117233 | Hamos et al. | May 1992 | A |
5123080 | Gillett | Jun 1992 | A |
5129264 | Lorenc | Jul 1992 | A |
5135359 | Dufresne | Aug 1992 | A |
5145323 | Farr | Sep 1992 | A |
5151017 | Sears et al. | Sep 1992 | A |
5154821 | Reid | Oct 1992 | A |
5156535 | Budris | Oct 1992 | A |
5158436 | Jensen | Oct 1992 | A |
5159713 | Gaskill | Oct 1992 | A |
5164651 | Hu | Nov 1992 | A |
5166595 | Leverich | Nov 1992 | A |
5167041 | Burkitt | Dec 1992 | A |
5172089 | Wright et al. | Dec 1992 | A |
D334542 | Lowe | Apr 1993 | S |
5206573 | McCleer et al. | Apr 1993 | A |
5222867 | Walker, Sr. et al. | Jun 1993 | A |
5234286 | Wagner | Aug 1993 | A |
5234319 | Wilder | Aug 1993 | A |
5235235 | Martin | Aug 1993 | A |
5238369 | Farr | Aug 1993 | A |
5240380 | Mabe | Aug 1993 | A |
5245272 | Herbert | Sep 1993 | A |
5247236 | Schroeder | Sep 1993 | A |
5255148 | Yeh | Oct 1993 | A |
5272933 | Collier | Dec 1993 | A |
5295790 | Bossart et al. | Mar 1994 | A |
5295857 | Toly | Mar 1994 | A |
5296795 | Dropps | Mar 1994 | A |
5298721 | Smuckler | Mar 1994 | A |
5302885 | Schwarz | Apr 1994 | A |
5319298 | Wanzong et al. | Jun 1994 | A |
5324170 | Anastos et al. | Jun 1994 | A |
5327036 | Carey | Jul 1994 | A |
5342176 | Redlich | Aug 1994 | A |
5347664 | Hamza et al. | Sep 1994 | A |
5349281 | Bugaj | Sep 1994 | A |
5351709 | Vos | Oct 1994 | A |
5351714 | Barnowski | Oct 1994 | A |
5352969 | Gilmore et al. | Oct 1994 | A |
5361215 | Tompkins | Nov 1994 | A |
5363912 | Wolcott | Nov 1994 | A |
5394748 | McCarthy | Mar 1995 | A |
5418984 | Livingston, Jr. | May 1995 | A |
D359458 | Pierret | Jun 1995 | S |
5422014 | Allen et al. | Jun 1995 | A |
5423214 | Lee | Jun 1995 | A |
5425624 | Williams | Jun 1995 | A |
5443368 | Weeks et al. | Aug 1995 | A |
5444354 | Takahashi | Aug 1995 | A |
5449274 | Kochan, Jr. | Sep 1995 | A |
5449997 | Gilmore et al. | Sep 1995 | A |
5450316 | Gaudet et al. | Sep 1995 | A |
D363060 | Hunger | Oct 1995 | S |
5457373 | Heppe et al. | Oct 1995 | A |
5471125 | Wu | Nov 1995 | A |
5473497 | Beatty | Dec 1995 | A |
5483229 | Tamura et al. | Jan 1996 | A |
5495161 | Hunter | Feb 1996 | A |
5499902 | Rockwood | Mar 1996 | A |
5511397 | Makino et al. | Apr 1996 | A |
5512809 | Banks et al. | Apr 1996 | A |
5512883 | Lane | Apr 1996 | A |
5518371 | Wellstein | May 1996 | A |
5519848 | Wloka | May 1996 | A |
5520517 | Sipin | May 1996 | A |
5522707 | Potter | Jun 1996 | A |
5528120 | Brodetsky | Jun 1996 | A |
5529462 | Hawes | Jun 1996 | A |
5532635 | Watrous | Jul 1996 | A |
5540555 | Corso et al. | Jul 1996 | A |
D372719 | Jensen | Aug 1996 | S |
5545012 | Anastos et al. | Aug 1996 | A |
5548854 | Bloemer et al. | Aug 1996 | A |
5549456 | Burrill | Aug 1996 | A |
5550497 | Carobolante | Aug 1996 | A |
5550753 | Tompkins et al. | Aug 1996 | A |
5559418 | Burkhart | Sep 1996 | A |
5559720 | Tompkins | Sep 1996 | A |
5559762 | Sakamoto | Sep 1996 | A |
5561357 | Schroeder | Oct 1996 | A |
5562422 | Ganzon et al. | Oct 1996 | A |
5563759 | Nadd | Oct 1996 | A |
D375908 | Schumaker | Nov 1996 | S |
5570481 | Mathis et al. | Nov 1996 | A |
5571000 | Zimmermann et al. | Nov 1996 | A |
5577890 | Nielsen et al. | Nov 1996 | A |
5580221 | Triezenberg | Dec 1996 | A |
5582017 | Noji et al. | Dec 1996 | A |
5589753 | Kadah | Dec 1996 | A |
5592062 | Bach | Jan 1997 | A |
5598080 | Jensen | Jan 1997 | A |
5601413 | Langley | Feb 1997 | A |
5604491 | Coonley et al. | Feb 1997 | A |
5614812 | Wagoner | Mar 1997 | A |
5616239 | Wendell et al. | Apr 1997 | A |
5618460 | Fowler | Apr 1997 | A |
5622223 | Vasquez | Apr 1997 | A |
5624237 | Prescott et al. | Apr 1997 | A |
5626464 | Schoenmeyr | May 1997 | A |
5628896 | Klingenberger | May 1997 | A |
5629601 | Feldstein | May 1997 | A |
5632468 | Schoenmeyr | May 1997 | A |
5633540 | Moan | May 1997 | A |
5640078 | Kou et al. | Jun 1997 | A |
5654504 | Smith et al. | Aug 1997 | A |
5654620 | Langhorst | Aug 1997 | A |
5669323 | Pritchard | Sep 1997 | A |
5672050 | Webber et al. | Sep 1997 | A |
5682624 | Ciochetti | Nov 1997 | A |
5690476 | Miller | Nov 1997 | A |
5708348 | Frey et al. | Jan 1998 | A |
5711483 | Hays | Jan 1998 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713320 | Pfaff et al. | Feb 1998 | A |
5727933 | Laskaris et al. | Mar 1998 | A |
5730861 | Sterghos et al. | Mar 1998 | A |
5731673 | Gilmore | Mar 1998 | A |
5736884 | Ettes et al. | Apr 1998 | A |
5739648 | Ellis et al. | Apr 1998 | A |
5744921 | Makaran | Apr 1998 | A |
5754036 | Walker | May 1998 | A |
5754421 | Nystrom | May 1998 | A |
5767606 | Bresolin | Jun 1998 | A |
5777833 | Romillon | Jul 1998 | A |
5780992 | Beard | Jul 1998 | A |
5791882 | Stucker | Aug 1998 | A |
5796234 | Vrionis | Aug 1998 | A |
5802910 | Krahn et al. | Sep 1998 | A |
5804080 | Klingenberger | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5814966 | Williamson | Sep 1998 | A |
5818708 | Wong | Oct 1998 | A |
5818714 | Zou | Oct 1998 | A |
5819848 | Ramusson | Oct 1998 | A |
5820350 | Mantey et al. | Oct 1998 | A |
5828200 | Ligman et al. | Oct 1998 | A |
5833437 | Kurth et al. | Nov 1998 | A |
5836271 | Sasaki | Nov 1998 | A |
5845225 | Mosher | Dec 1998 | A |
5856783 | Gibb | Jan 1999 | A |
5863185 | Cochimin et al. | Jan 1999 | A |
5883489 | Konrad | Mar 1999 | A |
5892349 | Bogwicz | Apr 1999 | A |
5894609 | Barnett | Apr 1999 | A |
5898958 | Hall | May 1999 | A |
5906479 | Hawes | May 1999 | A |
5907281 | Miller, Jr. et al. | May 1999 | A |
5909352 | Klabunde et al. | Jun 1999 | A |
5909372 | Thybo | Jun 1999 | A |
5914881 | Trachier | Jun 1999 | A |
5920264 | Kim et al. | Jul 1999 | A |
5930092 | Nystrom | Jul 1999 | A |
5941690 | Lin | Aug 1999 | A |
5944444 | Motz et al. | Aug 1999 | A |
5945802 | Konrad et al. | Aug 1999 | A |
5946469 | Chidester | Aug 1999 | A |
5947689 | Schick | Sep 1999 | A |
5947700 | McKain et al. | Sep 1999 | A |
5959534 | Campbell | Sep 1999 | A |
5961291 | Sakagami et al. | Oct 1999 | A |
5969958 | Nielsen | Oct 1999 | A |
5973465 | Rayner | Oct 1999 | A |
5973473 | Anderson | Oct 1999 | A |
5977732 | Matsumoto | Nov 1999 | A |
5983146 | Sarbach | Nov 1999 | A |
5986433 | Peele et al. | Nov 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5991939 | Mulvey | Nov 1999 | A |
6030180 | Clarey et al. | Feb 2000 | A |
6037742 | Rasmussen | Mar 2000 | A |
6043461 | Holling et al. | Mar 2000 | A |
6045331 | Gehm et al. | Apr 2000 | A |
6045333 | Breit | Apr 2000 | A |
6046492 | Machida | Apr 2000 | A |
6048183 | Meza | Apr 2000 | A |
6056008 | Adams et al. | May 2000 | A |
6059536 | Stingl | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6072291 | Pedersen | Jun 2000 | A |
6081751 | Luo | Jun 2000 | A |
6091604 | Plougsgaard | Jul 2000 | A |
6092992 | Imblum | Jul 2000 | A |
D429699 | Davis | Aug 2000 | S |
D429700 | Liebig | Aug 2000 | S |
6094764 | Veloskey et al. | Aug 2000 | A |
6098654 | Cohen et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110322 | Teoh et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6121746 | Fishers | Sep 2000 | A |
6121749 | Wills et al. | Sep 2000 | A |
6125481 | Sicilano | Oct 2000 | A |
6125883 | Creps et al. | Oct 2000 | A |
6142741 | Nishihata | Nov 2000 | A |
6146108 | Mullendore | Nov 2000 | A |
6150776 | Potter et al. | Nov 2000 | A |
6157304 | Bennett et al. | Dec 2000 | A |
6164132 | Matulek | Dec 2000 | A |
6171073 | McKain et al. | Jan 2001 | B1 |
6178393 | Irvin | Jan 2001 | B1 |
6184650 | Gelbman | Feb 2001 | B1 |
6188200 | Maiorano | Feb 2001 | B1 |
6198257 | Belehradek et al. | Mar 2001 | B1 |
6199224 | Versland | Mar 2001 | B1 |
6203282 | Morin | Mar 2001 | B1 |
6208112 | Jensen et al. | Mar 2001 | B1 |
6212956 | Donald | Apr 2001 | B1 |
6213724 | Haugen | Apr 2001 | B1 |
6216814 | Fujita et al. | Apr 2001 | B1 |
6222355 | Ohshima | Apr 2001 | B1 |
6227808 | McDonough | May 2001 | B1 |
6232742 | Wachnov | May 2001 | B1 |
6236177 | Zick | May 2001 | B1 |
6238188 | Lifson | May 2001 | B1 |
6247429 | Hara | Jun 2001 | B1 |
6249435 | Vicente et al. | Jun 2001 | B1 |
6251285 | Ciochetti | Jun 2001 | B1 |
6253227 | Tompkins et al. | Jun 2001 | B1 |
D445405 | Schneider | Jul 2001 | S |
6254353 | Polo | Jul 2001 | B1 |
6257304 | Jacobs et al. | Jul 2001 | B1 |
6257833 | Bates | Jul 2001 | B1 |
6259617 | Wu | Jul 2001 | B1 |
6264431 | Triezenberg | Jul 2001 | B1 |
6264432 | Kilayko et al. | Jul 2001 | B1 |
6280611 | Henkin et al. | Aug 2001 | B1 |
6282370 | Cline et al. | Aug 2001 | B1 |
6299414 | Schoenmeyr | Oct 2001 | B1 |
6299699 | Porat et al. | Oct 2001 | B1 |
6318093 | Gaudet et al. | Nov 2001 | B2 |
6320348 | Kadah | Nov 2001 | B1 |
6326752 | Jensen et al. | Dec 2001 | B1 |
6329784 | Puppin | Dec 2001 | B1 |
6330525 | Hays | Dec 2001 | B1 |
6342841 | Stingl | Jan 2002 | B1 |
6349268 | Ketonen et al. | Feb 2002 | B1 |
6350105 | Kobayashi et al. | Feb 2002 | B1 |
6351359 | Jager | Feb 2002 | B1 |
6354805 | Moeller | Mar 2002 | B1 |
6356464 | Balakrishnan | Mar 2002 | B1 |
6356853 | Sullivan | Mar 2002 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6364620 | Fletcher et al. | Apr 2002 | B1 |
6364621 | Yamauchi | Apr 2002 | B1 |
6366053 | Belehradek | Apr 2002 | B1 |
6366481 | Balakrishnan | Apr 2002 | B1 |
6369463 | Maiorano | Apr 2002 | B1 |
6373204 | Peterson | Apr 2002 | B1 |
6373728 | Aarestrup | Apr 2002 | B1 |
6374854 | Acosta | Apr 2002 | B1 |
6375430 | Eckert et al. | Apr 2002 | B1 |
6380707 | Rosholm | Apr 2002 | B1 |
6388642 | Cotis | May 2002 | B1 |
6390781 | McDonough | May 2002 | B1 |
6406265 | Hahn | Jun 2002 | B1 |
6411481 | Seubert | Jun 2002 | B1 |
6415808 | Joshi | Jul 2002 | B2 |
6416295 | Nagai | Jul 2002 | B1 |
6426633 | Thybo | Jul 2002 | B1 |
6443715 | Mayleben et al. | Sep 2002 | B1 |
6445565 | Toyoda et al. | Sep 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6448713 | Farkas et al. | Sep 2002 | B1 |
6450771 | Centers | Sep 2002 | B1 |
6462971 | Balakrishnan et al. | Oct 2002 | B1 |
6464464 | Sabini | Oct 2002 | B2 |
6468042 | Moller | Oct 2002 | B2 |
6468052 | McKain et al. | Oct 2002 | B2 |
6474949 | Arai | Nov 2002 | B1 |
6481973 | Struthers | Nov 2002 | B1 |
6483278 | Harvest | Nov 2002 | B2 |
6483378 | Blodgett | Nov 2002 | B2 |
6490920 | Netzer | Dec 2002 | B1 |
6493227 | Nielsen et al. | Dec 2002 | B2 |
6496392 | Odell | Dec 2002 | B2 |
6499961 | Wyatt | Dec 2002 | B1 |
6501629 | Marriott | Dec 2002 | B1 |
6503063 | Brunsell | Jan 2003 | B1 |
6504338 | Eichorn | Jan 2003 | B1 |
6520010 | Bergveld | Feb 2003 | B1 |
6522034 | Nakayama | Feb 2003 | B1 |
6523091 | Tirumala | Feb 2003 | B2 |
6527518 | Ostrowski | Mar 2003 | B2 |
6534940 | Bell et al. | Mar 2003 | B2 |
6534947 | Johnson | Mar 2003 | B2 |
6537032 | Horiuchi | Mar 2003 | B1 |
6538908 | Balakrishnan et al. | Mar 2003 | B2 |
6539797 | Livingston | Apr 2003 | B2 |
6543940 | Chu | Apr 2003 | B2 |
6548976 | Jensen | Apr 2003 | B2 |
6564627 | Sabini | May 2003 | B1 |
6570778 | Lipo et al. | May 2003 | B2 |
6571807 | Jones | Jun 2003 | B2 |
6590188 | Cline | Jul 2003 | B2 |
6591697 | Henyan | Jul 2003 | B2 |
6591863 | Ruschell | Jul 2003 | B2 |
6595051 | Chandler, Jr. | Jul 2003 | B1 |
6595762 | Khanwilkar et al. | Jul 2003 | B2 |
6604909 | Schoenmeyr | Aug 2003 | B2 |
6607360 | Fong | Aug 2003 | B2 |
6616413 | Humpheries | Sep 2003 | B2 |
6623245 | Meza et al. | Sep 2003 | B2 |
6626840 | Drzewiecki et al. | Sep 2003 | B2 |
6628501 | Toyoda | Sep 2003 | B2 |
6632072 | Lipscomb et al. | Oct 2003 | B2 |
6636135 | Vetter | Oct 2003 | B1 |
6638023 | Scott | Oct 2003 | B2 |
D482664 | Hunt | Nov 2003 | S |
6643153 | Balakrishnan | Nov 2003 | B2 |
6651900 | Yoshida | Nov 2003 | B1 |
6663349 | Discenzo et al. | Dec 2003 | B1 |
6665200 | Goto | Dec 2003 | B2 |
6672147 | Mazet | Jan 2004 | B1 |
6675912 | Carrier | Jan 2004 | B2 |
6676382 | Leighton et al. | Jan 2004 | B2 |
6676831 | Wolfe | Jan 2004 | B2 |
6687141 | Odell | Feb 2004 | B2 |
6687923 | Dick | Feb 2004 | B2 |
6690250 | Moller | Feb 2004 | B2 |
6696676 | Graves et al. | Feb 2004 | B1 |
6700333 | Hirshi et al. | Mar 2004 | B1 |
6709240 | Schmalz | Mar 2004 | B1 |
6709241 | Sabini | Mar 2004 | B2 |
6709575 | Verdegan | Mar 2004 | B1 |
6715996 | Moeller | Apr 2004 | B2 |
6717318 | Mathiassen | Apr 2004 | B1 |
6732387 | Waldron | May 2004 | B1 |
6737905 | Noda | May 2004 | B1 |
D490726 | Eungprabhanth | Jun 2004 | S |
6742387 | Hamamoto | Jun 2004 | B2 |
6747367 | Cline et al. | Jun 2004 | B2 |
6761067 | Capano | Jul 2004 | B1 |
6768279 | Skinner | Jul 2004 | B1 |
6770043 | Kahn | Aug 2004 | B1 |
6774664 | Godbersen | Aug 2004 | B2 |
6776038 | Horton et al. | Aug 2004 | B1 |
6776584 | Sabini et al. | Aug 2004 | B2 |
6778868 | Imamura et al. | Aug 2004 | B2 |
6779205 | Mulvey | Aug 2004 | B2 |
6782309 | Laflamme | Aug 2004 | B2 |
6783328 | Lucke | Aug 2004 | B2 |
6789024 | Kochan, Jr. et al. | Sep 2004 | B1 |
6794921 | Abe | Sep 2004 | B2 |
6797164 | Leaverton | Sep 2004 | B2 |
6798271 | Swize | Sep 2004 | B2 |
6799950 | Meier et al. | Oct 2004 | B2 |
6806677 | Kelly et al. | Oct 2004 | B2 |
6837688 | Kimberlin et al. | Jan 2005 | B2 |
6842117 | Keown | Jan 2005 | B2 |
6847130 | Belehradek et al. | Jan 2005 | B1 |
6847854 | Discenzo | Jan 2005 | B2 |
6854479 | Harwood | Feb 2005 | B2 |
6863502 | Bishop et al. | Mar 2005 | B2 |
6867383 | Currier | Mar 2005 | B1 |
6875961 | Collins | Apr 2005 | B1 |
6882165 | Ogura | Apr 2005 | B2 |
6884022 | Albright | Apr 2005 | B2 |
D504900 | Wang | May 2005 | S |
D505429 | Wang | May 2005 | S |
6888537 | Benson et al. | May 2005 | B2 |
6895608 | Goettl | May 2005 | B2 |
6900736 | Crumb | May 2005 | B2 |
6906482 | Shimizu | Jun 2005 | B2 |
D507243 | Miller | Jul 2005 | S |
6914793 | Balakrishnan | Jul 2005 | B2 |
6922348 | Nakajima | Jul 2005 | B2 |
6925823 | Lifson | Aug 2005 | B2 |
6933693 | Schuchmann | Aug 2005 | B2 |
6941785 | Haynes et al. | Sep 2005 | B2 |
6943325 | Pittman | Sep 2005 | B2 |
D511530 | Wang | Nov 2005 | S |
D512026 | Nurmi | Nov 2005 | S |
6965815 | Tompkins et al. | Nov 2005 | B1 |
6966967 | Curry | Nov 2005 | B2 |
D512440 | Wang | Dec 2005 | S |
6973794 | Street | Dec 2005 | B2 |
6973974 | McLoughlin et al. | Dec 2005 | B2 |
6976052 | Tompkins et al. | Dec 2005 | B2 |
D513737 | Riley | Jan 2006 | S |
6981399 | Nubp et al. | Jan 2006 | B1 |
6981402 | Bristol | Jan 2006 | B2 |
6984158 | Satoh | Jan 2006 | B2 |
6989649 | Mehlhorn | Jan 2006 | B2 |
6993414 | Shah | Jan 2006 | B2 |
6998807 | Phillips et al. | Feb 2006 | B2 |
6998977 | Gregori et al. | Feb 2006 | B2 |
7005818 | Jensen | Feb 2006 | B2 |
7012394 | Moore et al. | Mar 2006 | B2 |
7015599 | Gull et al. | Mar 2006 | B2 |
7040107 | Lee et al. | May 2006 | B2 |
7042192 | Mehlhorn | May 2006 | B2 |
7050278 | Poulsen | May 2006 | B2 |
7055189 | Goettl | Jun 2006 | B2 |
7070134 | Hoyer | Jul 2006 | B1 |
7077781 | Ishikawa | Jul 2006 | B2 |
7080508 | Stavale | Jul 2006 | B2 |
7081728 | Kemp | Jul 2006 | B2 |
7083392 | Meza et al. | Aug 2006 | B2 |
7089607 | Barnes et al. | Aug 2006 | B2 |
7100632 | Harwood | Sep 2006 | B2 |
7102505 | Kates | Sep 2006 | B2 |
7112037 | Sabini et al. | Sep 2006 | B2 |
7114926 | Oshita | Oct 2006 | B2 |
7117120 | Beck et al. | Oct 2006 | B2 |
7141210 | Bell | Nov 2006 | B2 |
7142932 | Spira et al. | Nov 2006 | B2 |
D533512 | Nakashima | Dec 2006 | S |
7163380 | Jones | Jan 2007 | B2 |
7172366 | Bishop, Jr. | Feb 2007 | B1 |
7178179 | Barnes | Feb 2007 | B2 |
7183741 | Mehlhorn | Feb 2007 | B2 |
7195462 | Nybo et al. | Mar 2007 | B2 |
7201563 | Studebaker | Apr 2007 | B2 |
7221121 | Skaug | May 2007 | B2 |
7244106 | Kallaman | Jul 2007 | B2 |
7245105 | Joo | Jul 2007 | B2 |
7259533 | Yang et al. | Aug 2007 | B2 |
7264449 | Harned et al. | Sep 2007 | B1 |
7281958 | Schuttler et al. | Oct 2007 | B2 |
7292898 | Clark et al. | Nov 2007 | B2 |
7307538 | Kochan, Jr. | Dec 2007 | B2 |
7309216 | Spadola et al. | Dec 2007 | B1 |
7318344 | Heger | Jan 2008 | B2 |
D562349 | Bulter | Feb 2008 | S |
7327275 | Brochu | Feb 2008 | B2 |
7339126 | Niedermeyer | Mar 2008 | B1 |
D567189 | Stiles, Jr. | Apr 2008 | S |
7352550 | Mladenik | Apr 2008 | B2 |
7375940 | Bertrand | May 2008 | B1 |
7388348 | Mattichak | Jun 2008 | B2 |
7407371 | Leone | Aug 2008 | B2 |
7427844 | Mehlhorn | Sep 2008 | B2 |
7429842 | Schulman et al. | Sep 2008 | B2 |
7437215 | Anderson et al. | Oct 2008 | B2 |
D582797 | Fraser | Dec 2008 | S |
D583828 | Li | Dec 2008 | S |
7458782 | Spadola et al. | Dec 2008 | B1 |
7459886 | Potanin et al. | Dec 2008 | B1 |
7484938 | Allen | Feb 2009 | B2 |
7516106 | Ehlers | Apr 2009 | B2 |
7525280 | Fagan et al. | Apr 2009 | B2 |
7528579 | Pacholok et al. | May 2009 | B2 |
7542251 | Ivankovic | Jun 2009 | B2 |
7542252 | Chan et al. | Jun 2009 | B2 |
7572108 | Koehl | Aug 2009 | B2 |
7612510 | Koehl | Nov 2009 | B2 |
7612529 | Kochan, Jr. | Nov 2009 | B2 |
7623986 | Miller | Nov 2009 | B2 |
7641449 | Iimura et al. | Jan 2010 | B2 |
7652441 | Ho | Jan 2010 | B2 |
7686587 | Koehl | Mar 2010 | B2 |
7686589 | Stiles et al. | Mar 2010 | B2 |
7690897 | Branecky | Apr 2010 | B2 |
7700887 | Niedermeyer | Apr 2010 | B2 |
7704051 | Koehl | Apr 2010 | B2 |
7727181 | Rush | Jun 2010 | B2 |
7739733 | Szydlo | Jun 2010 | B2 |
7746063 | Sabini et al. | Jun 2010 | B2 |
7751159 | Koehl | Jul 2010 | B2 |
7755318 | Panosh | Jul 2010 | B1 |
7775327 | Abraham | Aug 2010 | B2 |
7777435 | Aguilar | Aug 2010 | B2 |
7788877 | Andras | Sep 2010 | B2 |
7795824 | Shen et al. | Sep 2010 | B2 |
7808211 | Pacholok et al. | Oct 2010 | B2 |
7815420 | Koehl | Oct 2010 | B2 |
7821215 | Koehl | Oct 2010 | B2 |
7845913 | Stiles et al. | Dec 2010 | B2 |
7854597 | Stiles et al. | Dec 2010 | B2 |
7857600 | Koehl | Dec 2010 | B2 |
7874808 | Stiles | Jan 2011 | B2 |
7878766 | Meza | Feb 2011 | B2 |
7900308 | Erlich | Mar 2011 | B2 |
7925385 | Stavale et al. | Apr 2011 | B2 |
7931447 | Levin et al. | Apr 2011 | B2 |
7945411 | Kernan et al. | May 2011 | B2 |
7976284 | Koehl | Jul 2011 | B2 |
7983877 | Koehl | Jul 2011 | B2 |
7990091 | Koehl | Aug 2011 | B2 |
8011895 | Ruffo | Sep 2011 | B2 |
8019479 | Stiles | Sep 2011 | B2 |
8032256 | Wolf et al. | Oct 2011 | B1 |
8043070 | Stiles | Oct 2011 | B2 |
8049464 | Muntermann | Nov 2011 | B2 |
8098048 | Hoff | Jan 2012 | B2 |
8104110 | Caudill et al. | Jan 2012 | B2 |
8126574 | Discenzo et al. | Feb 2012 | B2 |
8133034 | Mehlhorn et al. | Mar 2012 | B2 |
8134336 | Michalske et al. | Mar 2012 | B2 |
8177520 | Mehlhorn | May 2012 | B2 |
8281425 | Cohen | Oct 2012 | B2 |
8303260 | Stavale et al. | Nov 2012 | B2 |
8313306 | Stiles et al. | Nov 2012 | B2 |
8316152 | Geltner et al. | Nov 2012 | B2 |
8317485 | Meza et al. | Nov 2012 | B2 |
8337166 | Meza et al. | Dec 2012 | B2 |
8380355 | Mayleben et al. | Feb 2013 | B2 |
8405346 | Trigiani | Mar 2013 | B2 |
8405361 | Richards et al. | Mar 2013 | B2 |
8444394 | Koehl | May 2013 | B2 |
8465262 | Stiles et al. | Jun 2013 | B2 |
8469675 | Stiles et al. | Jun 2013 | B2 |
8480373 | Stiles et al. | Jul 2013 | B2 |
8500413 | Stiles et al. | Aug 2013 | B2 |
8540493 | Koehl | Sep 2013 | B2 |
8547065 | Trigiani | Oct 2013 | B2 |
8573952 | Stiles et al. | Nov 2013 | B2 |
8579600 | Vijayakumar | Nov 2013 | B2 |
8602745 | Stiles | Dec 2013 | B2 |
8641383 | Meza | Feb 2014 | B2 |
8641385 | Koehl | Feb 2014 | B2 |
8669494 | Tran | Mar 2014 | B2 |
8756991 | Edwards | Jun 2014 | B2 |
8763315 | Hartman | Jul 2014 | B2 |
8774972 | Rusnak | Jul 2014 | B2 |
20010002238 | McKain | May 2001 | A1 |
20010029407 | Tompkins | Oct 2001 | A1 |
20010041139 | Sabini et al. | Nov 2001 | A1 |
20020000789 | Haba | Jan 2002 | A1 |
20020002989 | Jones | Jan 2002 | A1 |
20020010839 | Tirumala et al. | Jan 2002 | A1 |
20020018721 | Kobayashi | Feb 2002 | A1 |
20020032491 | Imamura et al. | Mar 2002 | A1 |
20020035403 | Clark et al. | Mar 2002 | A1 |
20020050490 | Pittman et al. | May 2002 | A1 |
20020070611 | Cline et al. | Jun 2002 | A1 |
20020070875 | Crumb | Jun 2002 | A1 |
20020082727 | Laflamme et al. | Jun 2002 | A1 |
20020089236 | Cline et al. | Jul 2002 | A1 |
20020093306 | Johnson | Jul 2002 | A1 |
20020101193 | Farkas | Aug 2002 | A1 |
20020111554 | Drzewiecki | Aug 2002 | A1 |
20020131866 | Phillips | Sep 2002 | A1 |
20020136642 | Moller | Sep 2002 | A1 |
20020150476 | Lucke | Oct 2002 | A1 |
20020163821 | Odell | Nov 2002 | A1 |
20020172055 | Balakrishnan | Nov 2002 | A1 |
20020176783 | Moeller | Nov 2002 | A1 |
20020190687 | Bell et al. | Dec 2002 | A1 |
20030000303 | Livingston | Jan 2003 | A1 |
20030017055 | Fong | Jan 2003 | A1 |
20030030954 | Bax et al. | Feb 2003 | A1 |
20030034284 | Wolfe | Feb 2003 | A1 |
20030034761 | Goto | Feb 2003 | A1 |
20030048646 | Odell | Mar 2003 | A1 |
20030061004 | Discenzo | Mar 2003 | A1 |
20030063900 | Wang et al. | Apr 2003 | A1 |
20030099548 | Meza | May 2003 | A1 |
20030106147 | Cohen et al. | Jun 2003 | A1 |
20030174450 | Nakajima et al. | Sep 2003 | A1 |
20030186453 | Bell | Oct 2003 | A1 |
20030196942 | Jones | Oct 2003 | A1 |
20040000525 | Hornsby | Jan 2004 | A1 |
20040006486 | Schmidt et al. | Jan 2004 | A1 |
20040009075 | Meza | Jan 2004 | A1 |
20040013531 | Curry et al. | Jan 2004 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040025244 | Loyd et al. | Feb 2004 | A1 |
20040055363 | Bristol | Mar 2004 | A1 |
20040062658 | Beck et al. | Apr 2004 | A1 |
20040064292 | Beck | Apr 2004 | A1 |
20040071001 | Balakrishnan | Apr 2004 | A1 |
20040080325 | Ogura | Apr 2004 | A1 |
20040080352 | Noda | Apr 2004 | A1 |
20040090197 | Schuchmann | May 2004 | A1 |
20040095183 | Swize | May 2004 | A1 |
20040116241 | Ishikawa | Jun 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040118203 | Heger | Jun 2004 | A1 |
20040149666 | Leaverton | Aug 2004 | A1 |
20040205886 | Goettl | Oct 2004 | A1 |
20040213676 | Phillips | Oct 2004 | A1 |
20040265134 | Iimura et al. | Dec 2004 | A1 |
20050050908 | Lee et al. | Mar 2005 | A1 |
20050086957 | Lifson | Apr 2005 | A1 |
20050095150 | Leone et al. | May 2005 | A1 |
20050097665 | Goettl | May 2005 | A1 |
20050123408 | Koehl | Jun 2005 | A1 |
20050133088 | Bologeorges | Jun 2005 | A1 |
20050137720 | Spira et al. | Jun 2005 | A1 |
20050156568 | Yueh | Jul 2005 | A1 |
20050158177 | Mehlhorn | Jul 2005 | A1 |
20050167345 | De Wet et al. | Aug 2005 | A1 |
20050170936 | Quinn | Aug 2005 | A1 |
20050180868 | Miller | Aug 2005 | A1 |
20050190094 | Andersen | Sep 2005 | A1 |
20050193485 | Wolfe | Sep 2005 | A1 |
20050195545 | Mladenik | Sep 2005 | A1 |
20050226731 | Mehlhorn | Oct 2005 | A1 |
20050235732 | Rush | Oct 2005 | A1 |
20050248310 | Fagan et al. | Nov 2005 | A1 |
20050260079 | Allen | Nov 2005 | A1 |
20050281679 | Niedermeyer | Dec 2005 | A1 |
20050281681 | Anderson | Dec 2005 | A1 |
20060045750 | Stiles | Mar 2006 | A1 |
20060045751 | Beckman et al. | Mar 2006 | A1 |
20060078435 | Burza | Apr 2006 | A1 |
20060078444 | Sacher | Apr 2006 | A1 |
20060090255 | Cohen | May 2006 | A1 |
20060093492 | Janesky | May 2006 | A1 |
20060127227 | Mehlhorn | Jun 2006 | A1 |
20060138033 | Hoal et al. | Jun 2006 | A1 |
20060146462 | McMillian et al. | Jul 2006 | A1 |
20060169322 | Torkelson | Aug 2006 | A1 |
20060204367 | Meza | Sep 2006 | A1 |
20060226997 | Kochan, Jr. | Oct 2006 | A1 |
20060235573 | Guion | Oct 2006 | A1 |
20060269426 | Llewellyn | Nov 2006 | A1 |
20070001635 | Ho | Jan 2007 | A1 |
20070041845 | Freudenberger | Feb 2007 | A1 |
20070061051 | Maddox | Mar 2007 | A1 |
20070080660 | Fagan et al. | Apr 2007 | A1 |
20070113647 | Mehlhorn | May 2007 | A1 |
20070114162 | Stiles et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070154319 | Stiles | Jul 2007 | A1 |
20070154320 | Stiles | Jul 2007 | A1 |
20070154321 | Stiles | Jul 2007 | A1 |
20070154322 | Stiles | Jul 2007 | A1 |
20070154323 | Stiles | Jul 2007 | A1 |
20070160480 | Ruffo | Jul 2007 | A1 |
20070163929 | Stiles | Jul 2007 | A1 |
20070183902 | Stiles | Aug 2007 | A1 |
20070187185 | Abraham et al. | Aug 2007 | A1 |
20070188129 | Kochan, Jr. | Aug 2007 | A1 |
20070212210 | Kernan et al. | Sep 2007 | A1 |
20070212229 | Stavale et al. | Sep 2007 | A1 |
20070212230 | Stavale et al. | Sep 2007 | A1 |
20070258827 | Gierke | Nov 2007 | A1 |
20080003114 | Levin et al. | Jan 2008 | A1 |
20080031751 | Littwin et al. | Feb 2008 | A1 |
20080031752 | Littwin et al. | Feb 2008 | A1 |
20080039977 | Clark et al. | Feb 2008 | A1 |
20080041839 | Tran | Feb 2008 | A1 |
20080063535 | Koehl | Mar 2008 | A1 |
20080095638 | Branecky | Apr 2008 | A1 |
20080095639 | Bartos | Apr 2008 | A1 |
20080131286 | Koehl | Jun 2008 | A1 |
20080131289 | Koehl | Jun 2008 | A1 |
20080131291 | Koehl | Jun 2008 | A1 |
20080131294 | Koehl | Jun 2008 | A1 |
20080131295 | Koehl | Jun 2008 | A1 |
20080131296 | Koehl | Jun 2008 | A1 |
20080140353 | Koehl | Jun 2008 | A1 |
20080152508 | Meza | Jun 2008 | A1 |
20080168599 | Caudill | Jul 2008 | A1 |
20080181785 | Koehl | Jul 2008 | A1 |
20080181786 | Meza | Jul 2008 | A1 |
20080181787 | Koehl | Jul 2008 | A1 |
20080181788 | Meza | Jul 2008 | A1 |
20080181789 | Koehl | Jul 2008 | A1 |
20080181790 | Meza | Jul 2008 | A1 |
20080189885 | Erlich | Aug 2008 | A1 |
20080229819 | Mayleben et al. | Sep 2008 | A1 |
20080260540 | Koehl | Oct 2008 | A1 |
20080288115 | Rusnak et al. | Nov 2008 | A1 |
20080298978 | Schulman et al. | Dec 2008 | A1 |
20090014044 | Hartman | Jan 2009 | A1 |
20090038696 | Levin et al. | Feb 2009 | A1 |
20090052281 | Nybo | Feb 2009 | A1 |
20090104044 | Koehl | Apr 2009 | A1 |
20090143917 | Uy et al. | Jun 2009 | A1 |
20090204237 | Sustaeta et al. | Aug 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090208345 | Moore et al. | Aug 2009 | A1 |
20090210081 | Sustaeta et al. | Aug 2009 | A1 |
20090269217 | Vijayakumar | Oct 2009 | A1 |
20100154534 | Hampton | Jun 2010 | A1 |
20100166570 | Hampton | Jul 2010 | A1 |
20100197364 | Lee | Aug 2010 | A1 |
20100303654 | Petersen et al. | Dec 2010 | A1 |
20100306001 | Discenzo | Dec 2010 | A1 |
20100312398 | Kidd et al. | Dec 2010 | A1 |
20110036164 | Burdi | Feb 2011 | A1 |
20110044823 | Stiles | Feb 2011 | A1 |
20110052416 | Stiles | Mar 2011 | A1 |
20110077875 | Tran | Mar 2011 | A1 |
20110084650 | Kaiser et al. | Apr 2011 | A1 |
20110110794 | Mayleben et al. | May 2011 | A1 |
20110280744 | Ortiz et al. | Nov 2011 | A1 |
20110311370 | Sloss et al. | Dec 2011 | A1 |
20120020810 | Stiles, Jr. et al. | Jan 2012 | A1 |
20120100010 | Stiles et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
3940997 | Feb 1998 | AU |
2005204246 | Mar 2006 | AU |
2007332716 | Jun 2008 | AU |
2007332769 | Jun 2008 | AU |
2548437 | Jun 2005 | CA |
2731482 | Jun 2005 | CA |
2517040 | Feb 2006 | CA |
2528580 | May 2007 | CA |
2672410 | Jun 2008 | CA |
2672459 | Jun 2008 | CA |
1821574 | Aug 2006 | CN |
101165352 | Apr 2008 | CN |
3023463 | Feb 1981 | DE |
2946049 | May 1981 | DE |
29612980 | Oct 1996 | DE |
19736079 | Aug 1997 | DE |
19645129 | May 1998 | DE |
29724347 | Nov 2000 | DE |
10231773 | Feb 2004 | DE |
19938490 | Apr 2005 | DE |
0150068 | Jul 1985 | EP |
0226858 | Jul 1987 | EP |
0246769 | Nov 1987 | EP |
0306814 | Mar 1989 | EP |
0306814 | Mar 1989 | EP |
0314249 | Mar 1989 | EP |
0709575 | May 1996 | EP |
0735273 | Oct 1996 | EP |
0833436 | Apr 1998 | EP |
0831188 | Feb 1999 | EP |
0978657 | Feb 2000 | EP |
1134421 | Sep 2001 | EP |
0916026 | May 2002 | EP |
1315929 | Jun 2003 | EP |
1585205 | Oct 2005 | EP |
1630422 | Mar 2006 | EP |
1698815 | Sep 2006 | EP |
1790858 | May 2007 | EP |
1995462 | Nov 2008 | EP |
2102503 | Sep 2009 | EP |
2122171 | Nov 2009 | EP |
2122172 | Nov 2009 | EP |
2273125 | Jan 2011 | EP |
2529965 | Jan 1984 | FR |
2703409 | Oct 1994 | FR |
2124304 | Feb 1984 | GB |
55072678 | May 1980 | JP |
5010270 | Jan 1993 | JP |
2009006258 | Dec 2009 | MX |
9804835 | Feb 1998 | WO |
0042339 | Jul 2000 | WO |
0127508 | Apr 2001 | WO |
2001027508 | Apr 2001 | WO |
0147099 | Jun 2001 | WO |
02018826 | Mar 2002 | WO |
2002018826 | Mar 2002 | WO |
03025442 | Mar 2003 | WO |
2003025442 | Mar 2003 | WO |
03099705 | Dec 2003 | WO |
2004006416 | Jan 2004 | WO |
2004073772 | Sep 2004 | WO |
2004088694 | Oct 2004 | WO |
2005011473 | Feb 2005 | WO |
2005011473 | Feb 2005 | WO |
2005011473 | Feb 2005 | WO |
2005055694 | Jun 2005 | WO |
2005111473 | Nov 2005 | WO |
2006069568 | Jul 2006 | WO |
2008073329 | Jun 2008 | WO |
2008073330 | Jun 2008 | WO |
2008073386 | Jun 2008 | WO |
2008073413 | Jun 2008 | WO |
2008073418 | Jun 2008 | WO |
2008073433 | Jun 2008 | WO |
2008073436 | Jun 2008 | WO |
2011100067 | Aug 2011 | WO |
2011100067 | Aug 2011 | WO |
200506869 | May 2006 | ZA |
200509691 | Nov 2006 | ZA |
200904747 | Jul 2010 | ZA |
200904849 | Jul 2010 | ZA |
200904850 | Jul 2010 | ZA |
Entry |
---|
9PX14-Pentair; “IntelliFlo Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-00459D. |
Allen-Bradley; “1336 PLUS II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212. |
Flotec Owner's Manual, dated 2004. 44 pages. |
Glentronics Home Page, dated 2007. 2 pages. |
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages. |
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007. |
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages. |
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages. |
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages. |
The Basement Watchdog A/C—D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages. |
The Basement Watchdog Computer Controlled A/C—D/C Sump Pump System Instruction Manual, dated 2010. 17 pages. |
Pentair Water Ace Pump Catalog, dated 2007, 44 pages. |
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages. |
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747 has incorrect filing date. |
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com. |
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA. |
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA. |
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001. |
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA. |
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated. |
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA. |
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” entitled “Cost Effective Pump Protection+Energy Savings,” Jan. 2002; Seneca Falls, NY. |
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA. |
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA. |
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan 2001; USA. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA. |
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement. |
AMTROL Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA. |
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, in USA. |
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.Franklin-electric.com. |
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark. |
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA. |
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001. |
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA. |
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000. |
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA. |
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999. |
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001. |
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA. |
Grundfos; “SmartFio Sqe Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA. |
Grundfos; “Grundfos SmartFio SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA. |
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated. |
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com. |
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12. |
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA. |
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA. |
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com. |
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA. |
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012. |
1-Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011. |
7-Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011. |
22-Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011. |
23-Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011. |
24-Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-av-00459-D; Sep. 30, 2011. |
32-Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011. |
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, U.S. Pat. No. 3,019,479 B2, Nov. 19, 2014, 39 pages. |
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages. |
51-Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
Amended Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459, adding U.S. Pat. No. 8,043,070. |
53-Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
89-Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-w-004590; Jan. 3, 2012. |
105-Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012. |
112-Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012. |
119-Order Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012. |
123-Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012. |
152-Order Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012. |
168-Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-004590; Jun. 13, 2012. |
174-Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012. |
186-Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012. |
204-Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-004590; Jul. 2012. |
210-Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-004590; Jul. 2012. |
218-Notice re Plaintiffs re Order on Motion for Leave to File Excess pp. re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-004590; Aug. 2012. |
54DX16-Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-004590. |
54DX17-Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX18-STMicroelectronics; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590. |
54DX19-STMicroelectronics; “AN1276 BLOC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-004590. |
54DX21-Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-004590. |
54DX22-Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX23-Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590. |
540X30-Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590. |
540X31-0ANFOSS; “VLT 5000 FLUX Aqua OeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-004590. |
540X32-0ANFOSS; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-004590. |
540X33-Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590. |
540X34-Pentair; “Compoo13800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590. |
540X35-Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
5540X36-Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D. |
540X37-Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
540X38-0ANFOSS; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in civil Action 5:11-cv-004590. |
540X45-Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-004590; 1994. |
540X46-Hopkins; “High-Temperature, High-Oensity . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-004590; Mar. 2006. |
540X47-Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-004590; Jun. 1999. |
9PX5-Pentair; Selected Website Pages; pp. 1-29; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX6-Pentair; “IntelliFio Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX7-Pentair; “IntelliFio VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX8-Pentair; “IntelliFio VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX9-STA-RITE; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX14-Pentair; “IntelliFio Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-004590. |
9PX16-Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in civil Action 5:11-cv-00459D; 2010. |
9PX17-Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011. |
9PX19-Hayward Pool Products; “Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; cited in civil Action 5:11-cv-00459D; Sep. 2011. |
9PX20-Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX21-Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX22-Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D. |
9PX23-Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX28-Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX29-Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011. |
9PX30-Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX-42-Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010. |
205-24-Exh23-Piaintiffs Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012. |
PX-34-Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011. |
PX-138-Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662. |
PX-141-Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459. |
9PX10-Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D. |
9PX11-Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-004590. |
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-194. |
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92. |
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118. |
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74. |
Dinverter; “Dinverter 28 User Guide;” Nov. 1998; pp. 1-94. |
Pentair Pool Products, “IntelliFlo 4x160 a Breakthrough Energy-Efficiency and Service Life; ” pp. 1-4; Nov, 2005; www.pentairpool.com. |
Pentair Water and Spa, Inc. “The Pool Pro's guide to Breakthrough Efficiency, Convenience & Profitability,” pp. 1-8, Mar. 2006; www.pentairpool.com. |
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71. |
“Product Focus—New AC Drive Series Target Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2. |
Pentair, “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2. |
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45. |
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4. |
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118. |
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000. |
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure valves,” Mar. 2002. |
Undated Goulds Pumps “Balanced Flow Systems” Installation Record. |
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996). |
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998). |
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002). |
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998). |
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997). |
7-Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459D. |
540X48-Hopkins; “Partitioning Oigitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D. |
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages. |
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21. |
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina. |
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina. |
Danfoss, VLT® AQUA Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16. |
Danfoss, SALT Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16. |
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page. |
45-Piaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D. |
50-Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D. |
54DX32-Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D. |
Pent Air; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60. |
Decision on Appeal issued in Appeal No. 2015-007909, regarding Hayward Industries, Inc. v. Pentair Ltd., mailed Apr. 1, 2016, 19 pages. |
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, Case IPR2013-00287, Patent 7,704,051 B2, Nov. 19, 2014, 28 pages. |
Dan Foss, VLT 8000 AQUA Operating Instructions, coded MG.80.A2.02 in the footer, 181 pages. |
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages. |
Karl Johan Åström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada. |
Bimal K. Bose—The University of Tennessee, Knoxville, Modem Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey. |
Naterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7. |
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A. |
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers for 12-Bit ADC on 8-Bit MCUs, convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona. |
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd. |
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of Dh House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003. |
Texas Instruments, Electronic Copy of TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages. |
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, Tempus Publications, Great Britain. |
James Shirley, et al., A mechatronics and material handling systems laboratory: experiments and case studies, International Journal of Electrical Engineering Education 48/1, pp. 92-103. |
U.S. Appl. No. 12/869,570 Appeal Decision dated May 24, 2016. |
Number | Date | Country | |
---|---|---|---|
20140093394 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11609057 | Dec 2006 | US |
Child | 14097101 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10926513 | Aug 2004 | US |
Child | 11609057 | US | |
Parent | 11286888 | Nov 2005 | US |
Child | 10926513 | US |