1. Field of the Invention
The present invention relates generally to endotracheal intubation, and more specifically, to a sleeve placed inside an endotracheal tube (ETT) and/or other indwelling catheters (and the tools and methods to do so) which facilitates instrumenting the endotracheal tube with sensors, a UV light source, etc., without risk of potentially damaging biofilm formation.
2. Description of the Background
Endotracheal tubes are catheters are inserted into the trachea through the mouth or nose in order to maintain an open air passage. In medical practice, endotracheal tubes are used to support respiration and to establish and maintain airflow of oxygen and carbon dioxide to ensure adequate gas exchange. Endotracheal tubes require a specific method of insertion through the mouth (orotracheal) or nose (nasotracheal). Endotracheal tubes are usually made from soft plastic material and have certain flexibility to navigate through the tracheal opening. Conversely, a tracheostomy tube is generally a curved metal or rigid plastic tube to be inserted into a tracheostomy stoma (hole) to maintain an open lumen.
Double-walled tracheostomy tubes have been used for ventilating patients for more than 20 years. See, for example, U.S. Pat. No. 5,218,957. In these tubes, a tubular outer portion and a tubular inner portion exist in the form of a lining. The inner portion is placed in such a way that it permits die withdrawal of the inner tubular portion when a build-up of secretion has occurred. The inner portion further helps laminar gas flow through the tube. This method helps keep the airway open in case of a biofilm buildup.
The existing flexible protective sleeves with antimicrobial properties only minimize the accumulation of bacteria on the external surface of the endotracheal tube while the tube is withdrawn in the protective sleeve. While the foregoing and other existing sleeve designs may overcome some of the problems involved in secretion buildup in tracheostomy tubes (and as a means to manipulate the gas flow direction), there are no anti-fouling sleeves for endotracheal tubes adapted to facilitate sensor placement and yet reduce biofilm formation and secretions.
What is needed is an anti-fouling sleeve for an endotracheal tube that protects the trachea during ventilation, not only reducing the possibility of bacterial infections, but also helping to maintain an adequate gas flow as well as to reduce biofilm accumulation.
These and other objects are accomplished herein by an anti-fouling sleeve for indwelling catheters such as, for example, an endotracheal tube, a method of placement, and the tools for placement. The sleeve may be disposable and serves as an inner lining or sheath that can be removed from the catheter during use without removing the main lumen, such that an open airway through the patient's trachea is maintained at all times. The sleeve acts as a barrier between the outer lumen and any biological or other material that may accumulate thereon, and can be replaced from time to time to clean and/or dispose of it so that the level of accumulation can be controlled.
The anti-fouling sleeve occupies the entire length of endotracheal tube, and can be installed permanently or made removable and disposable. The sleeve may be instrumented with sensors and/or a UV light source to reduce and potentially eliminate biofilm formation. Once placed inside the endotracheal tube the sleeve expands to conform to the inner diameter of the tube. After use, any accumulated biofilm on the inner portion of the sleeve is removed leaving the inner portion of the endotracheal tube essentially sterile. Alternatively, the sleeve itself may serve as a media for culturing of the biofilm in the sleeve or subsequent laboratory or microbiological analysis or antimicrobial targeting.
In addition, the invention includes the following features:
A structure adapted to coupling with other medical equipment such as a mechanical ventilator.
Other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiment and certain modifications thereof.
The present invention is an anti-fouling sleeve for indwelling catheters such as, for example, an endotracheal tube for intubation, a method of placement of same inside an endotracheal tube, and the tools for placement.
As shown in
Suitable insertion techniques may include unrolling sleeve 10 inside tube 2, pulling it through, twisting it through or untwisting it inside, or the like. Specifically, the sleeve 10 can be inserted by the means of rolling over the inner wall of the endotracheal tube 2 or using a twisting motion as if screwing into the tube 10, among other approaches. Once placed inside tube 2 the sleeve 10 expands to conform to the inner diameter of the tube 2 thereby covering the entire inner surface of tube 10. The expansion can be accomplished by forming the natural diameter of the sleeve 10 slightly larger than inner diameter of the endotracheal tube 2 such that a preload results from being radially compressed. Alternatively, the sleeve 10 diameter may be controlled by either mechanically manipulating mesh or using an electrically active (shape memory alloy, piezo, magnetostrictive, etc) braided mesh to aid in insertion and withdrawal. This expansion also imparts a radial preload to the endotracheal tube 2 to assure a proper form-fit and encourage adherence to the wall of the tube 2, thus minimizing accumulations between the sleeve 10 and tube 2. The radial preload also helps to reinforce the wall of the tube 2.
In a preferred embodiment, the outer surface of the sleeve 10 is pre-coated with a biocompatible adhesive and/or lubricant. The endotracheal tube 2 may be a conventional tube made from soft plastic material having adequate flexibility to navigate through the tracheal opening. This is contrasted to a tracheostomy tube which is a generally a curved metal or rigid plastic tube inserted into a tracheostomy stoma to maintain an open lumen. The endotracheal tube 2 may be inserted in a conventional manner through the mouth (orotracheal) or nose (nasotracheal). After use, if the disclosed sleeve 10 is disposable, any accumulated biofilm on the inner portion of the sleeve 10 will be removed with the sleeve thereby leaving the inner portion of the endotracheal tube 2 essentially sterile.
Also for the purposes of cleaning the endotracheal tube, the disclosed inner sleeve 10 is capable of transmitting UV light through one or more optical fibers embedded inside the sleeve 10 and exiting through corresponding fiber optic openings, continuing to an external ultraviolet (UV) light source (as described below). High-intensity ultraviolet light is commonly used for disinfecting, and ultraviolet light fixtures are commonly used in labs and healthcare facilities. Such UV light sources can be coupled to the inner sleeve 10 for transmission through the optical fiber(s) embedded inside the sleeve 10. The optical fiber(s) are terminated within exteriorly-disposed apertures 16 (see
The sleeve 10 is generally configured for insertion into the indwelling catheter but has enlarged section 18 at the proximal end that limits insertion. The enlarged section 18 is preferably funneled out at the inward distal end (see also
During the insertion process, the outer diameter (d1) of sleeve 10 is less than the inner diameter (d2) of the endotracheal tube 2 to ease the insertion process, as shown at
In addition or alternative to funnel 18 the sleeve 10 may be equipped with insertion indicia to assist in the alignment of the sleeve 10 with the outer lumen of the endotracheal tube 2. The indicia may comprise print markings on the sleeve 10 that are visible using direct visualization, or radiopaque markings visible during imaging. The indicia may be surface features to provide tactile alignment. For example,
The sleeve 10 is preferably formed with a failsafe breakaway seam to allow it to be torn out of the endotracheal tube 2 in case it becomes stuck. This is accomplished with a pre-scored/perforated pattern 19 (see
The preferred embodiment of the sleeve 10 is instrumented with one or more physical and/or chemical sensors to enable monitoring of a variety of biometric parameters including, but not limited to, temperature, pressure, humidity, pH, oxygen, or flow rate. The ability to detect changes in flow, resistance and pressure drops along the length of sleeve 10 and at the proximal and distal ends helps during weaning trial assessments (i.e., is the tube 2 increasing resistance and causing failure to wean from mechanical ventilation?). Similarly, a back pressure gauge on the proximal end of the sleeve 2 allows assessment of pressure reflected back to the tube 2 after a breath is delivered and is likewise useful in characterizing resistance.
In a preferred embodiment, the one or more sensors 14 includes a bioburden sensor for sensing the amount of biological growth (“bioburden”) on endotracheal tube 2 inner surface (e.g., at the outside of sleeve 10). The bioburden sensor is similarly connected by cable or fiber configured to the control system in order to alert clinicians as to when changing the sleeve 10 is needed, and/or when changing the sleeve 10 isn't enough and changing of the entire tube 2 is necessary. There are a variety of direct-sensing bioburden sensors available for wound care applications. For example, sleeve 10 may include one or more fiber optic cables (such as cables 16, described below, or an additional set of cables specifically for this purpose) running longitudinally down its length or axially around its circumference. The one or more fiber optic cables (not shown) may be disposed on the interior surface of sleeve 10 or, alternatively, embedded in the sidewall of sleeve 10 and exposed to the interior of sleeve 10 at specified intervals through gaps or windows in the sleeve 10 lining. The points of exposure for the fiber optic cables may additionally be notched to encourage any biofilm that would tend to accumulate on the inside surface of sleeve 10 to accumulate at the areas of exposure of the fiber optic cable. Biofilm accumulation could thus be measured by the degree of impedance of light transmittal along the length of the cable, which could be measured by a connected control system. UV, white, or other light sources could be used within the fiber optic cable to measure accumulation. Alternatively, a simple conducting wire could be substituted for the fiber optic cable, wherein biofilm accumulation is measured in relation to the degree of electrical impedance through the wire. As a less-expensive alternative to direct sensing, the bioburden sensor 14 may be a simple timer, pre-calibrated to time the foregoing intervals in days/hours/minutes, etc. Time could be indicated by a running clock within the attached control system, wherein the technician resets the timer each time he/she places and/or replaces the sleeve 10. Alternatively or in addition to a running timer, an audio, visual or other indicator could alert the technician when a pre-specified interval of time has passed, such as the amount of time that it takes for an unacceptable level of biofilm to accumulate in the sleeve 10 for the average patient, as determined during clinical trials or the like. A visual sensor could be of the type disclosed by U.S. Pat. No. 6,452,873, disclosing a substrate that changes color after a specified time of exposure to air/gas/light/etc., or any other type of photochemical sensor known in the art. Another inexpensive alternative is a sensor that measures weight or load of sleeve 10 or tube 2 to indicate overall accumulation, including biofilm.
As mentioned above, sleeve 10 is preferably equipped with one or more embedded optical fibers 16 that transmit ultraviolet light, as shown in the cross-section of
The optical fibers(s) 16 are connected to an external UV light source, such as a UV LED, which emits UV radiation at an antimicrobial wavelength selected between 170 nm to 300 nm. This light is transmitted through the sleeve 10 via optical fiber(s) 16. The UV light is emitted radially on the outer surface of the sleeve 2 thereby providing 360 degrees of coverage on the inner wall of the endotracheal tube 2 to minimize and avoid secretion buildup due to bacterial growth. The biometric sensors 14 are connected to an external processing unit. A remote power supply or local power source, such as a rechargeable battery, may be provided to power the afore-mentioned components.
The preferred embodiment of the placement tool 20 for sleeve 10 is shown in
To facilitate ease of deployment of sleeve 10, sleeve 10 may be manufactured or fitted to incorporate a groove along its length for cooperative engagement with the deployment tool 20, such that tool 20 can influence the tension, expansion, and lateral or other movement of the sleeve 10 at its distal end or along its entire length. Such a groove may also be useful for cooperative engagement with a cleaning tool (not shown) for cleaning of the sleeve 10 without removal if desired.
It should now be apparent that the above-described sleeve 10 serves as a barrier against biological or other material accumulation, and can be easily be replaced from time to time to clean and/or dispose of it so that the level of accumulation can be controlled. Alternatively, the sleeve 10 itself serves as a convenient media for culturing of any biofilm in the sleeve, or subsequent laboratory or microbiological analysis or antimicrobial targeting thereof.
Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications thereto may obviously occur to those skilled in the art upon becoming familiar with the underlying concept. For example, the same concept and configurations may be implemented in an outer sleeve for an indwelling catheter (rather than inner), providing many of the same benefits and advantages. It is to be understood, therefore, that the invention may be practiced otherwise than as specifically set forth herein.
The present application derives priority from U.S. provisional application Ser. No. 61/838,497 filed 24 Jun. 2013.
Number | Date | Country | |
---|---|---|---|
61838497 | Jun 2013 | US |