1. Field of the Invention
The present invention relates to the preparation and the anti-flame application of an inorganic film from self-assembly of nanoscale silicate platelets (NSP) into regularly aligned and ordered structure by facile water-evaporation process. The film, consisting of aluminosilicates and other metal oxides for over 94%, with the thickness from 1 to 1,000 μm, is semi-transparent and flexible, and can be applied to fabrics, electronic devices, construction materials, paintings, appliances, and vehicles parts, to provide the property of anti-flame or thermal insulation. The NSP film is optionally blended with organic polymers from 0-70% for improving flexibility.
2. Related Technologies
Aluminosilicate clay is known to have the properties of gas barrier, heat blocking, flame retardancy, and fire resistance. Pure clay film is well known to possess anti-flame and heat insulation properties. However, the preparation and application of the inorganic films have represented a problem due to their lack of flexibility.
A polymer can be incorporated to solve the above issue. References disclosing the related technologies are as follows: (1) G. Johnsy et al., “Aminoclay: A Designer Filler For the Synthesis of Highly Ductile Polymer-Nanocomposite Film” Applied Materials & Interfaces, 1 (2009), 12, 2796-2803; (2) Siska Hamdani et al., “Flame Retardancy of Silicone-Based Materials”, Polymer Degradation and Stability, 94 (2009), 465-495; (3) Hyun-Jeong Nam et al., “Formability And Properties of Self-Standing Clay Film by Montmorillonite With Different Interlayer Cations”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 346 (2009), 158-163; (4) Andreas Walther, et al., “Large-Area, Lightweight and Thick Biomimetic Composites With Superior Material Properties Via Fast, Economic, And Green Pathways”, Nano Lett., 10 (2010), 8, 2742-2748.
However, the anti-flame and heat insulation effects of these organic/inorganic composite films are usually unsatisfactory due to the presence of organic content. In addition, as reported by Hyun-Jeong Nam, Takeo Ebina, Fujio Mizukami, Colloids and Surfaces A: Physicochem. Eng. Aspects, 346 (2009), 158-163, the film formability declined significantly with over 50 wt % of inorganic content.
To overcome the above drawbacks, the present invention provides a film comprised solely of NSP. The NSP film has the flexibility of an organic film, while still retaining the anti-flame and heat insulation properties of an inorganic film.
The main objective of the present invention is to provide a method for preparing a flexible film that is mainly inorganic in composition and has anti-flame and thermal insulation properties either with or without polymer incorporation.
In the present invention, the method for producing the anti-flame film primarily includes the steps: (1) preparing a nanoscale silicate platelets (NSP) dispersion by dispersing the NSP in water or an organic solvent, wherein the NSP are prepared from exfoliation of an inorganic clay; and (2) drying the diluted dispersion on a substrate or a container at a temperature in the range of 25 to 80° C. for the water or solvent to evaporate to allow the NSP to self-assemble into regularly aligned stack-layer structure and yield a semi-transparent NSP film with a thickness of 1 μm to 1,000 μm and a flexibility or minimum bend diameter of 1 mm to 100 mm. The thickness of the NSP film is preferably about 2 μm to 500 μm, and more preferably about 5 μm to 100 μm. The minimum bend diameter or flexibility of the NSP film is preferably 1.5 mm to 50 mm, and more preferably 2 mm to 10 mm.
The NSP dispersion is preferably diluted with the water or organic solvent at 5 to 99° C.
The diluted dispersion is preferably dried at 30 to 70° C. in step (2). The films of different thicknesses can be achieved from the dispersions of different concentrations or by different processes, for example, drying in a PET or Teflon pan or spin-coating, spraying or dip-coating on a substrate. When the film is made thinner, its flexibility can be increased.
The NSP includes over 95 wt % inorganic composition (or less than 6% carbon). For example, the NSP comprises metal oxides in the following weight percentages as revealed by energy dispersive spectrometer (EDS) analysis: Na (1-4 wt %), Mg (1-4 wt %), Al (4-17 wt %), Si (10-40 wt %), Fe (1-4 wt %), 0 (40-80 wt %) and some others in negligible amount or beyond the limit of detection.
In addition, a polymer can be blended with the NSP dispersion in step (1) to afford a nanocomposite film. The NSP/polymer nanocomposite films are prepared at different weight ratios of NSP to the polymer, preferably at 60/40, more preferably at 70/30, and most preferably at 90/10. The polymer can be polyvinyl alcohol (PVA), ethylvinyl alcohol (EVOH), polyvinylpyrrolidone (PVP), polyester, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyimide (PI), poly(methylmethacrylate) (PMMA), polystyrene (PS), polyacetal, polyacrylic resin, polyamide, polycarbonate, polyethylene, polypropylene, polybutadiene, polyolefins, polyphenylene sulfide, polyphenylene oxide, polyurethane resin, alkyd resin, epoxy, unsaturated polyester resin, polyurethane, or polyurea; preferably PVA, EVOH, PMMA, PET, polyimide or polystyrene; and more preferably PVA and EVOH.
The anti-flame film of the present invention is superior to the conventional clay or inorganic film in the following properties:
1. excellent flexibility and film formability;
2. excellent anti-flame and heat insulation properties.
3. good dimensional stability at high temperature.
The materials used in the Examples and Comparative Examples include:
The exfoliating agent used was an amine-terminated Mannich oligomer sparingly soluble in water. After AMO (57.5 g; 23 meg) was complexed with hydrochloric acid (35 wt % in water, 1.2 g; 11.5 meq), the water-soluble AMO quaternary salt was hence prepared for the MMT exfoliation.
The acidified AMO (from Step 1) was added into a stirred aqueous dispersion of Na+MMT at 80° C. After vigorous agitation for 5 hours, the reaction mixture was allowed to cool to room temperature. The AMO/MMT hybrid was isolated by filtration to remove water. XRD analysis of a sample of the isolated hybrid showed no diffraction peak or featureless in Bragg's pattern.
Step (3): Displacement Reaction of AMO Quaternary Salt with Sodium Ion (I)
An aqueous solution of NaOH (4.6 g in water) was added to the AMO/MMT hybrid (from Step 2) under agitation to afford a thick suspension. After filtration of the suspension, the filtrand was washed with ethanol twice to give AMO/NSP hybrids. TGA analysis indicated an organic composition of 40 wt % due to the presence of AMO.
Step (4): Displacement Reaction of AMO Quaternary Salt with Sodium Ion (II)
A second displacement reaction was carried out to thoroughly remove AMO. In this step, the isolated AMO/NSP hybrid was mixed vigorously with another portion of NaOH (9.2 g) in ethanol (1L), water (1L), and toluene (1L). After left standing overnight, the mixtures were separated into an upper toluene phase containing the AMO exfoliating agent, a middle phase of clear ethanol, and a lower water phase containing NSP. A comparison between the thermal gravity analysis (TGA) of NSP and MMT indicates less than 2% (7.7−5.8=1.9) of organic impurities in NSP (
The films of the present invention are prepared as follows (
A NSP dispersion (50 g, 10 wt %) was added into a beaker and diluted with de-ionized water (110 g) with mechanically stirring for one hour at room temperature. The NSP dispersion was casted onto a PET pan and dried on a hotplate at 60° C. overnight to remove water to afford a free-standing NSP film with 20 μm thickness. The film was analyzed by EDS and TGA as shown the data in Table 1 and
A NSP dispersion (100 g, 10 wt %) was added into a beaker and diluted with de-ionized water (233 g) with mechanically stirring for three hours at room temperature. The NSP dispersion was casted onto a PET pan and dried at room temperature overnight to remove water to afford a free-standing NSP film with 40 μm thickness.
A NSP dispersion (50 g, 10 wt %) was added into a beaker and diluted with de-ionized water (50 g) with mechanically stirring for two hours at room temperature. The NSP dispersion was casted onto a Teflon pan and dried at room temperature overnight to remove water to afford a free-standing NSP film with 20 μm thickness.
A NSP dispersion (100 g, 10 wt %) was added into a beaker and diluted with de-ionized water (100 g) with mechanically stirring for three hours at room temperature. The NSP dispersion was processed by spinning coating at room temperature for film formation. After dried overnight at room temperature overnight, a NSP film with 5 μm thickness was obtained.
A NSP dispersion (50 g, 10 wt %) was added into a beaker and diluted with de-ionized water (50 g) with mechanically stirring for two hours at room temperature. The NSP dispersion was processed by spinning coating at 30° C. for film formation. After dried for 5 hours at room temperature, a NSP film with 5 μm thickness was obtained.
A NSP dispersion (50 g, 10 wt %) was added into a beaker and diluted with de-ionized water (50 g) with mechanically stirring for two hours at room temperature. The NSP dispersion was processed by spraying at 50° C. for film formation. After dried for 3 hours at room temperature, a NSP film with 5 μm thickness was obtained.
A NSP dispersion (50 g, 10 wt %) was added into a beaker and diluted with de-ionized water (50 g) with mechanically stirring for two hours at room temperature. The NSP dispersion was processed by dip-coating at 60° C. for film formation. After dried for 3 hours at room temperature, a NSP film with 10 μm thickness was obtained.
A NSP dispersion (35 g, 10 wt %), a PVA aqueous solution (15 g, 10 wt %), and de-ionized water (50 g) were added into a beaker with mechanically stirring for two hours at room temperature. The mixture was then processed by dip-coating for film formation at 60° C. After dried for 3 hours at room temperature, a NSP/PVA composite film (NSP/PVP=70/30) with 6 μm thickness was obtained.
A NSP dispersion (25 g, 10 wt %), a PVA aqueous solution (25 g, 10 wt %), and de-ionized water (50 g) were added into a beaker with mechanically stirring for two hours at room temperature. The mixture was then processed by dip-coating for film formation at 60° C. After dried for 3 hours at room temperature, a NSP/PVA composite film (NSP/PVP=50/50) with 5 μM thickness was obtained.
A NSP dispersion (15 g, 10 wt %), a PVA aqueous solution (35 g, 10 wt %), and de-ionized water (50 g) were added into a beaker with mechanically stirring for two hours at room temperature. The mixture was then processed by dip-coating for film formation at 60° C. After dried for 3 hours at room temperature, a NSP/PVA composite film (NSP/PVP=30/70) with 5 μm thickness was obtained.
A MMT aqueous solution (100 g, 5 wt %) was processed by dip-coating for film formation at 60° C. After dried for 3 hours at room temperature, a MMT film with 11 μm thickness was obtained. The film was analyzed and compared as shown in Table 1 and
A PVA aqueous solution (100 g, 5 wt %) was processed by dip-coating for film formation at 60° C. After dried for 3 hours at room temperature, a PVA film with 10 μm thickness was obtained.
The NSP film (Example 1) is free-standing, semi-transparent, and flexible. In the present invention, flexibility is expressed in term of minimum bend diameter measured by rolling the film over a cylinder of a defined diameter without causing film fracture. The film has a minimum bend diameter of about 2 mm.
A similar test is performed by shielding a cotton ball with a clay film, rather than by detecting the temperature with a thermocouple. The films are 20 μm in thickness. After being burned for 1 minute, the MMT film is punctured by flame which ultimately contacts and burns the cotton ball. The cotton ball shielded by the NSP film only darkens in color on the side facing the film.
The NSP/PVA composite films of different weight ratios are tested for the anti-flame tests. The films all have an area of 3×3 cm2 and 50 μm in thickness. Pure PVA film immediately burns upon contacting the flame. The NSP/PVA composite film (w/w=30/70) burns for a very short moment, but the fire diminishes almost immediately. The film deforms in shape but shows no dripping. With increasing the inorganic NSP content, the composite films (w/w=50/50 and 70/30) have better dimension stability at high temperature. The pure NSP film is unaffected by flame treatment. An indication of low heat propagation is demonstrated by the white-colored area that does not contact with the flame.
According to the above descriptions and results, the present invention provides a simple method to prepare a flexible inorganic film with good anti-flame effect from the regular alignment of the silicate platelets. With the ordered structure, the film is able to withstand a temperature as high as 800° C. for at least 70 min. The film can be blended with polymers during manufacturing or combined with a polymeric film or metal sheet to afford a composite film.
In the present invention, the solvent, processing temperature, or drying methods is not limited. For example, the solvent can be removed by evaporation at room temperature or in an oven at moderate temperature. Any suitable container or pan can be used to accommodate the dispersion, and the required time can be adjusted with the temperature accordingly. Wet coating methods include spin coating, doctor blade coating, dip coating, roll coating, spray coating, powder coating, slot die coating, slide coating, curtain coating, or nanoimprint/nanoprint.
In the present invention, the formed film can be blended with a polymer to form flexible composite material. The polymers include, but not limited to, polyvinyl alcohol (PVA), ethylvinyl alcohol (EVOH), polyvinylpyrrolidone (PVP), polyester, polyethyleneterephthalate (PET), polybutylene terephthalate polyimide (PI), polymethylmethacrylate (PMMA), polystyrene (PS), polyacetal, polyacrylic resin, polyamide, polycarbonate resin, polyolefins, polyphenylene sulfide, polyphenylene oxide resin, polyurethane-based resin, alkyd resin, epoxy, unsaturated polyester resin, and polyurea.
The NSP aqueous dispersion used in the present invention can be manufactured on an industrial scale. This allows the mass production of NSP films, which can be widely applied to fire-proof paintings, electronic devices, construction materials, and etc.
Number | Date | Country | Kind |
---|---|---|---|
099147360 | Dec 2010 | TW | national |
The present application is a division of prior U.S. application Ser. No. 13/311,429 filed Dec. 5, 2011, entitled “ANTI-FLAME FILM AND METHOD FOR PRODUCING THE SAME”. The prior U.S. Application claims priority of Taiwan Patent Application No. 099147360, filed on Dec. 31, 2010, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13311429 | Dec 2011 | US |
Child | 14737406 | US |