Appenzeller, et al., In vivo Antifungal Activity of Optimized Domain III Peptides from Bactericidal/Permeability-Increasing Protein (BPI), Abstract/Poster #F187, 36.sup.th Interscience Conference on Antimicrobial agents and Chemotherapy, Sep. 1996, New Orleans, Louisiana. |
Horwitz, et al., "Peptides from Bactericidal/Permeability-Increasing Protein (BPI) are Cytotoxic for Mycoplasma and L-forms of Gram-Positive Bacteria," Abstract/Poster #F126, 35.sup.th Interscience Conference on Antimicrobial Agents and Chemotherapy, Sep. 1995, San Francisco, California. |
Horwitz, et al., "Fungicidal Peptides from Bactericidal/Permeability-Increasing Protein (BPI) Act Synergistically with Fluconazole on Candida albicans," Abstract/Poster #F186, 36.sup.th Interscience Conference on Antimirobial Agent6s and Chemotherapy, Sep. 1996, New Orleans, Louisiana. |
Kaufhold, et al., "Angiogenesis Inhibition by Synthetic Peptides Derived from Bactericidal/Permeability-Increasing Protein," Abstract/Poster #1786, 88.sup.th American Association for Cancer Research, Mar. 1997, San Diego, California. |
Leach, et al., "Endotoxin Neutralization by Synthetic Peptides Derived from Bactericidal/Permeability-Increasing Protein (BPI)," Abstract/Poster #F122, 35.sup.th Interscience Conference on Antimicrobial Agents and Chemotherapy , Sep. 1995, San Francisco, California. |
Lim, et al., "Antimicrobial Activities of Synthetic Peptides Derived from the Functional Domains of Recombinant Bactericidal/Permeability-Increasing Protein (rBPI.sub.23)," Abstract/Poster #F138, 34rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Oct. 1994, Orlando, Florida. |
Lim, et al., "Activity of Synthetic Peptides Derived from Bactericidal/Permeability-Increasing Protein (BPI) on Antibiotic-Resistant Microbes," Abstract/Poster #F123, 35.sup.th Interscience Conference on Antimicrobial Agents and Chemotherapy, Sep. 1995, San Francisco, California. |
Lim, et al., "Fungicidal Activity of Synthetic Peptides Derived from Bactericidal/Permeability-Increasing Protein," Abstract/Poster #F185, 36.sup.th Interscience Conference on Antimicrobial Agents and Chemotherapy, Sep. 1996, New Orleans, Louisiana. |
Little, et al., "Functional Domains of Recombinant Bactericidal/Permeability-Increasing Protein (rBPI.sub.23)," Abstract/Slide Presentation #30, 3.sup.rd Int. Congress on the Immune Consequences of Trauma, Shock and Sepsis-Mechanisms and Therapeutic Approaches, Mar. 1994, Munich, Germany. |
Little, et al., "Active Peptide Constructs Derived from the Functional Domains of Bactericidal/Permeability-Increasing Protein (BPI)," Abstract/Poster #177, 14.sup.th American Peptide Symposium, Jun. 1995, Columbus, Ohio. |
Little, et al., "Efficacy of Novel Fungicidal Peptides Derived from the Functional Domain III of Bactericidal/Permeability-Increasing Protein (BPI)," Abstract/Poster #F121, 35.sup.th Interscience Conference on Antimicrobial Agents and Chemotherapy, Sep. 1995, San Francisco, California. |
Arroyo et al., "Therapy of Murine Aspergillosis with Amphotericin B in Combination with Rifampin or 5-fluorocytosine," Antimicrob. Agents & Chemo., 11(1):21-25 (Jan., 1977). |
Elsbach and Weiss, "Oxygen-Independent Antimicrobial Systems of Phagocytes," in Inflammation: Basic Principles and Clinical Correlates, eds. Gallin et al., Chapter 30, Raven Press, Ltd. (1992). |
Elsbach and Weiss, "Oxygen-Independent Bactericidal Systems of Polymorphonuclear Leukocytes," in Advances in Inflammation Research, ed. G. Weissmann, vol. 2, pp. 95-113 Raven Press (1981). |
Elsbach et al., "Separation and Purification of a Potent Bactericidal/Permeability-Increasing Protein and a Closely Associated Phospholipase A.sub.2 from Rabbit Polymorphonuclear Leukocytes," J. Biol. Chem., 254:11000-11009 (Nov. 10, 1979). |
Gazzano-Santoro et al., "High-Affinity Binding of the Bactericidal/Permeability-Increasing Protein and a Recombinant Amino-Terminal Fragment to the Lipid A Region of Lipopolysaccharide," Infect. Immun., 60:4754-4761 (Nov. 1992). |
Gray et al., "Cloning of the cDNA of a Human Neutrophil Bactericidal Protein," J. Biol. Chem., 264:9505-9509 (Jun. 5, 1989). |
Hooper, "Ectopeptidases," in Biological Barriers to Protein Delivery, Chapter 2, pp. 23-50, eds., Audus and Raub, Plenum Press, New York, (1993). |
Int't Veld et al., "Effects of the Bactericidal/Permeability-Increasing Protein of Polymorphonuclear Leukocytes on Isolated Bacterial Cytoplasmic Membrane Vesicles," Infection and Immunity 56:1203-1208 (1988). |
Kanbe et al., "Evidence that Mannans of Candida albicans Are Responsible for Adherence of Yeast Forms to Spleen and Lymph Node Tissue," Infect. Immun., 61(6):2578-2584 (Jun. 1993). |
Klotz and Smith, "Glycosaminoglycans inhibit Candida albicans adherence to extracellular matrix proteins," FEMS Microbiology Letters, 99:205-208 (1992). |
Lechner et al., "Recombinant GM-CSF reduces lung injury and mortality during neutropenic Candida sepsis," Am. J. Physiol. (Lung Cell. Mol. Physiol.) 10:1-8 (1994). |
Levy et al., "Antibacterial 15-kDa Protein Isoforms (p15s) Are Members of a Novel Family of Leukocyte Proteins," J. Biol. Chem., 268(8):6038-6083 (Mar. 15, 1993). |
Little et al., "Functional Domains of Recombinant Bactericidal/Permeability Increasing Protein (rBPI.sub.23)," J. Biol. Chem., 269(3):1865-1872 (Jan. 21, 1994). |
Mannion et al., "Separation of Sublethal and Lethal Effects of Polymorphonuclear Leukocytes on Escherichia coli," J. Clin. Invest. 86:631-641 (1990). |
Mannion et al., "Separation of Sublethal and Lethal Effects of Bactericidal/Permeability Increasing Proteins on Escherichia coli," J. Clin. Invest., 85:853-860 (Mar. 1990). |
Merrifield, "Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide, " J. Am Chem. Soc., 85:2149-2154 (Jul. 20, 1963). |
Merrifield et al., "Instrument for Automated Synthesis of Peptides," Anal.Chem., 38(13):1905-1914 (Dec. 1966). |
Ooi et al., "A 25-kDa NH.sub.2 -terminal Fragment Carries All the Antibacterial Activities of the Human Neutrophil 60-kDa Bactericidal/Permeability-increasing Protein," J. Bio. Chem., 262:14891-14894 (1987). |
Ooi et al., "Endotoxin-neutralizing Properties of the 25 kD N-Terminal Fragment and a Newly Isolated 30 kD C-Terminal Fragment of the 55-60 kD Bactericidal/Permeability-Increasing Protein of Human Neutrophils," J. Exp. Med., 174:649-655 (Sep. 1991). |
Ooi et al., "Isolation of Two Isoforms of a Novel 15-kDa Protein from Rabbit Polymorphonuclear Leukocytes that Modulate the Antibacterial Actions of Other Leukocyte Proteins," J. Biol. Chem., 265(26):15956-15962 (Sep. 15, 1990). |
Sternberg, "The Emerging Fungal Threat," Science, 266:1632-1634 (Dec. 9, 1994). |
Thaler et al., "Evaluation of Single-Drug and Combination Antifungal Therapy in an Experimental Model of Candidasis in Rabbits with Prolonged Neutropenia," J. Infect. Dis., 158(1):80 88 (Jul. 1988). |
Walsh et al., "Effects of Preventative, Early, and Late Antifungal Chemotherapy with Fluconazole in Different Granulocytopenic Models of Experimental Disseminated Candidasis," J. Infect. Dis., 161:755-760 (1990). |
Weiss and Olsson, "Cellular and Subcellular Localization of the Bactericidal/Permeability-Increasing Protein of Neutrophils," Blood, 69:652-659 (Feb. 1987). |
Weiss et al., "Human Bactericidal/Permeability-Increasing Protein and a Recombinant NH.sub.2 -Terminal Fragment Cause Killing of Serum-resistant Gram-negative Bacteria in Whole Blood and Inhibit Tumor Necrosis Factor Release Induced by the Bacteria," J. Clin. Invest., 90:1122-1130 (Sep. 1992). |
Weiss et al., "Resistance of Gram-negative Bacteria to Purified Bactericidal Leukocyte Proteins," J. CLin. Invest. 65:619-628 (1980). |
Weiss et al., "The Role of Lipopolysaccharides in the Action of the Bactericidal/Permeability-Increasing Neutrophil Protein to the Bacterial Envelope," J. Immunol. 132:3109-3115 (1984). |