The contents of the text file named “37418-515001US_ST25.txt,” which was created on Aug. 12, 2011 and is 288 KB in size, are hereby incorporated by reference in their entirety.
The present invention relates generally to therapy, diagnosis, inhibition, and prevention of Influenza infection. The invention is more specifically related to methods of identifying influenza hemagglutinin protein-specific neutralizing antibodies as well as their manufacture and use. Such antibodies are useful in pharmaceutical compositions for the prevention and treatment of influenza, and for the diagnosis and monitoring of Influenza infection.
Influenza virus infects 5-20% of the population and results in 30,000-50,000 deaths each year in the U.S. Although the Influenza vaccine is the primary method of infection prevention, four antiviral drugs are also available in the U.S.: amantadine, rimantadine, oseltamivir and zanamivir.
Disease caused by Influenza A viral infections is typified by its cyclical nature. Antigenic drift and shift allow for different A strains to emerge every year. Added to that, the threat of highly pathogenic strains entering into the general population has stressed the need for novel therapies for flu infections. The predominant fraction of neutralizing antibodies is directed to the polymorphic regions Influenza virus-specific proteins. Thus, such a neutralizing monoclonal antibody (MAb) would presumably target only one or a few strains.
Therefore, a long-felt need exists in the art for new antibodies that bind to an invariant Influenza protein, or domain thereof, and which neutralize a large number of Influenza strains.
The invention provides neutralizing human monoclonal antibodies that bind influenza A virus and inhibit the influenza A virus from infecting a cell. Although neutralizing human monoclonal antibodies of the invention bind epitopes within proteins that are exposed on the surface of an influenza virus, the invention focuses on the relatively invariant Influenza hemagglutinin (HA) protein. A neutralizing MAb raised against an Influenza HA protein, which is maintained in its native conformation, provides a superior therapy for all Influenza A strains because it is not dependent upon small changes to the amino acid sequence.
The Influenza hemagglutinin (HA) protein is responsible for allowing the virus to recognize target cells through binding the monosaccharide sialic acid-containing receptors on the surface of the target cell prior to infection. Moreover, the Influenza HA protein is responsible for allowing entry of the viral genome into the target cell by fusing the host endosomal membrane with the viral membrane.
The Influenza hemagglutinin (HA) protein is a homotrimeric integral membrane glycoprotein found on the surface of the Influenza virus. Using the host cell's protein synthesis machinery, the Influenza HA protein is first synthesized as a single-chain precursor polypeptide (HA0) in the endoplasmic reticulum, where it is also assembled as a homotrimer. The resulting HA homotrimer is subsequently exported to the cell surface via the Golgi network. HA homotrimers located on a cell surface are cleaved by a host-produced protease into two smaller peptide subunits: HA1 and HA2. The HA2 subunit forms a long helical chain anchored to the viral membrane whereas the HA1 subunit tops the HA2 subunit to form a large globule. The cleavage step, which converts the HA0 precursor into the mature HA protein containing HA1 and HA2 subunits, is essential for the viral pathogenicity of Influenza. Structurally, the mature HA protein contains a central α-helix coil resulting in an overall cylindrical shape with three spherical heads. The HA protein, and specifically, the HA1 subunit of the mature HA protein, binds receptors containing glycans with terminal sialic acids on host cells. The way in which sialic acid is connected to galactose, for example, α2-3 linkages as in avian serotypes versus α2-6 linkages as in human serotypes, not only determine species specificity of an Influenza virus, but also prevents cross-species infection. However, within certain serotypes of HA, such as H1 and H3, only two amino acid mutations in the framework sequence are required to convert species specificity from avian to human.
To mediate infection, the Influenza HA protein first binds sialic acid-containing receptors present on the surface of the target cell. Consequently, the target cell membrane endocytoses or engulfs the Influenza virus. Once inside the endosome, and upon the host cell's acidification of that compartment, the Influenza HA protein partially unfolds revealing a very hydrophobic fusion peptide that inserts itself into the endosomal membrane. As the rest of the Influenza HA protein refolds, the fusion protein retracts and fuses the endosomal membrane with the viral membrane. Upon fusion of the cellular and viral membranes, the contents of the virus, including the viral genome, are released in the cytoplasm of the target cell.
At least 16 different Influenza A hemagglutinin serotypes or antigens have been identified: H1-H16. Only HA serotypes H1-H3 normally mediate human Influenza infection. However, Influenza strains thought to infect only certain avian or mammalian species can mutate to infect humans. As described above, only a few amino acids need to change along the length of the entire protein to enable Influenza to cross a species barrier. For instance, a single amino acid change in the sequence of the H5 subtype allowed an avian-specific Influenza strain to become infectious in humans (H5N1). A pandemic arose when an Influenza strain common to swine species, became lethal to humans (H1N1). In contrast to Influenza A, Influenza B and C viruses each contain only one form of HA protein.
Specifically, the invention provides an isolated fully human monoclonal antibody, wherein said monoclonal antibody has the following characteristics: a) binds to an influenza A virus; b) binds to a cell contacted with influenza A; c) binds to an epitope of an influenza A viral protein; and, optionally, d) neutralizes influenza A virus infection. An antibody that does not neutralize influenza A virus infection may be used, for instance, for a conjugate therapy. In certain aspects, this antibody binds to a eukaryotic cell. Moreover, the cell is optionally a human cell.
In another aspect, this antibody is isolated from a B-cell from a human donor. Isolation of a fully human monoclonal antibody of the invention from a B-cell is performed using recombinant methods. Alternatively, or in addition, the isolated fully human monoclonal antibody of the invention is isolated from the supernatant of a plasma cell cultured either in vitro or ex vivo. Plasma cells also known as a differentiated B-cells, plasma B-cells, plasmacytes, or effector B-cells. The fully human monoclonal antibody isolated from either a B-cell or a plasma cell demonstrates neutralizing activity.
Antibodies of the invention bind to an epitope of influenza A viral hemagglutinin (HA) protein. Exemplary HA epitopes to which the antibodies of the invention bind include a hemagglutinin precursor peptide (HA0), a HA1 subunit, a HA2 subunit, a mature protein containing HA1 and HA2, and a recombinant HA polypeptide. Alternatively, antibodies of the invention bind to an epitope within a hemagglutinin precursor peptide (HA0), a HA1 subunit, a HA2 subunit, a mature protein containing HA1 and HA2, or a recombinant HA polypeptide. Recombinant HA polypeptides are encoded, for example, by the sequence of SEQ ID NO: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19.
Antibodies of the invention bind to an epitope that is linear or non-linear. In certain aspects of the invention, a non-linear epitope is a discontinuous epitope.
An antibody of the invention is TCN-522 (3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_O17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), or TCN-504 (3251_K17).
The invention further encompasses an antibody that binds the same epitope as TCN-522 (3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_O17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), or TCN-504 (3251_K17).
The invention provides an isolated fully human monoclonal anti-HA antibody or fragment thereof, wherein said antibody includes a variable heavy chain (VH) region comprising CDR1 and CDR2, wherein the VH region is encoded by a human IGHV1 (or specifically, IGHV1-18, IGHV1-2, IGHV1-69, IGHV1-8), IGHV2 (or specifically, IGHV2-5), IGHV3 (or specifically, IGHV3-30, IGHV3-33, IGHV3-49, IGHV3-53, 66, IGHV3-7), IGHV4 (or specifically, IGHV4-31, IGHV4-34, IGHV4-39, IGHV4-59, IGHV4-61), or IGHV5 (or specifically, IGHV5-51) VH germline sequence or an allele thereof, or a nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline gene sequence or an allele thereof. In one aspect, the nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence is at least 75% homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence or an allele thereof. Exemplary alleles include, but are not limited to, IGHV1-18*01, IGHV1-2*02, IGHV1-2*04, IGHV1-69*01, IGHV1-69*05, IGHV1-69*06, IGHV1-69*12, IGHV1-8*01, IGHV2-5*10, IGHV3-30-3*01, IGHV3-30*03, IGHV3-30*18, IGHV3-33*05, IGHV3-49*04, IGHV3-53*01, IGHV3-66*03, IGHV3-7*01, IGHV4-31*03, IGHV4-31*06, IGHV4-34*01, IGHV4-34*02, IGHV4-34*03, IGHV4-34*12, IGHV4-39*01, IGHV4-59*01, IGHV4-59*03, IGHV4-61*01, IGHV4-61*08, and IGHV5-51*01. Exemplary sequences for each allele are provided below.
In certain embodiments of the invention, the antibody further includes a variable light chain (VL) region encoded by a human IGKV1 (or specifically, IGKV1-17, IGKV1-27, IGKV1-39, IGKV1D-39, IGKV1-5), IGKV2 (or specifically, IGKV2-30), IGKV3 (or specifically, IGKV3-11, IGKV3-15, IGKV3-20), IGKV4 (or specifically, IGKV4-1, IGKV4-1), IGLV1 (or specifically, IGLV1-40, IGLV1-44, IGLV1-55), IGLV2 (or specifically, IGLV2-11, IGLV2-14, IGLV2-8), IGLV3 (or specifically, IGLV3-21 or IGLV3-25), IGLV7 (or specifically, IGLV7-43 or IGLV7-46), or IGLV9 (or specifically, IGLV9-49) or an allele thereof. VL germline gene sequence IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 or an allele thereof, or a nucleotide acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline gene sequence or an allele thereof. Furthermore, the nucleic acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence or an allele thereof is at least 65% homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence or an allele thereof.
The invention provides an isolated fully human monoclonal anti-HA antibody or fragment thereof, wherein said antibody comprises a variable heavy chain (VH) region comprising CDR1 and CDR2, wherein said region is encoded by a human IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence, or a nucleic acid sequence that is homologous to the said IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline gene sequence. In one aspect, the nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence is at least 75% homologous to said IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence. Alternatively, the nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence is at least 75%, 80%, 85%, 90%, 95%, 100%, or any percentage point in between homologous to said IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence. The antibody further comprises a variable light chain (VL) region encoded by a human IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline gene sequence, or a nucleotide acid sequence that is homologous to the said IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline gene sequence. In another aspect, the nucleic acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence is at least 65% homologous to the said IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence. Alternatively, the nucleic acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or any percentage point in between homologous to the said IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 22, 23, 24, 25, 26, 34, 35, 36, 37, 38, 46, 47, 48, 49, 50, 62, 58, 59, 60, 61, 70, 71, 72, 73, 74, 82, 83, 84, 85, 86, 94, 95, 96, 97, 98, 106, 107, 108, 109, 110, 118, 119, 120, 121, 122, 130, 131, 132, 133, 134, 142, 143, 144, 145, 146, 154, 155, 156, 158, 162, 163, 164, 165, 166, 174, 175, 176, 177, 178, 185, 186, 187, 188, 189, 196, 197, 198, 199, 200, 208, 209, 210, 211, 212, 220, 221, 222, 223, 224, 232, 233, 234, 235, 236, 244, 245, 246, 247, 248, 256, 257, 258, 259, 260, 268, 269, 270, 271, 272, 280, 281, 282, 283, 284, 292, 293, 294, 295, 296, 303, 304, 305, 306, 307, 314, 315, 316, 317, 318, 326, 327, 328, 329, 336, 337, 338, 339, 340, 347, 348, 349, 350, 351, 359, 360, 361, 362, 363, 371, 372, 373, 374, 375, 383, 384, 385, 386, 387, 393, 394, 395, 396, 397, 409, 410, 411, 412, 413, 421, 422, 423, 424, 425, 435, 436, 437, 438, 439, 447, 448, 449, 450, 451, 511, 512, 513, 514, and 515, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 29, 30, 31, 41, 42, 43, 53, 54, 55, 65, 66, 67, 77, 78, 79, 89, 90, 91, 101, 102, 103, 113, 114, 115, 125, 126, 127, 137, 138, 139, 149, 150, 151, 169, 170, 171, 157, 181, 182, 192, 193, 203, 204, 205, 215, 216, 217, 227, 228, 229, 239, 240, 241, 251, 252, 253, 263, 264, 265, 275, 276, 277, 287, 288, 289, 299, 300, 310, 311, 321, 322, 323, 332, 333, 343, 344, 354, 355, 356, 366, 367, 368, 378, 379, 380, 390, 400, 401, 406, 416, 417, 418, 428, 429, 430, 442, 443, 444, 454, 455, 456, 517, 518, 520, 521, and 522.
The invention provides an isolated anti-hemagglutinin (HA) antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 22, 23, 24, 25, 26, 34, 35, 36, 37, 38, 46, 47, 48, 49, 50, 62, 58, 59, 60, 61, 70, 71, 72, 73, 74, 82, 83, 84, 85, 86, 94, 95, 96, 97, 98, 106, 107, 108, 109, 110, 118, 119, 120, 121, 122, 130, 131, 132, 133, 134, 142, 143, 144, 145, 146, 154, 155, 156, 158, 162, 163, 164, 165, 166, 174, 175, 176, 177, 178, 185, 186, 187, 188, 189, 196, 197, 198, 199, 200, 208, 209, 210, 211, 212, 220, 221, 222, 223, 224, 232, 233, 234, 235, 236, 244, 245, 246, 247, 248, 256, 257, 258, 259, 260, 268, 269, 270, 271, 272, 280, 281, 282, 283, 284, 292, 293, 294, 295, 296, 303, 304, 305, 306, 307, 314, 315, 316, 317, 318, 326, 327, 328, 329, 336, 337, 338, 339, 340, 347, 348, 349, 350, 351, 359, 360, 361, 362, 363, 371, 372, 373, 374, 375, 383, 384, 385, 386, 387, 393, 394, 395, 396, 397, 409, 410, 411, 412, 413, 421, 422, 423, 424, 425, 435, 436, 437, 438, 439, 447, 448, 449, 450, 451, 511, 512, 513, 514, and 515, wherein said antibody binds HA.
The invention provides an isolated anti-hemagglutinin (HA) antibody, wherein said antibody has a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 29, 30, 31, 41, 42, 43, 53, 54, 55, 65, 66, 67, 77, 78, 79, 89, 90, 91, 101, 102, 103, 113, 114, 115, 125, 126, 127, 137, 138, 139, 149, 150, 151, 169, 170, 171, 157, 181, 182, 192, 193, 203, 204, 205, 215, 216, 217, 227, 228, 229, 239, 240, 241, 251, 252, 253, 263, 264, 265, 275, 276, 277, 287, 288, 289, 299, 300, 310, 311, 321, 322, 323, 332, 333, 343, 344, 354, 355, 356, 366, 367, 368, 378, 379, 380, 390, 400, 401, 406, 416, 417, 418, 428, 429, 430, 442, 443, 444, 454, 455, 456, 517, 518, 520, 521, and 522, wherein said antibody binds HA.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 511, 512, and 513, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 517, 181, and 518.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 514, 515, and 513, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 517, 181, and 518.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 22, 23, and 24, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 29, 30, and 31.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 25, 26, and 24, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 29, 30, and 31.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 34, 35, and 36, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 41, 42, and 43.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 37, 38, and 36, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 41, 42, and 43.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 46, 47, and 48, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 53, 54, and 55.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 49, 50, and 48, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 53, 54, and 55.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 62, 58, and 59, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 65, 66, and 67.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 60 61, and 59, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 65, 66, and 67.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 70, 71, and 72, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 77, 78, and 79.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 73, 74, and 72, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 77, 78, and 79.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 82, 83, and 84, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 89, 90, and 91.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 85, 86, and 84, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 89, 90, and 91.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 94, 95, and 96, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 101, 102, and 103.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 97, 98, and 96, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 101, 102, and 103.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 106, 107, and 108, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 113, 114, and 115.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 109, 110, and 108, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 113, 114, and 115.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 118, 119, and 120, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 125, 126, and 127.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 121, 122, and 120, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 125, 126, and 127.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 130, 131, and 132, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 137, 138, and 139.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 133, 134, and 132, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 137, 138, and 139.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 142, 143, and 144, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 149, 150, 151.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 145, 146, 144, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 149, 150, 151.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 154, 155, and 156, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 53, 54, and 55.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 49, 158, and 156, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 53, 54, and 55.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 162, 163, and 164, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 169, 170, and 171.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 165, 166, and 164, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 169, 170, and 171.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 174, 175, and 176, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 157, 181, and 182.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 177, 178, and 176, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 157, 181, and 182.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 185, 186, and 187, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 192, 30, and 193.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 188, 189, and 187, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 192, 30, and 193.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 196, 197, and 198, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 203, 204, and 205.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 199, 200, and 198, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 203, 204, and 205.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 208, 209, 210, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 215, 216, and 217.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 211, 212, and 210, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 215, 216, and 217.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 220, 221, and 222, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 227, 228, and 229.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 223, 224, and 222, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 227, 228, and 229.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 232, 233, and 234, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 239, 240, and 241.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 235, 236, and 234, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 239, 240, and 241.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 244, 245, and 246, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 251, 252, and 253.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 247, 248, and 246, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 251, 252, and 253.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 256, 257, and 258, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 263, 264, and 265.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 259, 260, and 258, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 263, 264, and 265.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 268, 269, and 270, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 275, 276, and 277.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 271, 272, and 270, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 275, 276, and 277.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 280, 281, and 282, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 287, 288, and 289.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 283, 284, and 282, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 287, 288, and 289.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 292, 293, and 294, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 299, 181, and 300.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 295, 296, and 294, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 299, 181, and 300.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 303, 304, and 305, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 310, 30, and 311.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 306, 307, and 305, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: SEQ ID NOs: 310, 30, and 311.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 314, 315, and 316, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 321, 322, and 323.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 317, 318, and 316, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 321, 322, and 323.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 303, 326, and 327, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 332, 216, and 333.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 328, 329, and 327, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 332, 216, and 333.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 336, 337, and 338, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 343, 216, and 344.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 339, 340, and 338, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: SEQ ID NOs: 343, 216, and 344.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 347, 348, and 349, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 354, 355, and 356.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 350, 351, and 349, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 354, 355, and 356.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 359, 360, 361, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 366, 367, and 368.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 362, 363, and 361, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 366, 367, and 368.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 371, 372, and 373, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 378, 379, and 380.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 374, 375, and 373, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 378, 379, and 380.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 383, 384, and 385, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 203, 181, and 390.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 386, 387, and 385, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 203, 181, and 390.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 393, 394, and 395, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 400, 216, and 401.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 396, 397, and 395, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 400, 216, and 401.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 62, 58, and 59, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 406, 66, and 67.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 60, 61, and 59, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 406, 66, and 67.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 409, 410, and 411, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 416, 417, and 418.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 412, 413, and 411, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 416, 417, and 418.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 421, 422, and 423, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 428, 429, and 430.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 424, 425, and 423, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 428, 429, and 430.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 174, 175, and 176, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 125, 126, and 127.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 177, 178, and 176, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 125, 126, and 127.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 435, 436, and 437, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 442, 443, and 444.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 438, 439, and 437, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 442, 443, and 444.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 447, 448, and 449, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 454, 455, and 456.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 450, 451, and 449, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 454, 455, and 456.
The invention provides an isolated anti-HA antibody, wherein said antibody has a heavy chain with three CDRs comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 154, 155, and 156, and a light chain with three CDRs that include an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 520, 521, and 522.
The invention provides an isolated anti-hemagglutinin (HA) antibody, wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 511; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 512, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 513, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 517; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 181, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 518.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 22; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 23, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 24, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 29; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 30, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 31.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 34; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 35, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 36, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 41; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 42, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 43.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 46; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 47, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 48, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 53; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 54, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 55.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 62; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 58, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 59, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 65; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 66, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 67.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 70; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 71, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 72, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 77; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 78, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 79.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 82; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 83, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 84, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 89; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 90, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 91.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 94; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 95, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 96, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 101; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 102, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 103.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 106; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 107, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 108, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 113; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 114, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 115.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 118; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 119, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 120, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 125; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 126, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 127.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 130; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 131, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 132, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 137; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 138, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 139.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 142; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 143, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 144, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 149; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 150, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 151.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 154; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 155, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 156, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 53; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 54, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 55.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 162; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 163, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 164, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 169; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 170, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 171.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 174; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 175, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 176, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 157; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 181, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 182.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 185; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 186, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 187, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 192; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 30, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 193.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 196; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 197, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 198, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 203; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 204, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 205.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 208; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 209, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 210, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 215; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 216, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 217.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 220; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 221, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 222, a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 227; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 228, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 229.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 232; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 233, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 234; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 239; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 240, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 241.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 244; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 245, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 246; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 251; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 252, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 253.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 256; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 257, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 258; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 263; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 264, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 265.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 268; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 269, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 270; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 275; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 276, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 277.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 280; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 281, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 282; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 287; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 288, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 289.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 292; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 293, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 294; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 299; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 181, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 300.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 303; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 304, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 305; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 310; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 30, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 311.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 314; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 315, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 316; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 321; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 322, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 323.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 303; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 326, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 327; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 332; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 216, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 333.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 336; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 337, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 338; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 343; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 216, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 344.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 347; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 348, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 349; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 354; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 355, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 356.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 359; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 360, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 361; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 366; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 367, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 368.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 371; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 372, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 373; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 378; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 379, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 380.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 383; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 384, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 385; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 203; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 181, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 390.
The invention provides an n isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 393; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 394, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 395; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 400; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 216, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 401.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 62; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 58, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 59; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 406; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 66, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 67.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 409; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 410, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 411; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 416; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 417, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 418.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 421; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 422, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 423; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 428; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 429, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 430.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 174; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 175, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 176; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 125; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 126, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 127.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 435; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 436, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 437; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 442; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 443, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 444.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 447; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 448, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 449; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 454; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 455, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 456.
The invention provides an isolated anti-hemagglutinin (HA) antibody wherein said antibody comprises, a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 154; a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 155, a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 156; a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 520; a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 521, and a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 522.
The invention provides an isolated anti-hemagglutinin (HA) antibody or fragment thereof, wherein said antibody comprises: (a) a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 22, 34, 46, 62, 70, 82, 94, 106, 118, 130, 142, 151, 162, 174, 185, 196, 208, 220, 232, 244, 256, 268, 280, 292, 303, 314, 336, 347, 359, 371, 383, 393, 409, 421, 435, 447, and 511; (b) a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 23, 35, 47, 58, 71, 83, 95, 107, 119, 131, 143, 155, 163, 175, 186, 197, 209, 221, 233, 245, 257, 269, 281, 293, 304, 315, 326, 337, 348, 360, 372, 384, 394, 410, 422, 436, 448, and 512; and (c) a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 24, 36, 48, 59, 72, 84, 96, 108, 120, 132, 144, 156, 164, 176, 187, 198, 210, 222, 234, 246, 258, 270, 282, 294, 305, 316, 327, 338, 349, 361, 373, 385, 395, 411, 423, 437, 449, and 513, wherein said antibody binds HA. In one aspect, the antibody further comprises: (a) a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 29, 41, 53, 65, 77, 89, 101, 113, 125, 137, 149, 169, 157, 192, 203, 215, 227, 239, 251, 263, 275, 287, 299, 310, 321, 332, 343, 354, 366, 378, 400, 406, 416, 428, 442, 454, 517, and 520; (b) a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 170, 181, 204, 216, 228, 240, 252, 264, 276, 288, 322, 355, 367, 379, 417, 429, 443, 455, and 521; and (c) a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 31, 43, 55, 67, 79, 91, 103, 115, 127, 139, 151, 171, 182, 193, 205, 217, 229, 241, 253, 265, 277, 289, 300, 311, 323, 333, 344, 356, 368, 380, 390, 401, 418, 430, 444, 456, 518, and 522.
The invention provides an isolated anti-hemagglutinin (HA) antibody or fragment thereof, wherein said antibody comprises: (a) a VH CDR1 region comprising the amino acid sequence of SEQ ID NO: 25, 37, 49, 60, 73, 85, 97, 109, 121, 133, 145, 165, 177, 188, 199, 211, 223, 235, 247, 259, 271, 283, 295, 306, 317, 328, 338, 350, 362, 374, 386, 396, 412, 424, 438, 450, and 514; (b) a VH CDR2 region comprising the amino acid sequence of SEQ ID NO: 26, 38, 50, 61, 74, 86, 98, 110, 122, 134, 146, 158, 166, 178, 189, 200, 212, 224, 236, 248, 260, 272, 284, 296, 307, 318, 329, 340, 351, 363, 375, 387, 397, 413, 425, 439, 451, and 515; and (c) a VH CDR3 region comprising the amino acid sequence of SEQ ID NO: 24, 36, 48, 59, 72, 84, 96, 108, 120, 132, 144, 156, 164, 176, 187, 198, 210, 222, 234, 246, 258, 270, 282, 294, 305, 316, 327, 338, 349, 361, 373, 385, 395, 411, 423, 437, 449, and 513, wherein said antibody binds HA. In one aspect, the antibody further comprises: (a) a VL CDR1 region comprising the amino acid sequence of SEQ ID NO: 29, 41, 53, 65, 77, 89, 101, 113, 125, 137, 149, 169, 157, 192, 203, 215, 227, 239, 251, 263, 275, 287, 299, 310, 321, 332, 343, 354, 366, 378, 400, 406, 416, 428, 442, 454, 517, and 520; (b) a VL CDR2 region comprising the amino acid sequence of SEQ ID NO: 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 170, 181, 204, 216, 228, 240, 252, 264, 276, 288, 322, 355, 367, 379, 417, 429, 443, 455, and 521; and (c) a VL CDR3 region comprising the amino acid sequence of SEQ ID NO: 31, 43, 55, 67, 79, 91, 103, 115, 127, 139, 151, 171, 182, 193, 205, 217, 229, 241, 253, 265, 277, 289, 300, 311, 323, 333, 344, 356, 368, 380, 390, 401, 418, 430, 444, 456, 518, and 522.
The invention provides an isolated fully human monoclonal anti-hemagglutinin (HA) antibody comprising: a) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 510 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 524 or b) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 21 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 28 or c) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 33 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 40 or d) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 43 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 52 or e) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 57 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 64 or f) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 69 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 76 or g) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 81 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 88 or h) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 93 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 100 or i) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 105 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 112 or j) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 117 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 124 or k) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 129 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 136 or l) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 141 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 148 or m) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 153 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 52 or n) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 161 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 168 or o) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 173 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 180 or p) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 184 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 191 or q) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 195 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 202 or r) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 207 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 214 or s) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 219 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 226 or t) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 231 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 238 or u) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 243 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 250 or v) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 255 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 262 or w) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 267 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 274 or x) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 279 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 286 or y) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 291 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 298 or z) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 302 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 309 or aa) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 313 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 320 or bb) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 325 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 331 or cc) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 335 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 342 or dd) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 346 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 353 or ee) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 358 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 365 or ff) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 370 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 377 or gg) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 382 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 389 or hh) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 392 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 399 or ii) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 403 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 405 or jj) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 420 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 427 or kk) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 173 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 124 or ll) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 434 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 441 or mm) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 446 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 453 or nn) a heavy chain variable sequence comprising the amino acid sequence of SEQ ID NO: 153 and a light chain variable sequence comprising amino acid sequence SEQ ID NO: 519.
An antibody of the invention, or specifically, any antibody described herein, may be operably-linked to a therapeutic agent or a detectable label.
The invention further provides a pharmaceutical composition including an antibody described herein and a pharmaceutical carrier. This composition optionally includes an anti-viral drug, a viral entry inhibitor or a viral attachment inhibitor. Exemplary anti-viral drugs include, but are not limited to, a neuraminidase inhibitor, a HA inhibitor, a sialic acid inhibitor and an M2 ion channel inhibitor. In one embodiment of the composition, the M2 ion channel inhibitor is amantadine or rimantadine. Alternatively, or in addition, the neuraminidase inhibitor zanamivir or oseltamivir phosphate. The composition may also include a second anti-Influenza A antibody. The second anti-Influenza A antibody is optionally an antibody described herein.
The invention provides a method for stimulating an immune response in a subject, including administering to the subject the pharmaceutical composition described herein.
Moreover, the invention provides a method for the treatment of an Influenza virus infection in a subject, including administering to the subject the pharmaceutical composition described herein. This method further includes administering an anti-viral drug, a viral entry inhibitor or a viral attachment inhibitor.
The invention also provides a method for the prevention of an Influenza virus infection in a subject, including administering to the subject the pharmaceutical composition described herein prior to exposure of the subject to Influenza virus or infection. This method further includes administering an anti-viral drug, a viral entry inhibitor or a viral attachment inhibitor. This method may be a method of vaccination.
The subject of these methods may have an Influenza infection or is predisposed to developing an Influenza virus infection. Subjects predisposed to developing an Influenza infection, or who may be at elevated risk for contracting an infection, are those subjects with compromised immune systems because of autoimmune disease, those persons receiving immunosuppressive therapy (for example, following organ transplant), those persons afflicted with human immunodeficiency syndrome (HIV) or acquired immune deficiency syndrome (AIDS), certain forms of anemia that deplete or destroy white blood cells, those persons receiving radiation or chemotherapy, or those persons afflicted with an inflammatory disorder. Additionally, subject of extreme young or old age are at increased risk. Any person who comes into physical contact or close physical proximity with an infected individual has an increased risk of developing an Influenza virus infection. Moreover, a subject is at risk of contracting an influenza infection due to proximity to an outbreak of the disease, e.g. subject resides in a densely-populated city or in close proximity to subjects having confirmed or suspected infections of Influenza virus, or choice of employment, e.g. hospital worker, pharmaceutical researcher, traveler to infected area, or frequent flier.
According to the methods described herein, exemplary anti-viral drugs include, but are not limited to, a neuraminidase inhibitor, a HA inhibitor, a sialic acid inhibitor and an M2 ion channel. In one aspect of these methods, the M2 ion channel inhibitor is amantadine or rimantadine. Alternatively, or in addition, the neuraminidase inhibitor is zanamivir or oseltamivir phosphate.
These methods optionally include administering a second anti-Influenza A antibody. For example, the antibody is administered prior to or after exposure to Influenza virus. In certain aspects of these methods, the antibody is administered at a dose sufficient to promote viral clearance or to eliminate Influenza A infected cells. The second antibody is optionally an antibody described herein
The invention further provides a method for determining the presence of a Influenza virus infection in a subject, including the steps of: (a) contacting a biological sample obtained from the subject with an antibody described herein or the pharmaceutical composition described herein; (b) detecting an amount of the antibody that binds to the biological sample; and (c) comparing the amount of antibody that binds to the biological sample to a control value, and therefrom determining the presence of the Influenza virus in the subject.
The invention provides a vaccine composition including an antibody described herein. This composition optionally contains a pharmaceutical carrier.
Alternatively, the invention provides a vaccine composition including an epitope of an antibody described herein. This composition optionally contains a pharmaceutical carrier.
Vaccines of the invention are multivalent vaccines. The term “multivalent vaccine” is meant to describe a single vaccine that elicits an immune response either to more than one infectious agent, e.g. recombinant homotrimeric HA0 proteins or fragments thereof derived from multiple strains of Influenza A (see, Table 2), or to several different epitopes of a molecule, e.g. a linear and a discontinuous epitope of the same recombinant homotrimeric HA0 protein or fragment thereof derived from a single strain of Influenza A. Alternatively, or in addition, the term multivalent vaccine is meant to describe the administration of a combination of human antibodies raised against more than one infectious agent, e.g. a combination of HuMHA antibodies raised against recombinant homotrimeric HA0 proteins or fragments thereof derived from multiple strains of Influenza A (see, Table 2).
The invention provides a diagnostic kit including an antibody described herein.
The invention provides a prophylactic kit including an antibody described herein or an epitope of an antibody described herein. Alternatively, or in addition, the invention provides a prophylactic kit including a vaccine composition described herein.
In a preferred embodiment, the present invention provides fully human monoclonal antibodies specifically directed against the Influenza hemagglutinin glycoprotein, which neutralize influenza infection. Optionally, the antibody is isolated from a B-cell from a mammalian donor, and preferably, a human donor. In certain embodiments of the invention, the antibody is identified for its ability to bind an intact or whole Influenza virus. Alternatively, or in addition, the antibody is identified isolated for its ability to bind to an epitope of a recombinant homotrimeric Influenza HA0 protein or HA protein(s) isolated from multiple Influenza strains, or made as recombinant proteins such as those influenza A virus strains provided in Table 2. Alternatively, or in addition, the antibody is identified for its ability to inhibit or neutralize virus infection of susceptible eukaryotic cells. Exemplary neutralizing antibodies of this profile include, but are not limited to, those antibodies listed in Table 3. Alternatively, the monoclonal antibody is an antibody that binds to the same epitope as the antibodies provided in Table 3. In certain embodiments, neutralizing human monoclonal antibodies of the invention are anti-HA antibodies. A monoclonal anti-HA antibody of the invention has one or more of the following characteristics: a) binds to an epitope in an HA1 subunit of an Influenza hemagglutinin (HA) protein; b) binds to an epitope in the HA2 subunit of Influenza hemagglutinin (HA) protein; c) binds to an epitope in the extracellular domain of an Influenza hemagglutinin (HA) protein, consisting of an HA1 subunit and an HA2 subunit; d) binds to an epitope of a recombinant homotrimeric Influenza HA0 protein; e) binds to an epitope of an Influenza HA protein expressed on an infected cell; f) binds to an epitope of an Influenza HA protein expressed on a modified cell; g) binds to an Influenza virus; or h) inhibits virus infection of susceptible eukaryotic cells.
Modified cells of the invention are transfected or transformed with a polynucleotide that encodes an Influenza HA protein, or any fragment thereof. The term “Influenza HA protein fragment” is meant to describe any portion of the protein that is smaller or less than the entire protein. Polynucleotides and polypeptides of the invention do not always encode a functional Influenza HA protein.
Infected cells of the invention are mammalian, and preferably human in origin. Specifically, mammalian cells are infected with Influenza A virus in vivo, in vitro, in situ, ex vivo, in culture, and any combination thereof. Cells are infected with active or inactive virions. Exemplary inactive virions display the HA protein on their surfaces, however, they are replication-defective, and therefore, unable to propagate within the cell or subject.
Epitopes of the human monoclonal antibodies of the invention include a transmembrane or integral membrane Influenza A protein. Specifically, epitopes of the human monoclonal antibodies of the invention comprise Influenza hemagglutinin (HA) protein.
Epitopes of the human monoclonal antibodies of the invention include one or more subunits of an influenza hemagglutinin (HA) protein. HA proteins of the invention include hemagglutinin precursor proteins (HA0), the HA1 subunit, the HA2 subunit, the mature protein containing the HA1 and HA2 subunits, and a recombinant HA protein. Recombinant HA proteins contain SEQ ID NO: 1. Exemplary recombinant proteins include but, are not limited to, those proteins described by SEQ ID NO: 2-19.
Epitopes of the human monoclonal antibodies of the invention are linear or non-linear. For instance, a non-linear epitope is discontinuous. Discontinuous epitopes are available for antibody binding only when the Influenza HA protein is maintained in its native homotrimeric conformation. When an antibody binds to a discontinuous epitope, the antibody binds to a three-dimensional surface of the target protein, i.e. the Influenza HA protein, upon which juxtaposed amino acids are alternatively exposed or masked.
Recombinant homotrimeric HA0 proteins of the invention are encoded by, for instance, sequences described by any one of SEQ ID NO: 2-19. In certain embodiments of the invention, the human monoclonal antibodies, or monoclonal anti-HA antibodies, described herein bind membrane-bound or soluble recombinant homotrimeric Influenza HA proteins. Alternatively, the monoclonal anti-HA antibodies described herein bind membrane-bound and soluble recombinant homotrimeric Influenza HA proteins. In certain embodiments of the invention, the monoclonal anti-HA antibodies described herein bind and neutralize Influenza virus subtypes H1, H2, and H3. In other embodiments of the invention, the monoclonal anti-HA antibodies bind Influenza virus subtypes H1, H2, and H3, and neutralize one of these subtypes, such as H1, H2, or H3. In a specific embodiment, the monoclonal anti-HA antibodies bind Influenza subtypes H1N1, H2N2, and H3N2, and neutralize H1N1.
In one aspect, the HA precursor polypeptide (HA0) of the soluble and recombinant homotrimeric Influenza HA protein contains a trimerization domain (foldon) encoded in the phage T4 fibritin. An exemplary trimerization domain isolated from the phage T4 fibritin has the following sequence wherein a thrombin cleavage site is italicized and bolded, a T4 trimerization domain or sequence is underlined, a V5 tag is boxed, and a hexa-histidine (His) tag is bolded:
As used herein, the term “neutralizing antibody” is meant to describe an antibody that inhibits or prevents influenza A infection, inhibits or prevents Influenza A viral entry into a cell, inhibits or prevents influenza replication, inhibits or prevents influenza egress from a host cell, or reduces the Influenza A titer in a cell, biological sample, or subject. In a preferred embodiment, neutralizing antibodies of the invention prevent viral entry into the cytoplasmic compartment of host cells.
Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims.
The present invention provides fully human monoclonal antibodies that bind influenza virus and neutralize infection. In certain embodiments, the present invention provides fully human monoclonal neutralizing antibodies specific against the Influenza hemagglutinin protein. The antibodies are respectively referred to herein is human monoclonal anti-HA (huMHA) antibodies.
The Influenza hemagglutinin (HA) protein is a homotrimeric integral membrane glycoprotein found on the surface of the Influenza virus. To mimic the native conformation of this homotrimeric protein, the methods of the invention provide an isolated HA protein precursor that is operably-linked to a trimerization or foldon domain from the phage T4 fibritin protein
The resultant recombinant homotrimeric foldon HA protein not only retains the native Influenza hemagglutinin homotrimeric conformation, but also becomes soluble, i.e. the protein is no longer bound to a viral or cellular membrane. Specifically, these recombinant HA homotrimeric proteins lack an integral membrane or transmembrane domain. In certain embodiments, these recombinant HA homotrimeric proteins include HA1 and HA2 subunits as well as a trimerization domain, the resultant recombinant HA homotrimeric protein containing between 1-50, 50-100, 100-150, 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600 amino acids (aa) or any length of amino acids in between. Preferably, these recombinant HA homotrimeric proteins contain between 520-540 amino acids (aa), and preferably, about 530 amino acids. Recombinant HA homotrimeric proteins further include a signal cleavage site at the N-terminus containing between 15-25 aa. Alternatively, or in addition, recombinant HA homotrimeric proteins further include a transmembrane domain positioned between amino acids 525-535 of HA depending on the influenza A virus subtype. In a preferred embodiment, the HA protein is derived from one or more strains of an Influenza A virus. Recombinant HA homotrimeric proteins of the invention retain the native signal sequence to enable secretion from mammalian cells. Moreover, recombinant HA homotrimeric proteins of the invention contain a same signal sequence, which is not derived from HA. Furthermore, signal sequences used with recombinant HA homotrimeric proteins of the invention include those signal sequences known in the art that allow efficient secretion of proteins, such as the signal sequence of the immunoglobulin light kappa chain. Alternatively, recombinant HA homotrimeric proteins, or the HA0 precursors thereof, may have the native signal sequences in the expression constructs used by Immune Technology Corp. (http://www.immune-tech.com/). Signal sequences are retained or manipulated to allow efficient secretion from, for instance, art-recognized cell lines maintained in vitro, e.g. 293 HEK cells.
Recombinant HA homotrimeric proteins may retain a native HA1/HA2 protease cleavage site, which is critical for viral pathogenicity. In one aspect of the invention, recombinant HA homotrimeric proteins contain a substituted HA1/HA2 protease cleavage site. For example, the recombinant HA protein encoded by SEQ ID NO: 12 does not have a native cleavage site, but rather a cleavage site substituted from another HA protein. Furthermore, these proteins optionally retain sialic acid-containing receptor binding sites within the HA1 subunit.
According to the methods of the invention, human antibodies obtained from blood, serum, plasma, or cerebral spinal fluid, are contacted to recombinant and soluble HA homotrimers of the invention in vitro, wherein the recombinant and soluble HA homotrimers act as targets for human antibody binding to confirm specificity of the isolated human antibody for an Influenza HA homotrimer in its native conformation. In general, the methods include obtaining serum or plasma samples from subjects or patients that have been infected with or vaccinated against an infectious agent. These serum or plasma samples are then screened to identify those that contain antibodies specific for a particular polypeptide associated with the infectious agent, such as, e.g. a polypeptide specifically expressed on the surface of cells infected with the infectious agent, but not uninfected cells. In particular embodiments, the serum or plasma samples are screened by contacting the samples with a cell that has been transfected with an expression vector that expresses the polypeptide expressed on the surface of infected cells. In particular embodiments the serum or plasma samples are screened by contacting the samples with a recombinant protein which represents a particular protein of the infectious agent such as, e.g. hemagglutinin of the influenza A virus. In particular embodiments the serum or plasma samples are screened by contacting the samples with a purified form of the infectious agent such as, e.g. intact whole virions of the influenza A virus. In particular embodiments, the serum or plasma samples are screened by contacting the samples with a live form of the infectious agent such as, e.g. intact whole virions of the influenza A virus to determine the presence of serum antibodies that inhibit or neutralize infection of susceptible cells. Exemplary susceptible cells are eukaryotic or mammalian cells, such as MDCK cells.
Once a subject or patient is identified as having serum or plasma containing an antibody specific for the infectious agent polypeptide or virus of interest, mononuclear and/or B cells obtained from the same subject or patient are used to identify a cell or clone thereof that produces the antibody, using any of the methods described herein or available in the art. Once a B cell that produces the antibody is identified, cDNAs encoding the variable regions or fragments thereof of the antibody may be cloned using standard RT-PCR vectors and primers specific for conserved antibody sequences, and subcloned into expression vectors used for the recombinant production of monoclonal antibodies specific for the infectious agent polypeptide of interest.
More specifically, B cells are collected from a particular donor, i.e. a subject or patient is identified as having serum or plasma containing an antibody specific for HA, cultured, and antibody is secreted from these B cells into the culture medium. The culture medium is separated from these B cells, the B cells are lysed, and then frozen for storage. The culture medium is then screened for antibody binding to various HA targets and/or inhibition/neutralization of infection in vitro. When a culture well is identified as having an antibody of the desired specificity, reverse-transcriptase polymerase chain reaction (RT-PCR) is applied to the B-cell lysate to amplify the antibody variable regions and subsequently clone, express, and test for binding and function of the recombinant antibody.
Human antibodies, such as the MAbs listed in Table 3, which bind the recombinant and soluble HA homotrimer and/or bind whole virions, and optionally inhibit or neutralize infection of live virus are recombinantly reproduced and formulated into a pharmaceutical composition for administration to a subject at risk of contacting an Influenza virus. Furthermore, recombinant and soluble HA homotrimers are derived from multiple strains of Influenza viruses, including multiple strains of influenza A virus. Exemplary human antibodies specifically bind Influenza A, and may be selected for an inability to bind influenza B and C virus strains.
The invention further provides a novel process whereby full-length HA is expressed in mammalian cell lines, which allows for the identification of human antibodies that bind this cell-expressed HA. The huMHA antibodies have been shown to bind conformational determinants on the HA-transfected cells, as well as native HA, which can be isolated, or contacted to huMHA antibodies when presented either on Influenza infected cells or on Influenza A virus. Alternatively, or in addition, huMHA antibodies bind native HA, recombinant homotrimeric HA, purified virus, infected cells, linear peptide, synthetic HA peptide, HA transfected mammalian cells, and HA expressed on the surface of genetically altered bacteriophage virus, which are used for gene fragment display assays. Thus, this invention has allowed for the identification and production of human monoclonal antibodies that exhibit novel specificity for a very broad range of Influenza A virus strains. These antibodies may be used prophylactically to prevent Influenza A infection, diagnostically to identify Influenza A infection and therapeutically to treat Influenza A infection. Moreover, the epitopes to which huMHA antibodies of the invention bind are used as vaccines to prevent influenza A infection.
The huMHA antibodies of the invention has one or more of the following characteristics: a) binds to an epitope in an HA1 subunit of an Influenza hemagglutinin (HA) protein; b) binds to an epitope in the HA2 subunit of Influenza hemagglutinin (HA) protein; c) binds to an epitope in the extracellular domain of an Influenza hemagglutinin (HA) protein, consisting of an HA1 subunit and an HA2 subunit; d) binds to an epitope of a recombinant homotrimeric Influenza HA0 protein; e) binds to an epitope of an Influenza HA protein expressed on an infected cell; f) binds to an epitope of an Influenza HA protein expressed on a modified cell; g) binds to an Influenza virus; or h) inhibits virus infection of susceptible eukaryotic cells. The huMHA antibodies of the invention eliminate Influenza infected cells through immune effector mechanisms such as ADCC and/or CDC and promote direct viral clearance by binding to Influenza virions.
Exemplary Influenza A strains used for screening human plasma samples, B Cell Culture supernatants (BCC SN), and monoclonal transfection supernatants (MN are shown in Table 1 below). Live strains were used for the neutralization assays described herein. Inactivated strains were used for the virus binding assays described herein. Recombinant homotrimeric HA protein was used in the trimeric HA binding assay.
Exemplary HA sequences include those sequences listed on Table 2 below.
In one embodiment, the huMHA antibodies of the invention bind to an HA that wholly or partially includes the amino acid residues from position 1 to position 525 of Influenza hemagglutinin when numbered in accordance with SEQ ID NO: 2-19. In other embodiments, the huMHA antibodies of the invention bind to an HA that wholly or partially includes the amino acid residues from position 1 to position 566 of Influenza hemagglutinin H3, wherein the full-length protein includes amino acids 1-566, the signal peptide includes amino acids 1-16, the HA1 subunit includes amino acids 17-345 and the HA2 subunit includes amino acids 346-566 (Wiley D C, Wilson I A, Skehel J J. Nature. 1981 Jan. 29; 289(5796):373-8). Alternatively, the huMHA antibodies of the invention bind to an HA that wholly or partially includes the amino acid residues from position 1 to position 566 of Influenza hemagglutinin H1, wherein the full-length protein includes amino acids 1-566, the signal peptide includes amino acids 1-17, the HA1 subunit includes amino acids 18-344 and the HA2 subunit includes amino acids 345-566 (Caton A J, Brownlee G G, Yewdell J W, Gerhard W. Cell. 1982 December; 31(2 Pt 1):417-27).
Alternatively, the monoclonal antibody is an antibody that binds to the same epitope as the mAbs listed in Table 3.
The antibodies of the invention are able to bind, and optionally, neutralize Influenza A. Monoclonal antibodies can be produced by known procedures, e.g., as described by R. Kennet et al. in “Monoclonal Antibodies and Functional Cell Lines; Progress and Applications”. Plenum Press (New York), 1984. Further materials and methods applied are based on known procedures, e.g., such as described in J. Virol. 67:6642-6647, 1993.
Isolated anti-HA monoclonal antibodies of the invention can be used as diagnostic, prophylactic, and/or therapeutic agents upon appropriate formulation.
A “neutralizing antibody” is one that can neutralize the ability of that pathogen to initiate and/or perpetuate an infection in a host and/or in target cells in vitro. The invention provides a neutralizing monoclonal human antibody, wherein the antibody recognizes an antigen from an Influenza virus, which is preferably derived from the HA protein.
Preferably an antibody according to the invention is a novel monoclonal antibody referred to herein as TCN-522 (corresponding to BCC plate and well location 3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_O17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), and TCN-504 (3251_K17). These antibodies were initially isolated from human samples and are produced by the B cell cultures referred to as 3212_I12, 3280_D18, 5248_A17, 5237_B21, 5084_C17, 5086_C06, 5087_P17, 5297_H01, 5248_H10a, 5091_H13, 5262_H18, 5256_A17a, 5249_B02, 5246_P19, 5095_N01, 3194_D21, 3206_O17, 5056_A08, 5060_F05, 5062_M11, 5079_A16, 5081_G23, 5082_A19, 5082_I15, 5089_L08, 5092_F11, 5092_P01, 5092_P04, 5096_F06, 5243_D01, 5249_I23, 5261_C18, 5277_M05, 5246_L16, 5089_K12, 5081_A04, 5248_H10b, 5097_G08, 5084_P10, 5256_A17b, and 3251_K17. These antibodies have broad neutralizing activity or broad binding activity for Influenza A in vitro.
Antibodies of the invention with broad neutralizing activity include TCN-522 (corresponding to BCC plate and well location 3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_I17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), and TCN-504 (3251_K17).
The CDRs of the antibody heavy chains are referred to as CDRH1, CDRH2 and CDRH3, respectively. Similarly, the CDRs of the antibody light chains are referred to as CDRL1, CDRL2 and CDRL3, respectively. The position of the CDR amino acids is defined according to the IMGT numbering system as: CDR1—IMGT positions 27 to 38, CDR2—IMGT positions 56 to 65 and CDR3—IMGT positions 105 to 117. (Lefranc, M P. et al. 2003 IMGT unique numbering for immunoglobulin and T cell receptor variable regions and Ig superfamily V-like domains. Dev Comp Immunol. 27(1):55-77; Lefranc, M P. 1997. Unique database numbering system for immunogenetic analysis. Immunology Today, 18:509; Lefranc, M P. 1999. The IMGT unique numbering for Immunoglobulins, T cell receptors and Ig-like domains. The Immunologist, 7:132-136.)
The sequences of the antibodies were determined, including the sequences of the variable regions of the Gamma heavy and Kappa or Lambda light chains of the antibodies designated. In addition, the sequence of each of the polynucleotides and polypeptides encoding the antibody sequences was determined for TCN-522 (3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_O17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), and TCN-504 (3251_K17).
Shown below are the polypeptide and polynucleotide sequences of the variable regions of the heavy and light chains.
TCN-504 (3251_K17) heavy chain variable region nucleotide sequence:
TCN-504 (3251_K17) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
YGDSEAINDAFDI
WGQGTMLTVSS
TCN-504 (3251_K17) gamma heavy chain Kabat CDRs:
TCN-504 (3251_K17) gamma heavy chain Chothia CDRs
TCN-504 (3251_K17) light chain variable region nucleotide sequence:
TCN-504 (3251_K17) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
ASTRAT
GIPPRFSGSGSGTEFTLTISSLQTEDFAVYYCQQYINWRPLSFG
TCN-504 (3251_K17) light chain Kabat CDRs:
TCN-504 (3251_K17) light chain Chothia CDRs:
TCN-521 (3280_D18) heavy chain variable region nucleotide sequence:
TCN-521 (3280_D18) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
IYSHGRAY
YSASVNGRFTISRHTSKNTVYLEMNSLRPEDTAVYYCAGGGL
VGGYDEYFFDY
WGQGTLATVSS
TCN-521 (3280_D18) gamma heavy chain Kabat CDRs:
TCN-521 (3280_D18) gamma heavy chain Chothia CDRs:
TCN-521 (3280_D18) light chain variable region nucleotide sequence:
TCN-521 (3280_D18) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
GASSRAT
GIPDRFGGSVSGTDFTLTISRLEPEDSAVYYCQQYGDSRYTFG
TCN-521 (3280_D18) Light chain Kabat CDRs:
TCN-521 (3280_D18) Light chain Chothia CDRs:
TCN-522 (3212_I12) heavy chain variable region nucleotide sequence:
TCN-522 (3212_I12) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TLHNGYTN
YNPSLRGRVSISIDTSKNQVSLRLTSVTAADTALYYCARGSG
GYGGFDYFGKLRTWDF
WGQGTLVTVSS
TCN-522 (3212_I12) gamma heavy chain Kabat CDRs:
TCN-522 (3212_I12) gamma heavy chain Chothia CDRs:
TCN-522 (3212_I12) light chain variable region nucleotide sequence:
TCN-522 (3212_I12) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
ASSLQS
GVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHNSYPYTFGQ
TCN-522 (3212_I12) Light chain Kabat CDRs:
TCN-522 (3212_I12) Light chain Chothia CDRs
TCN-523 (5248_A17) heavy chain variable region nucleotide sequence.
TCN-523 (5248_A17) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TIPLLGTTN
YAQKFQGRVTISADQFTSTAYMELGSLRSEDTAVYYCTRRK
MTTAFDS
WGQGTLVTVSS
TCN-523 (5248_A17) gamma heavy chain Kabat CDRs:
TCN-523 (5248_A17) gamma heavy chain Chothia CDRs:
TCN-523 (5248_A17) light chain variable region nucleotide sequence:
TCN-523 (5248_A17) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
GTGGIVGSKGD
GIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGADHGSG
SNFVSPYV
FGGGTKLTVL
TCN-523 (5248_A17) Light chain Kabat CDRs:
TCN-523 (5248_A17) Light chain Chothia CDRs:
TCN-563 (5237_B21) heavy chain variable region nucleotide sequence:
TCN-563 (5237_B21) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN 563 (5237_B21) Mamma heavy chain Kahat CDRs:
TCN-563 (5237_B21) Mamma heavy chain Chothia CDRs:
TCN-563 (5237_B21) light chain variable region nucleotide sequence:
TCN-563 (5237_B21) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-563 (5237_B21) light chain Kabat CDRs:
TCN-563 (5237_B21) light chain Chothia CDRs:
TCN-526 (5084_C17) heavy chain variable region nucleotide sequence:
TCN-526 (5084_C17) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-526 (5084_C17) gamma heavy chain Kabat CDRs:
TCN-526 (5084_C17) gamma heavy chain Chothia CDRs:
TCN-526 (5084_C17) light chain variable region nucleotide sequence:
TCN-526 (5084_C17) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-526 (5084_C17) Light chain Kabat CDRs:
TCN-526 (5084_C17) Light chain Chothia CDRs:
TCN-527 (5086_C06) heavy chain variable region nucleotide sequence:
TCN-527 (5086_C06) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
ISYNGRPK
YNPSLTSRVTISVDTSKDQFSLELRSVTAADTALYYCARETR
FGELLSPYDAFEI
WGQGTMVTVSS
TCN-527 (5086_C06) gamma heavy chain Kabat CDRs:
TCN-527 (5086_C06) gamma heavy chain Chothia CDRs:
TCN-527 (5086_C06) light chain variable region nucleotide sequence:
TCN-527 (5086_C06) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
ASTLHS
GVPSRFSGGGSGTDFTLTINNLQPEDFASYYCQQSYDNPQTFGQ
TCN-527 (5086_C61 Light chain Kabat CDRs:
TCN-527 (5086_C06) Light chain Kabat CDRs:
TCN-528 (5087_P17) heavy chain variable region nucleotide sequence:
TCN-528 (5087_P17) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
INPNSGTTG
SAQRFQGRVTITVDTSITTVYMELSSLRSDDTAIYYCARGR
ELLRLQHFLTDSQSERRDCFDP
WGQGTLVTVSS
TCN-528 (5087_P17) gamma heavy chain Kabat CDRs:
TCN-528 (5087_P17) gamma heavy chain Chothia CDRs:
TCN-528 (5087_P17) light chain variable region nucleotide sequence:
TCN-528 (5087_P17) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-528 (5087_P17) Light chain Kabat CDRs:
TCN-528 (5087_P17) Light chain Chothia CDRs:
TCN-529 (5297_H011 heavy chain variable region nucleotide sequence:
TCN-529 (5297_H01) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-529 (5297_H01) gamma heavy chain Kabat CDRs:
TCN-529 (5297_H01) gamma heavy chain Chothia CDRs:
TCN-529 (5297_H01) light chain variable region nucleotide sequence.
TCN-529 (5297_H01) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-529 (5297_H01) Light chain Kabat CDRs:
TCN-529 (5297_H01) Light chain Chothia CDRs:
TCN-530 (5248_H10a) heavy chain variable region nucleotide sequence:
TCN-530 (5248_H10a) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-530 (5248_H10a) gamma heavy chain Kabat CDRs:
TCN-530 (5248_H10a) gamma heavy chain Chothia CDRs:
TCN-530 (5248_H10a) light chain variable region nucleotide sequence:
TCN-530 (5248_H10a) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-530 (5248_H10a) Light chain Kabat CDRs:
TCN-530 (5248_H10a) Light chain Chothia CDRs:
TCN-531 (5091_H13) heavy chain variable region nucleotide sequence:
TCN-531 (5091_H13) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-531 (5091_H13) gamma heavy chain Kabat CDRs:
TCN-531 (5091_H13) gamma heavy chain Chothia CDRs:
TCN-531 (5091_H13) light chain variable region nucleotide sequence:
TCN-531 (5091_H13) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-531 (5091_H13) Light chain Kabat CDRs:
TCN-531 (5091_H13) Light chain Chothia CDRs:
TCN-532 (5262_H18) heavy chain variable region nucleotide sequence.
TCN-532 (5262_H18) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-532 (5262_H18) gamma heavy chain Kabat CDRs:
TCN-532 (5262_H18) gamma heavy chain Chothia CDRs:
TCN-532 (5262_H18) light chain variable region nucleotide sequence:
TCN-532 (5262_H18) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
LSGFHV
FGSGTKVTVL
TCN-532 (5262_H18) Light chain Kabat CDRs:
TCN-532 (5262_H18) Light chain Chothia CDRs:
TCN-533 (5256_A17a) heavy chain variable region nucleotide sequence:
TCN-533 (5256_A17a) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-533 (5256_A17a) gamma heavy chain Kabat CDRs:
TCN-533 (5256_A17a) gamma heavy chain Chothia CDRs:
TCN-533 (5256_A17a) light chain variable region nucleotide sequence:
TCN-533 (5256_A17a) light chain variable region amino acid sequence (Kabat CDRs in bold. Chothia CDRs underlined)
TCN-533 (5256_A17a) Light chain Kabat CDRs:
TCN-533 (5256_A17a) Light chain Chothia CDRs:
TCN-534 (5249_B02) heavy chain variable region nucleotide sequence:
TCN-534 (5249_B02) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-534 (5249_B02) gamma heavy chain Kabat CDRs:
TCN-534 (5249_B02) gamma heavy chain Chothia CDRs:
TCN-534 (5249_B02) Light chain variable region nucleotide sequence:
TCN-534 (5249_B02) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
AVNLES
GVPSRFSGSGSGTDFTLTISSLQPDDFATYFCQHYGTISQTFGG
TCN-534 (5249_B02) Light chain Kabat CDRs:
TCN-534 (5249_B02) Light chain Chothia CDRs:
TCN-535 (5246_P19) heavy chain variable region nucleotide sequence:
TCN-535 (5246_P19) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
IIPLFGAAK
YAQKFQGRVTITADESTKTVYMELSRLTSKDTAIYFCAKAP
RVYEYYFDQ
WGQGTPVTVSS
TCN-535 (5246_P191 gamma heavy chain Kabat CDRs:
TCN-535 (5246_P19) gamma heavy chain Chothia CDRs:
TCN-535 (5246_P19) light chain variable region nucleotide sequence:
TCN-535 (5246_P19) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
GASTRAT
GIPDRFSGSGSGTDFTLTIGRLEPEDFAVEECQQYSTSPPTFG
TCN-535 (5246_P19) Light chain Kabat CDRs:
TCN-535 (5246_P19) Light chain Chothia CDRs:
TCN-536 (5095_N01) heavy chain variable region nucleotide sequence:
TCN-536 (5095_N01) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-536 (5095_N01) gamma heavy chain Kabat CDRs:
TCN-536 (5095_N01) gamma heavy chain Chothia CDRs:
TCN-536 (5095_N01) light chain variable region nucleotide sequence:
TCN-536 (5095_N01) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-536 (5095_N01) Light chain Kabat CDRs:
TCN-536 (5095_N01) Light chain Chothia CDRs:
TCN-537 (3194_D21) heavy chain variable region nucleotide sequence:
TCN-537 (3194_D21) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-537 (3194_D21) gamma heavy chain Kabat CDRs:
TCN-537 (3194_D21) gamma heavy chain Chothia CDRs:
TCN-537 (3194_D21) light chain variable region nucleotide sequence:
TCN-537 (3194_D21) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-537 (3194_D21) light chain Kahat CDRs:
TCN-537 (3194_D21) Light chain Chothia CDRs:
TCN-538 (3206_O17) heavy chain variable region nucleotide sequence:
TCN-538 (3206_O17) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-538 (3206_O17) gamma heavy chain Kabat CDRs:
TCN-538 (3206_O17) gamma heavy chain Chothia CDRs:
TCN-538 (3206_O17) light chain variable region nucleotide sequence:
TCN-538 (3206_O17) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-538 (3206_O17) Light chain Kabat CDRs:
TCN-538 (3206_O17) Light chain Chothia CDRs:
TCN-539 (5056_A08) heavy chain variable region nucleotide sequence:
TCN-539 (5056_A08) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-539 (5056_A08) gamma heavy chain Kabat CDRs:
TCN-539 (5056_A08) gamma heavy chain Chothia CDRs:
TCN-539 (5056_A08) light chain variable region nucleotide sequence:
TCN-539 (5056_A08) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-539 (5056_A08) Light chain Kabat CDRs:
TCN-539 (5056_A08) Light chain Chothia CDRs:
TCN-540 (5060_F05) heavy chain variable region nucleotide sequence:
TCN-540 (5060_F05) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-540 (5060_F05) gamma heavy chain Kabat CDRs:
TCN-540 (5060_F05) gamma heavy chain Chothia CDRs:
TCN-540 (5060_F05) light chain variable region nucleotide sequence:
TCN-540 (5060_F05) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-540 (5060_F05) Light chain Kabat CDRs:
TCN-540 (5060_F05) Light chain Chothia CDRs:
TCN-541 (5062_M11) heavy chain variable region nucleotide sequence:
TCN-541 (5062_M11) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-541 (5062_M11) gamma heavy chain Kabat CDRs:
TCN-541 (5062_M11) gamma heavy chain Chothia CDRs:
TCN-541 (5062_M11) light chain variable region nucleotide sequence:
TCN-541 (5062_M11) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-541 (5062_M11) light chain Kabat CDRs:
TCN-541 (5062_M11) Light chain Chothia CDRs:
TCN-542 (5079_A16) heavy chain variable region nucleotide sequence:
TCN-542 (5079_A16) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-542 (5079_A16) gamma heavy chain Kabat CDRs:
TCN-542 (5079_A16) gamma heavy chain Chothia CDRs:
TCN-542 (5079_A16) light chain variable region nucleotide sequence:
TCN-542 (5079_A16) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-542 (5079_A16) Light chain Kabat CDRs:
TCN-542 (5079_A16) Light chain Chothia CDRs:
TCN-543 (5081_G23) heavy chain variable region nucleotide sequence:
TCN-543 (5081_G23) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-543 (5081_G23) gamma heavy chain Kabat CDRs:
TCN-543 (5081_G23) gamma heavy chain Chothia CDRs:
TCN-543 (5081_G23) light chain variable region nucleotide sequence:
TCN-543 (5081_G23) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-543 (5081_G23) Light chain Kabat CDRs:
TCN-543 (5081_G23) Light chain Chothia CDRs:
TCN-544 (5082_A19) heavy chain variable region nucleotide sequence:
TCN-544 (5082_A19) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-544 (5082_A19) gamma heavy chain Kabat CDRs:
TCN-544 (5082_A19) gamma heavy chain Chothia CDRs:
TCN-544 (5082_A19) light chain variable region nucleotide sequence:
TCN-544 (5082_A19) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-544 (5082_A19) Light chain Kabat CDRs:
TCN-544 (5089_A19) Light chain Chothia CDRs:
TCN-545 (5082_I15) heavy chain variable region nucleotide sequence:
TCN-545 (5082_I15) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-545 (5082_I15) gamma heavy chain Kabat CDRs:
TCN-545 (5082_I15) gamma heavy chain Chothia CDRs:
TCN-545 (5082_I15) light chain variable region nucleotide sequence:
TCN-545 (5082_I15) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
T
FGQGTRLEIK
TCN-545 (5082_I15) Light chain Kabat CDRs:
TCN-545 (5082_I15) Light chain Chothia CDRs:
TCN-546 (5089_L08) heavy chain variable region nucleotide sequence:
TCN-546 (5089_L08) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
EINHSGGTN
YNPSLKRRVTISVDTSKKQFSLKMNSVTAADTAVYYCARG
TDPDTEVYCRAGNCAAFDF
WGQGTLVTVSS
TCN-546 (5089_L08) gamma heavy chain Kabat CDRs:
TCN-546 (5089_L081 gamma heavy chain Chothia CDRs:
TCN-546 (5089_L08) light chain variable region nucleotide sequence:
TCN-546 (5089_L08) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
AF
GQGTKLEIK
TCN-546 (5089_L08) Light chain Kabat CDRs:
TCN-546 (5089_L081 Light chain Chothia CDRs:
TCN-547 (5092_F11) heavy chain variable region nucleotide sequence:
TCN-547 (5092_F11) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-547 (5092_F11) gamma heavy chain Kabat CDRs:
TCN-547 (5092_F11) gamma heavy chain Chothia CDRs:
TCN-547 (5092_F111 light chain variable region nucleotide sequence:
TCN-547 (5092_F11) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-547 (5092_F11) Light chain Kabat CDRs:
TCN-547 (5092_F11) Light chain Chothia CDRs:
TCN-548 (5092_P01) heavy chain variable region nucleotide sequence:
TCN-548 (5092_P01) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-548 (5092_P01) gamma heavy chain Kabat CDRs:
TCN-548 (5092_P01) gamma heavy chain Chothia CDRs:
TCN-548 (5092_P01) light chain variable region nucleotide sequence:
TCN-548 (5092_P01) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-548 (5092_P01) Light chain Kabat CDRs:
TCN-548 (5092_P01) Light chain Chothia CDRs:
TCN-549 (5097_P04) heavy chain variable region nucleotide sequence.
TCN-549 (5092_P04) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-549 (5092_P04) gamma heavy chain Kabat CDRs:
TCN-549 (5092_P04) gamma heavy chain Chothia CDRs:
TCN-549 (5092_P04) light chain variable region nucleotide sequence:
TCN-549 (5092_P04) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
FSPLT
FGGGTKVEIK
TCN-549 (5092_P04) Light chain Kabat CDRs:
TCN-549 (5092_P04) Light chain Chothia CDRs:
TCN-550 (5096_F06) heavy chain variable region nucleotide sequence:
TCN-550 (5096_F06) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
YVYYSGSTT
YNPSLKSRVTLSVDTSKNQFSLNLSSVTAADTAFYYCARH
PYDVLTGSGDWFDP
WGQGTLVTVSS
TCN-550 (5096_F06) gamma heavy chain Kabat CDRs:
TCN-550 (5096_F06) gamma heavy chain Chothia CDRs:
TCN-550 (5096_F06) light chain variable region nucleotide sequence:
TCN-550 (5096_F06) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
DTDRPS
GIPERFSGSNSWSTATLTINRVEAGDEADYYCQVWDFTIDHVV
TCN-550 (5096_F06) Light chain Kabat CDRs:
TCN-550 (5096_F06) Light chain Chothia CDRs:
TCN-551 (5243_D01) heavy chain variable region nucleotide sequence:
TCN-551 (5243_D01) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-551 (5243_D01) gamma heavy chain Kabat CDRs:
TCN-551 (5243_D01) gamma heavy chain Chothia CDRs:
TCN-551 (5243_D01) light chain variable region nucleotide sequence:
TCN-551 (5243_D01) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-551 (5243_D01) Light chain Kabat CDRs:
TCN-551 (5243_D01) Light chain Chothia CDRs:
TCN-552 (5249_I23) heavy chain variable region nucleotide sequence:
TCN-552 (5249_I23) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-552 (5249_I23) gamma heavy chain Kabat CDRs:
TCN-552 (5249_I23) gamma heavy chain Chothia CDRs:
TCN-552 (5249_I23) light chain variable region nucleotide sequence:
TCN-552 (5249_I23) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-552 (5249_I23) Light chain Kabat CDRs:
TCN-552 (5249_I23) Light chain Chothia CDRs:
TCN-553 (5261_C18) heavy chain variable region nucleotide sequence:
TCN-553 (5261_C18) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-553 (5261_C18) gamma heavy chain Kabat CDRs:
TCN-553 (5261_C18) gamma heavy chain Chothia CDRs:
TCN-553 (5261_C18) light chain variable region nucleotide sequence:
TCN-553 (5261_C18) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-553 (5261_C18) Light chain Kabat CDRs:
TCN-553 (5261_C18) Light chain Chothia CDRs:
TCN-554 (5277_M05) heavy chain variable region nucleotide sequence:
TCN-554 (5277_M05) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-554 (5277_M05) gamma heavy chain Kabat CDRs:
TCN-554 (5277_M05) gamma heavy chain Chothia CDRs:
TCN-554 (5277_M05) light chain variable region nucleotide sequence:
TCN-554 (5277_M05) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-554 (5277_M05) Light chain Kabat CDRs:
TCN-554 (5277_M05) Light chain Chothia CDRs:
TCN-555 (5246_L16) heavy chain variable region nucleotide sequence:
TCN-555 (5246_L16) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-555 (5246_L16) gamma heavy chain Kabat CDRs:
TCN-555 (5246_L16) gamma heavy chain Chothia CDRs:
TCN-555 (5246_L161 light chain variable region nucleotide sequence:
TCN-555 (5246_L16) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-555 (5246_L16) Light chain Kabat CDRs:
TCN-555 (5246_L16) Light chain Chothia CDRs:
TCN-556 (5089_K12) heavy chain variable region nucleotide sequence:
TCN-556 (5089_K12) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-556 (5089_K12) gamma heavy chain Kabat CDRs:
TCN-556 (5089_K12) gamma heavy chain Chothia CDRs:
TCN-556 (5089_K12) light chain variable region nucleotide sequence:
TCN-556 (5089_K12) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-556 (5089_K12) Light chain Kabat CDRs:
TCN-556 (5089_K12) Light chain Chothia CDRs:
TCN-557 (5081_A04) heavy chain variable region nucleotide sequence:
TCN-557 (5081_A04) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-557 (5081_A04) gamma heavy chain Kabat CDRs:
TCN-557 (5081_A04) gamma heavy chain Chothia CDRs:
TCN-557 (5081_A04) light chain variable region nucleotide sequence:
TCN-557 (5081_A04) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-557 (5081_A04) Light chain Kabat CDRs:
TCN-557 (5081_A04) Light chain Chothia CDRs:
TCN-558 (5248_H10b) heavy chain variable region nucleotide sequence:
TCN-558 (5248_H10b) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-558 (5248_H10b) gamma heavy chain Kabat CDRs:
TCN-558 (5248_H10b) gamma heavy chain Chothia CDRs:
TCN-558 (5248_H10b) light chain variable region nucleotide sequence:
TCN-558 (5248_H10b) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-558 (5248_H10b) Light chain Kabat CDRs:
TCN-558 (5248_H10b) Light chain Chothia CDRs:
TCN-559 (5097_G08) heavy chain variable region nucleotide sequence:
TCN-559 (5097_G08) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-559 (5097_G08) gamma heavy chain Kabat CDRs:
TCN-559 (5097_G08) gamma heavy chain Chothia CDRs:
TCN-559 (5097_G08) light chain variable region nucleotide sequence:
TCN-559 (5097_G08) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-559 (5097_G08) Light chain Kabat CDRs:
TCN-559 (5097_G08) Light chain Chothia CDRs:
TCN-560 (5084_P10) heavy chain variable region nucleotide sequence:
TCN-560 (5084_P10) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-560 (5084_P10) gamma heavy chain Kabat CDRs:
TCN-560 (5084_P10) gamma heavy chain Chothia CDRs:
TCN-560 (5084_P10) light chain variable region nucleotide sequence:
TCN-560 (5084_P10) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-560 (5084_P10) Light chain Kabat CDRs:
TCN-560 (5084_P10) Light chain Chothia CDRs:
TCN-564 (5256_A17b) heavy chain variable region nucleotide sequence:
TCN-564 (5256_A17b) gamma heavy chain variable region amino acid sequence: (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-564 (5256_A17b) gamma heavy chain Kabat CDRs:
TCN-564 (5256_A17b) gamma heavy chain Chothia CDRs:
TCN-564 (5256_A17b) light chain variable region nucleotide sequence:
TCN-564 (5256_A17b) light chain variable region amino acid sequence (Kabat CDRs in bold, Chothia CDRs underlined)
TCN-564 (5256_A17b) Light chain Kabat CDRs:
TCN-564 (5256_A17b) Light chain Chothia CDRs:
The invention provides an isolated fully human monoclonal anti-HA antibody or fragment thereof, wherein said antibody includes a variable heavy chain (VH) region comprising CDR1 and CDR2, wherein the VH region is encoded by a human IGHV1 (or specifically, IGHV1-18, IGHV1-2, IGHV1-69, IGHV1-8), IGHV2 (or specifically, IGHV2-5), IGHV3 (or specifically, IGHV3-30, IGHV3-33, IGHV3-49, IGHV3-53, 66, IGHV3-7), IGHV4 (or specifically, IGHV4-31, IGHV4-34, IGHV4-39, IGHV4-59, IGHV4-61), or IGHV5 (or specifically, IGHV5-51) VH germline sequence or an allele thereof, or a nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline gene sequence or an allele thereof. In one aspect, the nucleic acid sequence that is homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence is at least 75% homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline sequence or an allele thereof. Exemplary alleles include, but are not limited to, IGHV1-18*01, IGHV1-2*02, IGHV1-2*04, IGHV1-69*01, IGHV1-69*05, IGHV1-69*06, IGHV1-69*12, IGHV1-8*01, IGHV2-5*10, IGHV3-30-3*01, IGHV3-30*03, IGHV3-30*18, IGHV3-33*05, IGHV3-49*04, IGHV3-53*01, IGHV3-66*03, IGHV3-7*01, IGHV4-31*03, IGHV4-31*06, IGHV4-34*01, IGHV4-34*02, IGHV4-34*03, IGHV4-34*12, IGHV4-39*01, IGHV4-59*01, IGHV4-59*03, IGHV4-61*01, IGHV4-61*08, and IGHV5-51*01. Exemplary sequences for each allele are provided below.
In certain embodiments of the invention, the antibody further includes a variable light chain (VL) region encoded by a human IGKV1 (or specifically, IGKV1-17, IGKV1-27, IGKV1-39, IGKV1D-39, IGKV1-5), IGKV2 (or specifically, IGKV2-30), IGKV3 (or specifically, IGKV3-11, IGKV3-15, IGKV3-20), IGKV4 (or specifically, IGKV4-1, IGKV4-1), IGLV1 (or specifically, IGLV1-40, IGLV1-44, IGLV1-55), IGLV2 (or specifically, IGLV2-11, IGLV2-14, IGLV2-8), IGLV3 (or specifically, IGLV3-21 or IGLV3-25), IGLV7 (or specifically, IGLV7-43 or IGLV7-46), or IGLV9 (or specifically, IGLV9-49) or an allele thereof. VL germline gene sequence IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 or an allele thereof, or a nucleotide acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline gene sequence or an allele thereof. Furthermore, the nucleic acid sequence that is homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence or an allele thereof is at least 65% homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline sequence or an allele thereof.
The heavy chain of an isolated monoclonal anti-hemagglutinin (HA) antibody (i.e., anti-hemagglutinin antibody of the invention) is derived from a germ line V (variable) gene such as, for example, the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene or an allele thereof.
The HA antibodies of the invention include a variable heavy chain (VH) region encoded by a human IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene sequence or an allele thereof. A IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene sequence is shown, e.g., in SEQ ID NOs: 457 to 485. The HA antibodies of the invention include a VH region that is encoded by a nucleic acid sequence that is at least 75% homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene sequence or an allele thereof. Preferably, the nucleic acid sequence is at least 75%, 80%, 85%, 90%, 95%, 96%, 97% homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene sequence or an allele thereof, and more preferably, at least 98%, 99% homologous to the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 germline gene sequence or an allele thereof. The VH region of the HA antibody is at least 75% homologous to the amino acid sequence of the VH region encoded by the IGHV1, IGHV2, IGHV3, IGHV4, or IGHV5 VH germline gene sequence or an allele thereof. Preferably, the amino acid sequence of VH region of the HA antibody is at least 75%, 80%, 85%, 90%, 95%, 96%, 97% homologous to the amino acid sequence encoded by the 75%, 80%, 85%, 90%, 95%, 96%, 97% germline gene sequence or an allele thereof, and more preferably, at least 98%, 99% homologous to the sequence encoded by the 75%, 80%, 85%, 90%, 95%, 96%, 97% germline gene sequence or an allele thereof.
The HA antibodies of the invention also include a variable light chain (VL) region encoded by a human IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof. A human IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL germline gene sequence, or an allele thereof is shown, e.g., at SEQ ID NOs: 486 to 508. Alternatively, the HA antibodies include a IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 VL region that is encoded by a nucleic acid sequence that is at least 65% homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof. Preferably, the nucleic acid sequence is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97% homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof, and more preferably, at least 98%, 99% homologous to the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof. The VL region of the HA antibody is at least 65% homologous to the amino acid sequence of the VL region encoded the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof. Preferably, the amino acid sequence of VL region of the HA antibody is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97% homologous to the amino acid sequence encoded by the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof, and more preferably, at least 98%, 99% homologous to the sequence encoded by the IGKV1, IGKV2, IGKV3, IGKV4, IGLV1, IGLV2, IGLV3, IGLV7, or IGLV9 germline gene sequence or an allele thereof.
Unless otherwise defined, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The practice of the present invention will employ, unless indicated specifically to the contrary, conventional methods of virology, immunology, microbiology, molecular biology and recombinant DNA techniques within the skill of the art, many of which are described below for the purpose of illustration. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al. Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al. Molecular Cloning: A Laboratory Manual (1982); DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, eds., 1985); Transcription and Translation (B. Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. Freshney, ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984).
The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.
The following definitions are useful in understanding the present invention:
The term “antibody” (Ab) as used herein includes monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity. The term “immunoglobulin” (Ig) is used interchangeably with “antibody” herein.
An “isolated antibody” is one that has been separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody is purified: (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator; or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
The basic four-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains. An IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called a J chain, and therefore contains 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain. In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain (VH) followed by three constant domains (CH) for each of the α and γ chains and four CH domains for μ and ε isotypes. Each L chain has at the N-terminus, a variable domain (VL) followed by a constant domain (CL) at its other end. The VL is aligned with the VH and the CL is aligned with the first constant domain of the heavy chain (CH1). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a VH and VL together forms a single antigen-binding site. For the structure and properties of the different classes of antibodies, see, e.g., Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, Conn., 1994, page 71, and Chapter 6.
The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains (CL). Depending on the amino acid sequence of the constant domain of their heavy chains (CH), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated alpha (), delta (δ), epsilon (), gamma (γ) and mu (μ), respectively. The γ and α classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
The term “variable” refers to the fact that certain segments of the V domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called “hypervariable regions” that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).
The term “hypervariable region” when used herein refers to the amino acid residues of an antibody that are responsible for antigen binding. The hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g., around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the VL, and around about 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the VH when numbered in accordance with the Kabat numbering system; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)); and/or those residues from a “hypervariable loop” (e.g., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the VL, and 26-32 (H1), 52-56 (H2) and 95-101 (H3) in the VH when numbered in accordance with the Chothia numbering system; Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)); and/or those residues from a “hypervariable loop”/CDR (e.g., residues 27-38 (L1), 56-65 (L2) and 105-120 (L3) in the VL, and 27-38 (H1), 56-65 (H2) and 105-120 (H3) in the VH when numbered in accordance with the IMGT numbering system; Lefranc, M. P. et al. Nucl. Acids Res. 27:209-212 (1999), Ruiz, M. e al. Nucl. Acids Res. 28:219-221 (2000)). Optionally the antibody has symmetrical insertions at one or more of the following points 28, 36 (L1), 63, 74-75 (L2) and 123 (L3) in the VL, and 28, 36 (H1), 63, 74-75 (H2) and 123 (H3) in the VH when numbered in accordance with AHo; Honneger, A. and Plunkthun, A. J. Mol. Biol. 309:657-670 (2001)).
By “germline nucleic acid residue” is meant the nucleic acid residue that naturally occurs in a germline gene encoding a constant or variable region. “Germline gene” is the DNA found in a germ cell (i.e., a cell destined to become an egg or in the sperm). A “germline mutation” refers to a heritable change in a particular DNA that has occurred in a germ cell or the zygote at the single-cell stage, and when transmitted to offspring, such a mutation is incorporated in every cell of the body. A germline mutation is in contrast to a somatic mutation which is acquired in a single body cell. In some cases, nucleotides in a germline DNA sequence encoding for a variable region are mutated (i.e., a somatic mutation) and replaced with a different nucleotide.
The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations that include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier “monoclonal” is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
The monoclonal antibodies herein include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). The present invention provides variable domain antigen-binding sequences derived from human antibodies. Accordingly, chimeric antibodies of primary interest herein include antibodies having one or more human antigen binding sequences (e.g., CDRs) and containing one or more sequences derived from a non-human antibody, e.g., an FR or C region sequence. In addition, chimeric antibodies of primary interest herein include those comprising a human variable domain antigen binding sequence of one antibody class or subclass and another sequence, e.g., FR or C region sequence, derived from another antibody class or subclass. Chimeric antibodies of interest herein also include those containing variable domain antigen-binding sequences related to those described herein or derived from a different species, such as a non-human primate (e.g., Old World Monkey, Ape, etc). Chimeric antibodies also include primatized and humanized antibodies.
Furthermore, chimeric antibodies may include residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
A “humanized antibody” is generally considered to be a human antibody that has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization is traditionally performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting import hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
A “human antibody” is an antibody containing only sequences present in an antibody naturally produced by a human. However, as used herein, human antibodies may comprise residues or modifications not found in a naturally occurring human antibody, including those modifications and variant sequences described herein. These are typically made to further refine or enhance antibody performance.
An “intact” antibody is one that comprises an antigen-binding site as well as a CL and at least heavy chain constant domains, CH 1, CH 2 and CH 3. The constant domains may be native sequence constant domains (e.g., human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.
An “antibody fragment” comprises a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies (see U.S. Pat. No. 5,641,870; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
The phrase “functional fragment or analog” of an antibody is a compound having qualitative biological activity in common with a full-length antibody. For example, a functional fragment or analog of an anti-IgE antibody is one that can bind to an IgE immunoglobulin in such a manner so as to prevent or substantially reduce the ability of such molecule from having the ability to bind to the high affinity receptor, FcεRI.
Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (VH), and the first constant domain of one heavy chain (CH 1). Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsin treatment of an antibody yields a single large F(ab′)2 fragment that roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab′ fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments that have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
The “Fc” fragment comprises the carboxy-terminal portions of both H chains held together by disulfides. The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.
“Fv” is the minimum antibody fragment that contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (three loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
“Single-chain Fv” also abbreviated as “sFv” or “scFv” are antibody fragments that comprise the VH and VL antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra.
The term “diabodies” refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the VH and VL domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two “crossover” sFv fragments in which the VH and VL domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
As used herein, an antibody that “internalizes” is one that is taken up by (i.e., enters) the cell upon binding to an antigen on a mammalian cell (e.g., a cell surface polypeptide or receptor). The internalizing antibody includes antibody fragments, human or chimeric antibody, and antibody conjugates. For certain therapeutic applications, internalization in vivo is contemplated. The number of antibody molecules internalized will be sufficient or adequate to kill a cell or inhibit its growth, especially an infected cell. Depending on the potency of the antibody or antibody conjugate, in some instances, the uptake of a single antibody molecule into the cell is sufficient to kill the target cell to which the antibody binds. For example, certain toxins are highly potent in killing such that internalization of one molecule of the toxin conjugated to the antibody is sufficient to kill the infected cell.
As used herein, an antibody is said to be “immunospecific,” “specific for” or to “specifically bind” an antigen if it reacts at a detectable level with the antigen, preferably with an affinity constant, Ka, of greater than or equal to about 104 M−1, or greater than or equal to about 105 M−1, greater than or equal to about 106 M−1, greater than or equal to about 107 M−1, or greater than or equal to 108 M−1. Affinity of an antibody for its cognate antigen is also commonly expressed as a dissociation constant KD, and in certain embodiments, HuMHA antibody specifically binds to HA if it binds with a KD of less than or equal to 10−4 M, less than or equal to about 10−5 M, less than or equal to about 10−6 M, less than or equal to 10−7 M, or less than or equal to 10−8 M. Affinities of antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al. (Ann. N.Y. Acad. Sci. USA 51:660 (1949)).
Binding properties of an antibody to antigens, cells or tissues thereof may generally be determined and assessed using immunodetection methods including, for example, immunofluorescence-based assays, such as immuno-histochemistry (IHC) and/or fluorescence-activated cell sorting (FACS).
An antibody having a “biological characteristic” of a designated antibody is one that possesses one or more of the biological characteristics of that antibody which distinguish it from other antibodies. For example, in certain embodiments, an antibody with a biological characteristic of a designated antibody will bind the same epitope as that bound by the designated antibody and/or have a common effector function as the designated antibody.
The term “antagonist” antibody is used in the broadest sense, and includes an antibody that partially or fully blocks, inhibits, or neutralizes a biological activity of an epitope, polypeptide, virus, or cell that it specifically binds. Methods for identifying antagonist antibodies may comprise contacting a polypeptide, virus, or cell specifically bound by a candidate antagonist antibody with the candidate antagonist antibody and measuring a detectable change in one or more biological activities normally associated with the polypeptide, virus, or cell.
An “antibody that inhibits the growth of infected cells” or a “growth inhibitory” antibody is one that binds to and results in measurable growth inhibition of infected cells expressing or capable of expressing an HA epitope bound by an antibody. Preferred growth inhibitory antibodies inhibit growth of infected cells by greater than 20%, preferably from about 20% to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being infected cells not treated with the antibody being tested. Growth inhibition can be measured at an antibody concentration of about 0.1 to 30 μg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the infected cells to the antibody. Growth inhibition of infected cells in vivo can be determined in various ways known in the art. The antibody is growth inhibitory in vivo if administration of the antibody at about 1 μg/kg to about 100 mg/kg body weight results in reduction the percent of infected cells or total number of infected cells within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.
An antibody that “induces apoptosis” is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). Preferably the cell is an infected cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody that induces apoptosis is one that results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay.
Antibody “effector functions” refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation.
“Antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to a form of cytotoxicity in which secreted Ig bound to Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies “arm” the cytotoxic cells and are required for such killing. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in U.S. Pat. No. 5,500,362 or U.S. Pat. No. 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al., PNAS (USA) 95:652-656 (1998).
“Fc receptor” or “FcR” describes a receptor that binds to the Fc region of an antibody. In certain embodiments, the FcR is a native sequence human FcR. Moreover, a preferred FcR is one that binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FCγRII receptors include FcγRIIA (an “activating receptor”) and FcγRIIB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daeron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term “FcR” herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).
“Human effector cells” are leukocytes that express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes that mediate ADCC include PBMC, NK cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood.
“Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) that are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.
The terms “Influenza A” and “Influenza virus A” refer to a genus of the Orthomyxoviridae family of viruses. Influenza virus A includes only one species: Influenza A virus which causes Influenza in birds, humans, pigs, and horses. Strains of all subtypes of Influenza A virus have been isolated from wild birds, although disease is uncommon. Some isolates of Influenza A virus cause severe disease both in domestic poultry and, rarely, in humans.
A “mammal” for purposes of treating an infection, refers to any mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.
“Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic or preventative measures; wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. A subject or mammal is successfully “treated” for an infection if, after receiving a therapeutic amount of an antibody according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of infected cells or absence of the infected cells; reduction in the percent of total cells that are infected; and/or relief to some extent, one or more of the symptoms associated with the specific infection; reduced morbidity and mortality, and improvement in quality of life issues. The above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician.
The term “therapeutically effective amount” refers to an amount of an antibody or a drug effective to “treat” a disease or disorder in a subject or mammal. See preceding definition of “treating.”
“Chronic” administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.
Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
“Carriers” as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers that are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™.
The term “cytotoxic agent” as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include At211, I131, I125, Y90, Re186, Re188, Sm153, Bi212, P32 and radioactive isotopes of Lu), chemotherapeutic agents e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below.
A “growth inhibitory agent” when used herein refers to a compound or composition which inhibits growth of a cell, either in vitro or in vivo. Examples of growth inhibitory agents include agents that block cell cycle progression, such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vinca alkaloids (vincristine, vinorelbine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled “Cell cycle regulation, oncogenes, and antineoplastic drugs” by Murakami et al. (W B Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERE™, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.
“Label” as used herein refers to a detectable compound or composition that is conjugated directly or indirectly to the antibody so as to generate a “labeled” antibody. The label may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition that is detectable.
The term “epitope tagged” as used herein refers to a chimeric polypeptide comprising a polypeptide fused to a “tag polypeptide.” The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide is also preferably fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).
A “small molecule” is defined herein to have a molecular weight below about 500 Daltons.
The terms “nucleic acid” and “polynucleotide” are used interchangeably herein to refer to single- or double-stranded RNA, DNA, or mixed polymers. Polynucleotides may include genomic sequences, extra-genomic and plasmid sequences, and smaller engineered gene segments that express, or may be adapted to express polypeptides.
An “isolated nucleic acid” is a nucleic acid that is substantially separated from other genome DNA sequences as well as proteins or complexes such as ribosomes and polymerases, which naturally accompany a native sequence. The term embraces a nucleic acid sequence that has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogues or analogues biologically synthesized by heterologous systems. A substantially pure nucleic acid includes isolated forms of the nucleic acid. Of course, this refers to the nucleic acid as originally isolated and does not exclude genes or sequences later added to the isolated nucleic acid by the hand of man.
The term “polypeptide” is used in its conventional meaning, i.e., as a sequence of amino acids. The polypeptides are not limited to a specific length of the product. Peptides, oligopeptides, and proteins are included within the definition of polypeptide, and such terms may be used interchangeably herein unless specifically indicated otherwise. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. A polypeptide may be an entire protein, or a subsequence thereof. Particular polypeptides of interest in the context of this invention are amino acid subsequences comprising CDRs and being capable of binding an antigen, an Influenza virus, or an Influenza-infected cell, preferably, an Influenza A virus or an Influenza-A-infected virus.
An “isolated polypeptide” is one that has been identified and separated and/or recovered from a component of its natural environment. In preferred embodiments, the isolated polypeptide will be purified (1) to greater than 95% by weight of polypeptide as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes the polypeptide in situ within recombinant cells since at least one component of the polypeptide's natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.
A “native sequence” polynucleotide is one that has the same nucleotide sequence as a polynucleotide derived from nature. A “native sequence” polypeptide is one that has the same amino acid sequence as a polypeptide (e.g., antibody) derived from nature (e.g., from any species). Such native sequence polynucleotides and polypeptides can be isolated from nature or can be produced by recombinant or synthetic means.
A polynucleotide “variant,” as the term is used herein, is a polynucleotide that typically differs from a polynucleotide specifically disclosed herein in one or more substitutions, deletions, additions, inversions, and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the polynucleotide sequences of the invention and evaluating one or more biological activities of the encoded polypeptide as described herein and/or using any of a number of techniques well known in the art.
A polypeptide “variant,” as the term is used herein, is a polypeptide that typically differs from a polypeptide specifically disclosed herein in one or more substitutions, deletions, additions, inversions, and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the above polypeptide sequences of the invention and evaluating one or more biological activities of the polypeptide as described herein and/or using any of a number of techniques well known in the art.
Modifications may be made in the structure of the polynucleotides and polypeptides of the present invention and still obtain a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics. When it is desired to alter the amino acid sequence of a polypeptide to create an equivalent, or even an improved, variant or portion of a polypeptide of the invention, one skilled in the art will typically change one or more of the codons of the encoding DNA sequence.
For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of its ability to bind other polypeptides (e.g., antigens) or cells. Since it is the binding capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences that encode said peptides without appreciable loss of their biological utility or activity.
In many instances, a polypeptide variant will contain one or more conservative substitutions. A “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, 1982). These values are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e. still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.
As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryptophan (−3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.
As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
Amino acid substitutions may further be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.
Polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein, which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region. Specifically, the poly-His tail of SEQ ID NO: 1 is bound to a solid support when this sequence is incorporated into a soluble and recombinant Influenza HA protein of the invention, such that this homotrimeric protein is used as a target for trapping human antibodies that bind a conformational epitope of this antigenic and homotrimeric Influenza protein.
When comparing polynucleotide and polypeptide sequences, two sequences are said to be “identical” if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A “comparison window” as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, Calif.; Higgins, D. G. and Sharp, P. M. (1989) CABIOS 5:151-153; Myers, E. W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E. D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P. H. A. and Sokal, R. R. (1973) Numerical Taxonomy—the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, Calif.; Wilbur, W. J. and Lipman, D. J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.
Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.
One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.
In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=−4 and a comparison of both strands.
For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
In one approach, the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residues occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
“Homology” refers to the percentage of residues in the polynucleotide or polypeptide sequence variant that are identical to the non-variant sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. In particular embodiments, polynucleotide and polypeptide variants have at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, at least 98%, or at least 99% polynucleotide or polypeptide homology with a polynucleotide or polypeptide described herein.
“Vector” includes shuttle and expression vectors. Typically, the plasmid construct will also include an origin of replication (e.g., the ColE1 origin of replication) and a selectable marker (e.g., ampicillin or tetracycline resistance), for replication and selection, respectively, of the plasmids in bacteria. An “expression vector” refers to a vector that contains the necessary control sequences or regulatory elements for expression of the antibodies including antibody fragment of the invention, in bacterial or eukaryotic cells. Suitable vectors are disclosed below.
As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise.
The present invention includes human monoclonal ant-influenza A antibodies. In one embodiment, the antibody is an antibody designated herein as TCN-522 (3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-563 (5237_B21), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_I07), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_L16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN 558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-564 (5256_A17b), or TCN-504 (3251_K17). These antibodies bind to an epitope of an Influenza protein on multiple Influenza subtypes and inhibit influenza A infection.
In particular embodiments, the antibodies of the present invention bind to the HA protein. In certain embodiments, the present invention provides HuMHA antibodies that bind to epitopes within HA protein that are only present in the native conformation, i.e., as expressed on the surface of the Influenza virus. It is understood that these antibodies recognize non-linear (i.e. conformational) epitope(s) of the HA protein, particularly in its homotrimeric conformation.
These specific conformational epitopes within the HA protein may be used as vaccines to prevent the development of Influenza infection within a subject.
As will be understood by the skilled artisan, general description of antibodies herein and methods of preparing and using the same also apply to individual antibody polypeptide constituents and antibody fragments.
The antibodies of the present invention may be polyclonal or monoclonal antibodies. However, in preferred embodiments, they are monoclonal. In particular embodiments, antibodies of the present invention are fully human antibodies. Methods of producing polyclonal and monoclonal antibodies are known in the art and described generally, e.g., in U.S. Pat. No. 6,824,780. Typically, the antibodies of the present invention are produced recombinantly, using vectors and methods available in the art, as described further below. Human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275).
Human antibodies may also be produced in transgenic animals (e.g., mice) that are capable of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice results in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993); U.S. Pat. Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); U.S. Pat. No. 5,545,807; and WO 97/17852. Such animals may be genetically engineered to produce human antibodies comprising a polypeptide of the present invention.
In certain embodiments, antibodies of the present invention are chimeric antibodies that comprise sequences derived from both human and non-human sources. In particular embodiments, these chimeric antibodies are humanized or Primatized™. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
In the context of the present invention, chimeric antibodies also include fully human antibodies wherein the human hypervariable region or one or more CDRs are retained, but one or more other regions of sequence have been replaced by corresponding sequences from a non-human animal.
The choice of non-human sequences, both light and heavy, to be used in making the chimeric antibodies is important to reduce antigenicity and human anti-non-human antibody responses when the antibody is intended for human therapeutic use. It is further important that chimeric antibodies retain high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, chimeric antibodies are prepared by a process of analysis of the parental sequences and various conceptual chimeric products using three-dimensional models of the parental human and non-human sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.
As noted above, antibodies (or immunoglobulins) can be divided into five different classes, based on differences in the amino acid sequences in the constant region of the heavy chains. All immunoglobulins within a given class have very similar heavy chain constant regions. These differences can be detected by sequence studies or more commonly by serological means (i.e. by the use of antibodies directed to these differences). Antibodies, or fragments thereof, of the present invention may be any class, and may, therefore, have a gamma, mu, alpha, delta, or epsilon heavy chain. A gamma chain may be gamma 1, gamma 2, gamma 3, or gamma 4; and an alpha chain may be alpha 1 or alpha 2.
In a preferred embodiment, an antibody of the present invention, or fragment thereof, is an IgG. IgG is considered the most versatile immunoglobulin, because it is capable of carrying out all of the functions of immunoglobulin molecules. IgG is the major Ig in serum, and the only class of Ig that crosses the placenta. IgG also fixes complement, although the IgG4 subclass does not. Macrophages, monocytes, PMN's and some lymphocytes have Fc receptors for the Fc region of IgG. Not all subclasses bind equally well; IgG2 and IgG4 do not bind to Fc receptors. A consequence of binding to the Fc receptors on PMN's, monocytes and macrophages is that the cell can now internalize the antigen better. IgG is an opsonin that enhances phagocytosis. Binding of IgG to Fc receptors on other types of cells results in the activation of other functions. Antibodies of the present invention may be of any IgG subclass.
In another preferred embodiment, an antibody, or fragment thereof, of the present invention is an IgE. IgE is the least common serum Ig since it binds very tightly to Fc receptors on basophils and mast cells even before interacting with antigen. As a consequence of its binding to basophils an mast cells, IgE is involved in allergic reactions. Binding of the allergen to the IgE on the cells results in the release of various pharmacological mediators that result in allergic symptoms. IgE also plays a role in parasitic helminth diseases. Eosinophils have Fc receptors for IgE and binding of eosinophils to IgE-coated helminths results in killing of the parasite. IgE does not fix complement.
In various embodiments, antibodies of the present invention, and fragments thereof, comprise a variable light chain that is either kappa or lambda. The lambda chain may be any of subtype, including, e.g., lambda 1, lambda 2, lambda 3, and lambda 4.
As noted above, the present invention further provides antibody fragments comprising a polypeptide of the present invention. In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. For example, the smaller size of the fragments allows for rapid clearance, and may lead to improved access to certain tissues, such as solid tumors. Examples of antibody fragments include: Fab, Fab′, F(ab′)2 and Fv fragments; diabodies; linear antibodies; single-chain antibodies; and multispecific antibodies formed from antibody fragments.
Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab′)2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab′)2 fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.
In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. Nos. 5,571,894; and 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions. Thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragment may also be a “linear antibody”, e.g., as described in U.S. Pat. No. 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.
In certain embodiments, antibodies of the present invention are bispecific or multi-specific. Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a single antigen. Other such antibodies may combine a first antigen binding site with a binding site for a second antigen. Alternatively, a human MAb arm may be combined with an arm that binds to a triggering molecule on a leukocyte, such as a T-cell receptor molecule (e.g., CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16), so as to focus and localize cellular defense mechanisms to the infected cell. Bispecific antibodies may also be used to localize cytotoxic agents to infected cells. These antibodies possess an HA-binding arm and an arm that binds the cytotoxic agent (e.g., saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab′)2 bispecific antibodies). WO 96/16673 describes a bispecific anti-ErbB2/anti-FcγRIII antibody and U.S. Pat. No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcγRI antibody. A bispecific anti-ErbB2/Fcα antibody is shown in WO98/02463. U.S. Pat. No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.
Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).
According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.
In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).
According to another approach described in U.S. Pat. No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers that are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH 3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.
Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
Recent progress has facilitated the direct recovery of Fab′-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a VH connected to a VL by a linker that is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).
Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147: 60 (1991). A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies with three or more antigen binding sites (e.g., tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD1-(X1)n-VD2-(X2)n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH-CH1-Fc region chain; or VH-CH1-VH-CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.
Antibodies of the present invention further include single chain antibodies.
In particular embodiments, antibodies of the present invention are internalizing antibodies.
Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody may be prepared by introducing appropriate nucleotide changes into a polynucleotide that encodes the antibody, or a chain thereof, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution may be made to arrive at the final antibody, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites. Any of the variations and modifications described above for polypeptides of the present invention may be included in antibodies of the present invention.
A useful method for identification of certain residues or regions of an antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells in Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with PSCA antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti-antibody variants are screened for the desired activity.
Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of an antibody include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g., for ADEPT) or a polypeptide that increases the serum or plasma half-life of the antibody.
Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative and non-conservative substitutions are contemplated.
Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
One type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody. Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and an antigen or infected cell. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
The antibody of the invention is modified with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-infection activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989).
To increase the serum or plasma half-life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Pat. No. 5,739,277, for example. As used herein, the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule.
Antibodies of the present invention may also be modified to include an epitope tag or label, e.g., for use in purification or diagnostic applications. The invention also pertains to therapy with immunoconjugates comprising an antibody conjugated to an anti-cancer agent such as a cytotoxic agent or a growth inhibitory agent. Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above.
Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.
In one preferred embodiment, an antibody (full length or fragments) of the invention is conjugated to one or more maytansinoid molecules. Maytansinoids are mitototic inhibitors that act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Pat. No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Pat. No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Pat. Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533.
In an attempt to improve their therapeutic index, maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Pat. Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 B1. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an in vivo tumor growth assay.
Antibody-maytansinoid conjugates are prepared by chemically linking an antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. An average of 3-4 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity over the use of naked antibody. Maytansinoids are well known in the art and can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Pat. No. 5,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters.
There are many linking groups known in the art for making antibody conjugates, including, for example, those disclosed in U.S. Pat. No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al., Cancer Research 52: 127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.
Immunoconjugates may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) (Carlsson et al., Biochem. J. 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage. For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a “cleavable linker” facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, Cancer Research 52: 127-131 (1992); U.S. Pat. No. 5,208,020) may be used.
Another immunoconjugate of interest comprises an antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. Pat. Nos. 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Another drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.
Examples of other agents that can be conjugated to the antibodies of the invention include BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. Pat. Nos. 5,053,394, 5,770,710, as well as esperamicins (U.S. Pat. No. 5,877,296).
Enzymatically active toxins and fragments thereof that can be used include, e.g., diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232.
The present invention further includes an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).
For selective destruction of infected cells, the antibody includes a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-PSCA antibodies. Examples include At211, I131, I125, Y90, Re186, Re188, Sm153, Bi212, P32, Pb212 and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc99m or I123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
The radio- or other label is incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc99m or I123, Re186, Re188 and In111 can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al. (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. “Monoclonal Antibodies in Immunoscintigraphy” (Chatal, CRC Press 1989) describes other methods in detail.
Alternatively, a fusion protein comprising the antibody and cytotoxic agent is made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.
The antibodies of the present invention are also used in antibody dependent enzyme mediated prodrug therapy (ADET) by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug (see, e.g., WO 88/07378 and U.S. Pat. No. 4,975,278).
The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to convert it into its more active, cytotoxic form. Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as “abzymes”, can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328: 457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a infected cell population.
The enzymes of this invention can be covalently bound to the antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature, 312: 604-608 (1984).
Other modifications of the antibody are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate)microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).
The antibodies disclosed herein are also formulated as immunoliposomes. A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant that is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO97/38731 published Oct. 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556.
Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired a diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst. 81(19)1484 (1989).
Antibodies of the present invention, or fragments thereof, may possess any of a variety of biological or functional characteristics. In certain embodiments, these antibodies are Influenza A specific or HA protein specific antibodies, indicating that they specifically bind to or preferentially bind to Influenza A or the HA protein thereof, respectively, as compared to a normal control cell. In particular embodiments, the antibodies are HuMHA antibodies, indicating that they specifically bind to an Influenza HA protein, preferably to an epitope of an HA1 or HA2 domain that is only present when the HA protein is expressed as a soluble recombinant Influenza HA protein or in its native confirmation on the surface of an Influenza virus.
In particular embodiments, an antibody of the present invention is an antagonist antibody, which partially or fully blocks or inhibits a biological activity of a polypeptide or cell to which it specifically or preferentially binds. In other embodiments, an antibody of the present invention is a growth inhibitory antibody, which partially or fully blocks or inhibits the growth of an infected cell to which it binds. In another embodiment, an antibody of the present invention induces apoptosis. In yet another embodiment, an antibody of the present invention induces or promotes antibody-dependent cell-mediated cytotoxicity or complement dependent cytotoxicity.
Methods of Identifying and Producing Antibodies Specific for Influenza Virus
The present invention provides novel methods for the identification of HuMHA antibodies, as exemplified in Example 3. These methods may be readily adapted to identify antibodies specific for other polypeptides expressed on a viral surface.
In general, the methods include obtaining serum or plasma samples from patients that have been infected with or vaccinated against an infectious agent. These serum or plasma samples are then screened to identify those that contain antibodies specific for a particular polypeptide associated with the infectious agent, such as, e.g., a polypeptide specifically expressed on the surface of cells infected with the infectious agent, but not uninfected cells. In particular embodiments, the serum or plasma samples are screened by contacting the samples with a cell that has been transfected with an expression vector that expresses the polypeptide expressed on the surface of infected cells. In particular embodiments the serum or plasma samples are screened by contacting the samples with a recombinant protein which represents a particular protein of the infectious agent such as, e.g. hemagglutinin of the influenza A virus. In particular embodiments the serum or plasma samples are screened by contacting the samples with a purified form of the infectious agent such as, e.g. intact whole virions of the influenza A virus. In particular embodiments the serum or plasma samples are screened by contacting the samples with a live form of the infectious agent such as, e.g. intact whole virions of the influenza A virus to determine the presence of serum antibodies that inhibit or neutralize infection of susceptible cells e.g MDCK cells.
Once a patient is identified as having serum or plasma containing an antibody specific for the infectious agent polypeptide of interest, mononuclear and/or B cells obtained from the same patient are used to identify a cell or clone thereof that produces the antibody, using any of the methods described herein or available in the art. Once a B cell that produces the antibody is identified, cDNAs encoding the variable regions or fragments thereof of the antibody may be cloned using standard RT-PCR vectors and primers specific for conserved antibody sequences, and subcloned into expression vectors used for the recombinant production of monoclonal antibodies specific for the infectious agent polypeptide of interest.
In one embodiment, the present invention provides a method of identifying an antibody that specifically binds Influenza A-infected cells, comprising: contacting an Influenza A virus or a cell expressing the HA protein with a biological sample obtained from a patient having been infected by Influenza A; determining an amount of antibody in the biological sample that binds to the cell; and comparing the amount determined with a control value, wherein if the value determined is at least two-fold greater than the control value, an antibody that specifically binds Influenza A-infected cells is indicated.
In various embodiments, the cells expressing an HA protein are cells infected with an Influenza virus, preferably an Influenza A virus, or cells that have been transfected with a polynucleotide that expressed the HA protein. Alternatively, the cells may express a portion of the HA protein and a trimerization domain wherein the soluble recombinant homotrimeric HA protein is presented in the same conformation as when present on the viral surface. Methods of preparing an HA expression vector and transfecting an appropriate cell, including those described herein, may be readily accomplished, in view of many HA sequences being publicly available. See, for example, the Influenza Sequence Database (ISD) (flu.Ian1.gov on the World Wide Web, described in Macken et al., 2001, “The value of a database in surveillance and vaccine selection” in Options for the Control of Influenza IV. A.D.M.E., Osterhaus & Hampson (Eds.), Elsevier Science, Amsterdam, pp. 103-106) and the Microbial Sequencing Center (MSC) at The Institute for Genomic Research (TIGR) (tigr.org/msc/infl_a_virus.shtml on the World Wide Web).
The HA-expressing cells or virus described above are used to screen the biological sample obtained from a patient infected with Influenza A for the presence of antibodies that preferentially bind to the cell expressing the HA polypeptide using standard biological techniques. For example, in certain embodiments, the antibodies may be labeled, and the presence of label associated with the cell detected, e.g., using FMAT or FACs analysis. In particular embodiments, the biological sample is blood, serum, plasma, bronchial lavage, or saliva. Methods of the present invention may be practiced using high throughput techniques.
Identified human antibodies may then be characterized further. For example the particular conformational epitopes with in the HA protein that are necessary or sufficient for binding of the antibody may be determined, e.g., using site-directed mutagenesis of expressed HA polypeptides. These methods may be readily adapted to identify human antibodies that bind any protein expressed on a cell surface. Furthermore, these methods may be adapted to determine binding of the antibody to the virus itself, as opposed to a cell expressing recombinant HA or infected with the virus.
Polynucleotide sequences encoding the antibodies, variable regions thereof, or antigen-binding fragments thereof may be subcloned into expression vectors for the recombinant production of HuMHA antibodies. In one embodiment, this is accomplished by obtaining mononuclear cells from the patient from the serum or plasma containing the identified HuMHA antibody was obtained; producing B cell clones from the mononuclear cells; inducing the B cells to become antibody-producing plasma cells; and screening the supernatants produced by the plasma cells to determine if it contains the HuMHA antibody. Once a B cell clone that produces an HuMHA antibody is identified, reverse-transcription polymerase chain reaction (RT-PCR) is performed to clone the DNAs encoding the variable regions or portions thereof of the HuMHA antibody. These sequences are then subcloned into expression vectors suitable for the recombinant production of human HuMHA antibodies. The binding specificity may be confirmed by determining the recombinant antibody's ability to bind cells expressing HA polypeptide.
In particular embodiments of the methods described herein, B cells isolated from peripheral blood or lymph nodes are sorted, e.g., based on their being CD19 positive, and plated, e.g., as low as a single cell specificity per well, e.g., in 96, 384, or 1536 well configurations. The cells are induced to differentiate into antibody-producing cells, e.g., plasma cells, and the culture supernatants are harvested and tested for 1) binding to cells expressing the infectious agent polypeptide on their surface using, e.g., FMAT or FACS analysis; and/or 2) binding to intact virions coated onto plastic plates, e.g., ELISA; and/or 3) binding to soluble recombinant homotrimeric HA protein in microarray format e.g., Aushon microarrayer; and/or 4) inhibition or neutralization of virus infection of susceptible cells e.g., MDCK cells. Positive wells are then subjected to whole well RT-PCR to amplify heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells. The resulting PCR products encoding the heavy and light chain variable regions, or portions thereof, are subcloned into human antibody expression vectors for recombinant expression. The resulting recombinant antibodies are then tested to confirm their original binding specificity and may be further tested for pan-specificity across various strains of isolates of the infectious agent.
Thus, in one embodiment, a method of identifying HuMHA antibodies is practiced as follows. First, full length or approximately full length HA cDNAs are transfected into a cell line for expression of HA protein. Secondly, individual human plasma or sera samples are tested for antibodies that bind the cell-expressed HA. And lastly, MAbs derived from plasma- or serum-positive individuals are characterized for binding to the same cell-expressed HA. Further definition of the fine specificities of the MAbs can be performed at this point.
These methods may be practiced to identify a variety of different HuMHA antibodies, including antibodies specific for (a) epitopes in a linear HA peptide, (b) common epitopes in multiple variants of an HA peptide or protein, (c) conformational determinants of an HA homotrimer, and (d) common conformational determinants of multiple variants of the HA homotrimer. The last category is particularly desirable, as this specificity is perhaps specific for all strains of influenza, particularly A strains of influenza.
Polynucleotides that encode the HuMHA antibodies or portions thereof of the present invention may be isolated from cells expressing HuMHA antibodies, according to methods available in the art and described herein, including amplification by polymerase chain reaction using primers specific for conserved regions of human antibody polypeptides. For example, light chain and heavy chain variable regions may be cloned from the B cell according to molecular biology techniques described in WO 92/02551; U.S. Pat. No. 5,627,052; or Babcook et al., Proc. Natl. Acad. Sci. USA 93:7843-48 (1996). In certain embodiments, polynucleotides encoding all or a region of both the heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells expressing the HuMHA antibody are subcloned and sequenced. The sequence of the encoded polypeptide may be readily determined from the polynucleotide sequence.
Isolated polynucleotides encoding a polypeptide of the present invention may be subcloned into an expression vector to recombinantly produce antibodies and polypeptides of the present invention, using procedures known in the art and described herein.
Binding properties of an antibody (or fragment thereof) to HA, soluble recombinant HA, or infected cells or tissues may generally be determined and assessed using immunodetection methods including, for example, immunofluorescence-based assays, such as immuno-histochemistry (IHC) and/or fluorescence-activated cell sorting (FACS). Immunoassay methods may include controls and procedures to determine whether antibodies bind specifically to HA from one or more specific strains of Influenza A, and do not recognize or cross-react with normal control cells.
Following pre-screening of serum or plasma to identify patients that produce antibodies to an infectious agent or polypeptide thereof, e.g., HA, the methods of the present invention typically include the isolation or purification of B cells from a biological sample previously obtained from a patient or subject. The patient or subject may be currently or previously diagnosed with or suspect or having a particular disease or infection, or the patient or subject may be considered free or a particular disease or infection. Typically, the patient or subject is a mammal and, in particular embodiments, a human. The biological sample may be any sample that contains B cells, including but not limited to, lymph node or lymph node tissue, pleural effusions, peripheral blood, ascites, tumor tissue, or cerebrospinal fluid (CSF). In various embodiments, B cells are isolated from different types of biological samples, such as a biological sample affected by a particular disease or infection. However, it is understood that any biological sample comprising B cells may be used for any of the embodiments of the present invention.
Once isolated, the B cells are induced to produce antibodies, e.g., by culturing the B cells under conditions that support B cell proliferation or development into a plasmacyte, plasmablast, or plasma cell. The antibodies are then screened, typically using high throughput techniques, to identify an antibody that specifically binds to a target antigen, e.g., a particular tissue, cell, infectious agent, or polypeptide. In certain embodiments, the specific antigen, e.g., cell surface polypeptide bound by the antibody is not known, while in other embodiments, the antigen specifically bound by the antibody is known.
According to the present invention, B cells may be isolated from a biological sample, e.g., a tumor, tissue, peripheral blood or lymph node sample, by any means known and available in the art. B cells are typically sorted by FACS based on the presence on their surface of a B cell-specific marker, e.g., CD19, CD138, and/or surface IgG. However, other methods known in the art may be employed, such as, e.g., column purification using CD19 magnetic beads or IgG-specific magnetic beads, followed by elution from the column. However, magnetic isolation of B cells utilizing any marker may result in loss of certain B cells. Therefore, in certain embodiments, the isolated cells are not sorted but, instead, ficolll-purified mononuclear cells isolated from tumor are directly plated to the appropriate or desired number of specificities per well.
In order to identify B cells that produce an infectious agent-specific antibody, the B cells are typically plated at low density (e.g., a single cell specificity per well, 1-10 cells per well, 10-100 cells per well, 1-100 cells per well, less than 10 cells per well, or less than 100 cells per well) in multi-well or microtitre plates, e.g., in 96, 384, or 1536 well configurations. When the B cells are initially plated at a density greater than one cell per well, then the methods of the present invention may include the step of subsequently diluting cells in a well identified as producing an antigen-specific antibody, until a single cell specificity per well is achieved, thereby facilitating the identification of the B cell that produces the antigen-specific antibody. Cell supernatants or a portion thereof and/or cells may be frozen and stored for future testing and later recovery of antibody polynucleotides.
In certain embodiments, the B cells are cultured under conditions that favor the production of antibodies by the B cells. For example, the B cells may be cultured under conditions favorable for B cell proliferation and differentiation to yield antibody-producing plasmablast, plasmacytes, or plasma cells. In particular embodiments, the B cells are cultured in the presence of a B cell mitogen, such as lipopolysaccharide (LPS) or CD40 ligand. In one specific embodiment, B cells are differentiated to antibody-producing cells by culturing them with feeder cells and/or other B cell activators, such as CD40 ligand.
Cell culture supernatants or antibodies obtained therefrom may be tested for their ability to bind to a target antigen, using routine methods available in the art, including those described herein. In particular embodiments, culture supernatants are tested for the presence of antibodies that bind to a target antigen using high-throughput methods. For example, B cells may be cultured in multi-well microtitre dishes, such that robotic plate handlers may be used to simultaneously sample multiple cell supernatants and test for the presence of antibodies that bind to a target antigen. In particular embodiments, antigens are bound to beads, e.g., paramagnetic or latex beads) to facilitate the capture of antibody/antigen complexes. In other embodiments, antigens and antibodies are fluorescently labeled (with different labels) and FACS analysis is performed to identify the presence of antibodies that bind to target antigen. In one embodiment, antibody binding is determined using FMAT™ analysis and instrumentation (Applied Biosystems, Foster City, Calif.). FMAT™ is a fluorescence macro-confocal platform for high-throughput screening, which mix-and-read, non-radioactive assays using live cells or beads.
In the context of comparing the binding of an antibody to a particular target antigen (e.g., a biological sample such as infected tissue or cells, or infectious agents) as compared to a control sample (e.g., a biological sample such as uninfected cells, or a different infectious agent), in various embodiments, the antibody is considered to preferentially bind a particular target antigen if at least two-fold, at least three-fold, at least five-fold, or at least ten-fold more antibody binds to the particular target antigen as compared to the amount that binds a control sample.
Polynucleotides encoding antibody chains, variable regions thereof, or fragments thereof, may be isolated from cells utilizing any means available in the art. In one embodiment, polynucleotides are isolated using polymerase chain reaction (PCR), e.g., reverse transcription-PCR (RT-PCR) using oligonucleotide primers that specifically bind to heavy or light chain encoding polynucleotide sequences or complements thereof using routine procedures available in the art. In one embodiment, positive wells are subjected to whole well RT-PCR to amplify the heavy and light chain variable regions of the IgG molecule expressed by the clonal daughter plasma cells. These PCR products may be sequenced.
The resulting PCR products encoding the heavy and light chain variable regions or portions thereof are then subcloned into human antibody expression vectors and recombinantly expressed according to routine procedures in the art (see, e.g., U.S. Pat. No. 7,112,439). The nucleic acid molecules encoding a tumor-specific antibody or fragment thereof, as described herein, may be propagated and expressed according to any of a variety of well-known procedures for nucleic acid excision, ligation, transformation, and transfection. Thus, in certain embodiments expression of an antibody fragment may be preferred in a prokaryotic host cell, such as Escherichia coli (see, e.g., Pluckthun et al., Methods Enzymol. 178:497-515 (1989)). In certain other embodiments, expression of the antibody or an antigen-binding fragment thereof may be preferred in a eukaryotic host cell, including yeast (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Pichia pastoris); animal cells (including mammalian cells); or plant cells. Examples of suitable animal cells include, but are not limited to, myeloma, COS, CHO, or hybridoma cells. Examples of plant cells include tobacco, corn, soybean, and rice cells. By methods known to those having ordinary skill in the art and based on the present disclosure, a nucleic acid vector may be designed for expressing foreign sequences in a particular host system, and then polynucleotide sequences encoding the tumor-specific antibody (or fragment thereof) may be inserted. The regulatory elements will vary according to the particular host.
One or more replicable expression vectors containing a polynucleotide encoding a variable and/or constant region may be prepared and used to transform an appropriate cell line, for example, a non-producing myeloma cell line, such as a mouse NSO line or a bacterium, such as E. coli, in which production of the antibody will occur. In order to obtain efficient transcription and translation, the polynucleotide sequence in each vector should include appropriate regulatory sequences, particularly a promoter and leader sequence operatively linked to the variable domain sequence. Particular methods for producing antibodies in this way are generally well known and routinely used. For example, molecular biology procedures are described by Sambrook et al. (Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, New York, 1989; see also Sambrook et al., 3rd ed., Cold Spring Harbor Laboratory, New York, (2001)). While not required, in certain embodiments, regions of polynucleotides encoding the recombinant antibodies may be sequenced. DNA sequencing can be performed as described in Sanger et al. (Proc. Natl. Acad. Sci. USA 74:5463 (1977)) and the Amersham International plc sequencing handbook and including improvements thereto.
In particular embodiments, the resulting recombinant antibodies or fragments thereof are then tested to confirm their original specificity and may be further tested for pan-specificity, e.g., with related infectious agents. In particular embodiments, an antibody identified or produced according to methods described herein is tested for cell killing via antibody dependent cellular cytotoxicity (ADCC) or apoptosis, and/or well as its ability to internalize.
Polynucleotides
The present invention, in other aspects, provides polynucleotide compositions. In preferred embodiments, these polynucleotides encode a polypeptide of the invention, e.g., a region of a variable chain of an antibody that binds to Influenza virus (Influenza A, B, or C), HA, or soluble and recombinant HA. Polynucleotides of the invention are single-stranded (coding or antisense) or double-stranded DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include, but are not limited to, HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Alternatively, or in addition, coding or non-coding sequences are present within a polynucleotide of the present invention. Also alternatively, or in addition, a polynucleotide is linked to other molecules and/or support materials of the invention. Polynucleotides of the invention are used, e.g., in hybridization assays to detect the presence of an Influenza Antibody (preferably an Influenza A antibody) in a biological sample, and in the recombinant production of polypeptides of the invention.
In certain preferred embodiments, the polynucleotide sequences set forth herein encode polypeptides capable of preferentially binding an Influenza virus (preferably, an Influenza A virus) as compared to a non-Influenza virus, an Influenza A-infected cell as compared to a normal control uninfected cell, or a soluble and recombinant Influenza HA protein in a native homotrimeric conformation compared to a linear peptide from an Influenza HA protein, including a polypeptide having a sequence of, for instance, SEQ ID NOs: 2-19. Furthermore, the invention includes all polynucleotides that encode any polypeptide of the present invention.
In other related embodiments, the invention provides polynucleotide variants having substantial identity, for example those comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide sequence of this invention, as determined using the methods described herein, (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.
Typically, polynucleotide variants contain one or more substitutions, additions, deletions, inversions, and/or insertions, preferably such that the immunogenic binding properties of the polypeptide encoded by the variant polynucleotide is not substantially diminished relative to a polypeptide encoded by a polynucleotide sequence specifically set forth herein.
In additional embodiments, the present invention provides polynucleotide fragments comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. As used herein, the term “intermediate lengths” is meant to describe any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.
In another embodiment of the invention, polynucleotide compositions are provided that are capable of hybridizing under moderate to high stringency conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-60° C., 5×SSC, overnight; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS. One skilled in the art will understand that the stringency of hybridization can be readily manipulated, such as by altering the salt content of the hybridization solution and/or the temperature at which the hybridization is performed. For example, in another embodiment, suitable highly stringent hybridization conditions include those described above, with the exception that the temperature of hybridization is increased, e.g., to 60-65° C. or 65-70° C.
In preferred embodiments, the polypeptide encoded by the polynucleotide variant or fragment has the same binding specificity (i.e., specifically or preferentially binds to the same epitope or Influenza A strain) as the polypeptide encoded by the native polynucleotide. In certain preferred embodiments, the polynucleotides described above, e.g., polynucleotide variants, fragments and hybridizing sequences, encode polypeptides that have a level of binding activity of at least about 50%, preferably at least about 70%, and more preferably at least about 90% of that for a polypeptide sequence specifically set forth herein.
The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. A nucleic acid fragment of almost any length is employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative polynucleotide segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are included in many implementations of this invention.
It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are multiple nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that encode a polypeptide of the present invention but which vary due to differences in codon usage are specifically contemplated by the invention. Further, alleles of the genes including the polynucleotide sequences provided herein are within the scope of the invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).
In certain embodiments of the present invention, mutagenesis of the disclosed polynucleotide sequences is performed in order to alter one or more properties of the encoded polypeptide, such as its binding specificity or binding strength. Techniques for mutagenesis are well-known in the art, and are widely used to create variants of both polypeptides and polynucleotides. A mutagenesis approach, such as site-specific mutagenesis, is employed for the preparation of variants and/or derivatives of the polypeptides described herein. By this approach, specific modifications in a polypeptide sequence are made through mutagenesis of the underlying polynucleotides that encode them. These techniques provides a straightforward approach to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the polynucleotide.
Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences include the nucleotide sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations are employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.
In other embodiments of the present invention, the polynucleotide sequences provided herein are used as probes or primers for nucleic acid hybridization, e.g., as PCR primers. The ability of such nucleic acid probes to specifically hybridize to a sequence of interest enables them to detect the presence of complementary sequences in a given sample. However, other uses are also encompassed by the invention, such as the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions. As such, nucleic acid segments of the invention that include a sequence region of at least about 15 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence disclosed herein is particularly useful. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000 (including all intermediate lengths) including full length sequences, and all lengths in between, are also used in certain embodiments.
Polynucleotide molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide sequence disclosed herein, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting, and/or primers for use in, e.g., polymerase chain reaction (PCR). The total size of fragment, as well as the size of the complementary stretch(es), ultimately depends on the intended use or application of the particular nucleic acid segment. Smaller fragments are generally used in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 15 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.
The use of a hybridization probe of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 12 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. Nucleic acid molecules having gene-complementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired, are generally preferred.
Hybridization probes are selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequences set forth herein, or to any continuous portion of the sequences, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences is governed by various factors. For example, one may wish to employ primers from towards the termini of the total sequence.
Polynucleotide of the present invention, or fragments or variants thereof, are readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments are obtained by application of nucleic acid reproduction technology, such as the PCR™ technology of U.S. Pat. No. 4,683,202, by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.
Vectors, Host Cells and Recombinant Methods
The invention provides vectors and host cells comprising a nucleic acid of the present invention, as well as recombinant techniques for the production of a polypeptide of the present invention. Vectors of the invention include those capable of replication in any type of cell or organism, including, e.g., plasmids, phage, cosmids, and mini chromosomes. In various embodiments, vectors comprising a polynucleotide of the present invention are vectors suitable for propagation or replication of the polynucleotide, or vectors suitable for expressing a polypeptide of the present invention. Such vectors are known in the art and commercially available.
Polynucleotides of the present invention are synthesized, whole or in parts that are then combined, and inserted into a vector using routine molecular and cell biology techniques, including, e.g., subcloning the polynucleotide into a linearized vector using appropriate restriction sites and restriction enzymes. Polynucleotides of the present invention are amplified by polymerase chain reaction using oligonucleotide primers complementary to each strand of the polynucleotide. These primers also include restriction enzyme cleavage sites to facilitate subcloning into a vector. The replicable vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, and one or more marker or selectable genes.
In order to express a polypeptide of the present invention, the nucleotide sequences encoding the polypeptide, or functional equivalents, are inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods well known to those skilled in the art are used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook, J., et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.
A variety of expression vector/host systems are utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
Within one embodiment, the variable regions of a gene expressing a monoclonal antibody of interest are amplified from a hybridoma cell using nucleotide primers. These primers are synthesized by one of ordinary skill in the art, or may be purchased from commercially available sources (see, e.g., Stratagene (La Jolla, Calif.), which sells primers for amplifying mouse and human variable regions. The primers are used to amplify heavy or light chain variable regions, which are then inserted into vectors such as ImmunoZAP™ H or ImmunoZAP™ L (Stratagene), respectively. These vectors are then introduced into E. coli, yeast, or mammalian-based systems for expression. Large amounts of a single-chain protein containing a fusion of the VH and VL domains are produced using these methods (see Bird et al., Science 242:423-426 (1988)).
The “control elements” or “regulatory sequences” present in an expression vector are those non-translated regions of the vector, e.g., enhancers, promoters, 5′ and 3′ untranslated regions, that interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, is used.
Examples of promoters suitable for use with prokaryotic hosts include the phoa promoter, β-lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also usually contain a Shine-Dalgarno sequence operably linked to the DNA encoding the polypeptide. Inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, Md.) and the like are used.
A variety of promoter sequences are known for eukaryotes and any are used according to the present invention. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3′ end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. Polypeptide expression from vectors in mammalian host cells are controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (e.g., Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be advantageously used with an appropriate selectable marker. One example of a suitable expression vector is pcDNA-3.1 (Invitrogen, Carlsbad, Calif.), which includes a CMV promoter.
A number of viral-based expression systems are available for mammalian expression of polypeptides. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus that is capable of expressing the polypeptide in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
In bacterial systems, any of a number of expression vectors are selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are desired, vectors that direct high level expression of fusion proteins that are readily purified are used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase, so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX Vectors (Promega, Madison, Wis.) are also used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems are designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH are used. Examples of other suitable promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogcnase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544. Other yeast promoters that are inducible promoters having the additional advantage of transcription controlled by growth conditions include the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.
In cases where plant expression vectors are used, the expression of sequences encoding polypeptides are driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV are used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters are used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J., et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, e.g., Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).
An insect system is also used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the polypeptide are cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence renders the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses are then used to infect, for example, S. frugiperda cells or Trichoplusia larvae, in which the polypeptide of interest is expressed (Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. 91:3224-3227).
Specific initiation signals are also used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon are provided. Furthermore, the initiation codon is in the correct reading frame to ensure correct translation of the inserted polynucleotide. Exogenous translational elements and initiation codons are of various origins, both natural and synthetic.
Transcription of a DNA encoding a polypeptide of the invention is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are known, including, e.g., those identified in genes encoding globin, elastase, albumin, α-fetoprotein, and insulin. Typically, however, an enhancer from a eukaryotic cell virus is used. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer is spliced into the vector at a position 5′ or 3′ to the polypeptide-encoding sequence, but is preferably located at a site 5′ from the promoter.
Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) typically also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-PSCA antibody. One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.
Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, plant or higher eukaryote cells described above. Examples of suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and used herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris. (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
In certain embodiments, a host cell strain is chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation. glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing that cleaves a “prepro” form of the protein is also used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, COS, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, are chosen to ensure the correct modification and processing of the foreign protein.
Methods and reagents specifically adapted for the expression of antibodies or fragments thereof are also known and available in the art, including those described, e.g., in U.S. Pat. Nos. 4,816,567 and 6,331,415. In various embodiments, antibody heavy and light chains, or fragments thereof, are expressed from the same or separate expression vectors. In one embodiment, both chains are expressed in the same cell, thereby facilitating the formation of a functional antibody or fragment thereof.
Full length antibody, antibody fragments, and antibody fusion proteins are produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in infected cell destruction. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. Pat. Nos. 5,648,237, 5,789,199, and 5,840,523, which describes translation initiation region (TIR) and signal sequences for optimizing expression and secretion. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out using a process similar to that used for purifying antibody expressed e.g., in CHO cells.
Suitable host cells for the expression of glycosylated polypeptides and antibodies are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopicius (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses are used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco are also utilized as hosts.
Methods of propagation of antibody polypeptides and fragments thereof in vertebrate cells in culture (tissue culture) are encompassed by the invention. Examples of mammalian host cell lines used in the methods of the invention are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/−DHFR(CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TR1 cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
Host cells are transformed with the above-described expression or cloning vectors for polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
For long-term, high-yield production of recombinant proteins, stable expression is generally preferred. For example, cell lines that stably express a polynucleotide of interest are transformed using expression vectors that contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells are allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced sequences. Resistant clones of stably transformed cells are proliferated using tissue culture techniques appropriate to the cell type.
A plurality of selection systems are used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1990) Cell 22:817-23) genes that are employed in tk− or aprt− cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance is used as the basis for selection; for example, dhfr, which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14); and also or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, and hisD allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).
Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression is confirmed. For example, if the sequence encoding a polypeptide is inserted within a marker gene sequence, recombinant cells containing sequences are identified by the absence of marker gene function. Alternatively, a marker gene is placed in tandem with a polypeptide-encoding sequence under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
Alternatively, host cells that contain and express a desired polynucleotide sequence are identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include, for example, membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.
A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products, using either polyclonal or monoclonal antibodies specific for the product are known in the art. Nonlimiting examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide is preferred for some applications, but a competitive binding assay may also be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216).
Various labels and conjugation techniques are known by those skilled in the art and are used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof are cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and are used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures are conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which are used include, but are not limited to, radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
The polypeptide produced by a recombinant cell is secreted or contained intracellularly depending on the sequence and/or the vector used. Expression vectors containing polynucleotides of the invention are designed to contain signal sequences that direct secretion of the encoded polypeptide through a prokaryotic or eukaryotic cell membrane.
In certain embodiments, a polypeptide of the invention is produced as a fusion polypeptide further including a polypeptide domain that facilitates purification of soluble proteins. Such purification-facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Amgen, Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen. San Diego, Calif.) between the purification domain and the encoded polypeptide are used to facilitate purification. An exemplary expression vector provides for expression of a fusion protein containing a polypeptide of interest and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3:263-281) while the enterokinase cleavage site provides a means for purifying the desired polypeptide from the fusion protein. A discussion of vectors used for producing fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).
In certain embodiments, a polypeptide of the present invention is fused with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells, the signal sequence is selected, for example, from the group of the alkaline phosphatase, penicillinase, 1 pp, or heat-stable enterotoxin II leaders. For yeast secretion, the signal sequence is selected from, e.g., the yeast invertase leader, α factor leader (including Saccharomyces and Kluyveromyces α factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.
When using recombinant techniques, the polypeptide or antibody is produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the polypeptide or antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies that are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris is removed by centrifugation. Where the polypeptide or antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Optionally, a protease inhibitor such as PMSF is included in any of the foregoing steps to inhibit proteolysis and antibiotics is included to prevent the growth of adventitious contaminants.
The polypeptide or antibody composition prepared from the cells are purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the polypeptide or antibody. Protein A is used to purify antibodies or fragments thereof that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the polypeptide or antibody comprises a CH 3 domain, the Bakerbond ABX™ resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the polypeptide or antibody to be recovered. Following any preliminary purification step(s), the mixture comprising the polypeptide or antibody of interest and contaminants are subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).
Pharmaceutical Compositions
The invention further includes pharmaceutical formulations including a polypeptide, antibody, or modulator of the present invention, at a desired degree of purity, and a pharmaceutically acceptable carrier, excipient, or stabilizer (Remingion's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)). In certain embodiments, pharmaceutical formulations are prepared to enhance the stability of the polypeptide or antibody during storage, e.g., in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, e.g., buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEENT™, PLURONICS™ or polyethylene glycol (PEG). In certain embodiments, the therapeutic formulation preferably comprises the polypeptide or antibody at a concentration of between 5-200 mg/ml, preferably between 10-100 mg/ml.
The formulations herein also contain one or more additional therapeutic agents suitable for the treatment of the particular indication, e.g., infection being treated, or to prevent undesired side-effects. Preferably, the additional therapeutic agent has an activity complementary to the polypeptide or antibody of the resent invention, and the two do not adversely affect each other. For example, in addition to the polypeptide or antibody of the invention, an additional or second antibody, anti-viral agent, anti-infective agent and/or cardioprotectant is added to the formulation. Such molecules are suitably present in the pharmaceutical formulation in amounts that are effective for the purpose intended.
The active ingredients, e.g., polypeptides and antibodies of the invention and other therapeutic agents, are also entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and polymethylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remingion's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).
Sustained-release preparations are prepared. Suitable examples of sustained-release preparations include, but are not limited to, semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Nonlimiting examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and 7 ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxyburyric acid.
Formulations to be used for in vivo administration are preferably sterile. This is readily accomplished by filtration through sterile filtration membranes.
Diagnostic Uses
Antibodies and fragments thereof, and therapeutic compositions, of the invention specifically bind or preferentially bind to an Influenza virus, Influenza virus-infected cells or Influenzavirus-infected tissue, as compared to a unrelated virus, normal control cells and normal control tissue. Thus, these Influenza Antibodies are used to detect an Influenza virus, preferably Influenza A, as well as infected cells or tissues in a patient, biological sample, or cell population, using any of a variety of diagnostic and prognostic methods, including those described herein. The ability of a human anti-HA specific antibody to detect an Influenza virus or an infected cell depends upon its binding specificity, which is readily determined by testing its ability to bind to an Influenza virus, an Influenza virus-infected cell or an Influenza virus-infected tissue obtained from different patients, and/or from patients infected with different strains of an Influenza virus, preferably, Influenza A.
Diagnostic methods also generally involve contacting an Influenza virus, preferably an Influenza A virus, with an Influenza Antibody, and determining whether the antibody preferentially binds to the Influenza virus as compared to a control virus (e.g. unrelated virus or dissociated virus) or predetermined cut-off value, thereby indicating the presence of an Influenza virus. In particular embodiments, at least two-fold, three-fold, or five-fold more HuMHA antibody binds to an Influenza virus as compared to an appropriate control virus or predetermined cut-off value. A pre-determined cut-off value is determined, e.g., by averaging the amount of HuMHA antibody that binds to several different appropriate control viruses under the same conditions used to perform the diagnostic assay of the biological sample being tested. Alternatively or in addition, a hemagglutinin (HA) protein is substituted for an Influenza virus in the above method. The HA protein is presented on the surface of a virus, host cell (e.g. any mammalian cell), or in a recombinant and soluble form. In the HA version of this above diagnostic method, the control protein is a denatured HA protein, a linear HA peptide, an unrelated protein of similar size and shape, but dissimilar sequence, or a pre-determined cut-off value.
Diagnostic methods also generally involve contacting a biological sample obtained from a patient, such as, e.g., blood, serum, plasma, cerebral spinal fluid, saliva, urine, sputum, a cell swab sample, or a tissue biopsy, with an Influenza, preferably Influenza A, antibody, e.g., HuMHA, and determining whether the antibody preferentially binds to the sample as compared to a control sample or predetermined cut-off value, thereby indicating the presence of infected cells. In particular embodiments, at least two-fold, three-fold, or five-fold more HuMHA antibody binds to an infected cell as compared to an appropriate control normal cell or tissue sample. A pre-determined cut-off value is determined, e.g., by averaging the amount of HuMHA antibody that binds to several different appropriate control samples under the same conditions used to perform the diagnostic assay of the biological sample being tested.
Bound antibody is detected using procedures described herein and known in the art. In certain embodiments, diagnostic methods of the invention are practiced using HuMHA antibodies that are conjugated to a detectable label, e.g., a fluorophore, to facilitate detection of bound antibody. However, they are also practiced using methods of secondary detection of the HuMHA antibody. These include, for example, RIA, ELISA, precipitation, agglutination, complement fixation and immuno-fluorescence.
In certain procedures, the HuMHA antibodies are labeled. The label is detected directly. Exemplary labels that are detected directly include, but are not limited to, radiolabels and fluorochromes. Alternatively, or in addition, labels are moieties, such as enzymes, that must be reacted or derivatized to be detected. Nonlimiting examples of isotope labels are 99Tc, 14C, 131I, 125I, 3H, 32P and 35S. Fluorescent materials that are used include, but are not limited to, for example, fluorescein and its derivatives, rhodamine and its derivatives, auramine, dansyl, umbelliferone, luciferia, 2,3-dihydrophthalazinediones, horseradish peroxidase, alkaline phosphatase, lysozyme, and glucose-6-phosphate dehydrogenase.
An enzyme label is detected by any of the currently utilized colorimetric, spectrophotometric, fluorospectro-photometric or gasometric techniques. Many enzymes which are used in these procedures are known and utilized by the methods of the invention. Nonlimiting examples are peroxidase, alkaline phosphatase, β-glucuronidase, β-D-glucosidase, β-D-galactosidase, urease, glucose oxidase plus peroxidase, galactose oxidase plus peroxidase and acid phosphatase.
The antibodies are tagged with such labels by known methods. For instance, coupling agents such as aldehydes, carbodiimides, dimaleimide, imidates, succinimides, bid-diazotized benzadine and the like are used to tag the antibodies with the above-described fluorescent, chemiluminescent, and enzyme labels. An enzyme is typically combined with an antibody using bridging molecules such as carbodiimides, periodate, diisocyanates, glutaraldehyde and the like. Various labeling techniques are described in Morrison, Methods in Enzymology 32b, 103 (1974), Syvanen et al., J. Biol. Chem. 284, 3762 (1973) and Bolton and Hunter, Biochem J. 133, 529 (1973).
HuMHA antibodies of the present invention are capable of differentiating between patients with and patients without an Influenzainfection, preferably an Influenza A infection, and determining whether or not a patient has an infection, using the representative assays provided herein.
According to one method, a biological sample is obtained from a patient suspected of having or known to have an Influenza infection. The sample is blood, serum, plasma, cerebral spinal fluid, saliva, urine, sputum, a cell swab sample, or a tissue biopsy. In certain embodiments, the biological sample is cell free, i.e. the sample is a fluid containing an intact or whole Influenza virus. In other embodiments, the biological sample includes cells from the patient. The sample is contacted with an HuMHA antibody, e.g., for a time and under conditions sufficient to allow the HuMHA antibody to bind to either the Influenza virus or to an infected cell present in the sample. For instance, the sample is contacted with an HuMHA antibody for 10 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, 24 hours, 3 days or any point in between. The amount of bound HuMHA antibody is determined and compared to a control value, which may be, e.g., a pre-determined value or a value determined from performing this procedure with an unrelated virus or a normal (uninfected) tissue sample. An increased amount of antibody bound to the patient sample as compared to the control sample is indicative of the presence of an Influenza virus or an infected cell in the patient sample.
In a related method, a biological sample obtained from a patient is contacted with an HuMHA antibody for a time and under conditions sufficient to allow the antibody to bind to an Influenza virus or to an infected cell. Bound antibody is then detected, and the presence of bound antibody indicates that the sample contains an Influenza virus or an infected cell. This embodiment is particularly useful when the HuMHA antibody does not bind unrelated viruses or normal cells at a detectable level. Different HuMHA antibodies possess different binding and specificity characteristics. Depending upon these characteristics, particular HuMHA antibodies are used to detect the presence of one or more strains of an Influenza virus, which are preferably strains of Influenza A. For example, certain antibodies bind specifically to only one or several strains of an Influenza virus, whereas others bind to all or a majority of different strains of Influenza virus. Antibodies specific for only one strain of Influenza A are used to identify the strain of an infection.
In certain embodiments, antibodies that bind to an Influenza virus or to an infected cell preferably generate a signal indicating the presence of an infection in at least about 20% of patients with the infection being detected, more preferably at least about 30% of patients. Alternatively, or in addition, the antibody generates a negative signal indicating the absence of the infection in at least about 90% of individuals without the infection being detected. Each antibody satisfies the above criteria; however, antibodies of the present invention are used in combination to improve sensitivity.
The present invention also includes kits useful in performing diagnostic and prognostic assays using the antibodies of the present invention. Kits of the invention include a suitable container comprising a HuMHA antibody of the invention in either labeled or unlabeled form. In addition, when the antibody is supplied in a labeled form suitable for an indirect binding assay, the kit further includes reagents for performing the appropriate indirect assay. For example, the kit includes one or more suitable containers including enzyme substrates or derivatizing agents, depending on the nature of the label. Control samples and/or instructions are also included.
Therapeutic/Prophylactic Uses
Passive immunization has proven to be an effective and safe strategy for the prevention and treatment of viral diseases. (See Keller et al., Clin. Microbiol. Rev. 13:602-14 (2000); Casadevall, Nat. Biotechnol. 20:114 (2002); Shibata et al., Nat. Med. 5:204-10 (1999); and Igarashi et al., Nat. Med. 5:211-16 (1999), each of which are incorporated herein by reference)). Passive immunization using human monoclonal antibodies provide an immediate treatment strategy for emergency prophylaxis and treatment of Influenza.
HuMHA antibodies and fragments thereof, and therapeutic compositions, of the invention specifically bind or preferentially bind to an Influenza virus and/or an infected cell, as compared to an unrelated, non-Influenza virus, or a normal control uninfected cell or tissue. Thus, these HuMHA antibodies are used to selectively target Influenza viruses, infected cells, or tissues in a patient, biological sample, or cell population. In light of the infection-specific binding properties of these antibodies, the present invention provides methods of regulating (e.g., inhibiting) the growth of infected cells, methods of killing infected cells, and methods of inducing apoptosis of infected cells. These methods include contacting an infected cell with a HuMHA antibody of the invention. These methods are practiced in vitro, ex vivo, and in vivo.
In various embodiments, antibodies of the invention are intrinsically therapeutically active. Alternatively, or in addition, antibodies of the invention are conjugated to a cytotoxic agent or growth inhibitory agent, e.g., a radioisotope or toxin, that is used in treating infected cells bound or contacted by the antibody.
In one embodiment, the invention provides methods of treating or preventing infection in a patient, including the steps of providing an HuMHA antibody of the invention to a patient diagnosed with, at risk of developing, or suspected of having an Influenza infection, preferably an Influenza A infection. The methods of the invention are used in the first-line treatment of the infection, follow-on treatment, or in the treatment of a relapsed or refractory infection.
Treatment with an antibody of the invention is a stand-alone treatment. Alternatively, treatment with an antibody of the invention is one component or phase of a combination therapy regime, in which one or more additional therapeutic agents are also used to treat the patient.
Subjects at risk for an Influenza virus-related diseases or disorders include patients who have come into contact with an infected person or who have been exposed to the Influenza virus in some other way. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the Influenza virus-related disease or disorder, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
In various aspects, the huMHA is administered substantially contemporaneously with or following infection of the subject, i.e., therapeutic treatment. In another aspect, the antibody provides a therapeutic benefit. In various aspects, a therapeutic benefit includes reducing or decreasing progression, severity, frequency, duration or probability of one or more symptoms or complications of Influenza infection, virus titer, virus replication or an amount of a viral protein of one or more Influenza strains. still another aspect, a therapeutic benefit includes hastening or accelerating a subject's recovery from Influenza infection.
Methods for preventing an increase in Influenza virus titer, virus replication, virus proliferation or an amount of an Influenza viral protein in a subject are further provided. In one embodiment, a method includes administering to the subject an amount of a huMHA antibody effective to prevent an increase in Influenza virus titer, virus replication or an amount of an Influenza viral protein of one or more Influenza strains or isolates in the subject.
Methods for protecting a subject from infection or decreasing susceptibility of a subject to infection by one or more Influenza strains/isolates or subtypes, i.e., prophylactic methods, are additionally provided. In one embodiment, a method includes administering to the subject an effective amount of huMHA antibody that specifically binds Influenza HA to protect the subject from infection, or to decrease susceptibility of the subject to infection, by one or more Influenza strains/isolates or subtypes.
Optionally, the subject is further administered with a second agent such as, but not limited to, an Influenza virus antibody, an anti-viral drug such as a neuraminidase inhibitor, a HA inhibitor, a sialic acid inhibitor or an M2 ion channel inhibitor, a viral entry inhibitor or a viral attachment inhibitor. The M2 ion channel inhibitor is for example amantadine or rimantadine. The neuraminidase inhibitor for example zanamivir, or oseltamivir phosphate.
Symptoms or complications of Influenza infection that can be reduced or decreased include, for example, chills, fever, cough, sore throat, nasal congestion, sinus congestion, nasal infection, sinus infection, body ache, head ache, fatigue, pneumonia, bronchitis, ear infection, ear ache or death.
For in vivo treatment of human and non-human patients, the patient is usually administered or provided a pharmaceutical formulation including a HuMHA antibody of the invention. When used for in vivo therapy, the antibodies of the invention are administered to the patient in therapeutically effective amounts (i.e., amounts that eliminate or reduce the patient's viral burden). The antibodies are administered to a human patient, in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. The antibodies may be administered parenterally, when possible, at the site of infection, target cell site, or intravenously. Intravenous or subcutaneous administration of the antibody is preferred in certain embodiments. Therapeutic compositions of the invention are administered to a patient or subject systemically, parenterally, or locally.
For parenteral administration, the antibodies are formulated in a unit dosage injectable form (solution, suspension, emulsion) in association with a pharmaceutically acceptable, parenteral vehicle. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils and ethyl oleate are also used. Liposomes are used as carriers. The vehicle contains minor amounts of additives such as substances that enhance isotonicity and chemical stability, e.g., buffers and preservatives. The antibodies are typically formulated in such vehicles at concentrations of about 1 mg/ml to 10 mg/ml.
The dose and dosage regimen depends upon a variety of factors readily determined by a physician, such as the nature of the infection and the characteristics of the particular cytotoxic agent or growth inhibitory agent conjugated to the antibody (when used), e.g., its therapeutic index, the patient, and the patient's history. Generally, a therapeutically effective amount of an antibody is administered to a patient. In particular embodiments, the amount of antibody administered is in the range of about 0.1 mg/kg to about 50 mg/kg of patient body weight. Depending on the type and severity of the infection, about 0.1 mg/kg to about 50 mg/kg body weight (e.g., about 0.1-15 mg/kg/dose) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. The progress of this therapy is readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art.
In one particular embodiment, an immunoconjugate including the antibody conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cell to which it binds. In one embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the infected cell. Examples of such cytotoxic agents are described above and include, but are not limited to, maytansinoids, calicheamicins, ribonucleases and DNA endonucleases.
Other therapeutic regimens are combined with the administration of the HuM2e antibody of the present invention. The combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect.
In certain embodiments, it is desirable to combine administration of an antibody of the invention with another antibody directed against another antigen associated with the infectious agent.
Aside from administration of the antibody protein to the patient, the invention provides methods of administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression “administering a therapeutically effective amount of an antibody”. See, for example, PCT Patent Application Publication WO96/07321 concerning the use of gene therapy to generate intracellular antibodies.
In another embodiment, anti-HA antibodies of the invention are used to determine the structure of bound antigen, e.g., conformational epitopes, the structure of which is then used to develop a vaccine having or mimicking this structure, e.g., through chemical modeling and SAR methods. Such a vaccine could then be used to prevent Influenza A infection.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety.
Fully human monoclonal antibodies specific for HA and capable of binding purified whole inactivated Influenza A Virions, binding recombinant homotrimeric HA proteins, and neutralizing live influenza A were identified in patient plasma, as described below.
Expression of Recombinant Soluble HA
An expression construct was generated containing a cDNA encoding an HA precursor (HA0) polypeptide corresponding to the derived HA sequence found in the Influenza subtypes, for example, as listed in Table 2. Recombinant HA0 precursor polypeptides of the invention lack an integral membrane or transmembrane domain, and contain additional amino acids at the C-terminus of the HA0 ectodomain, for instance, corresponding to the sequence:
wherein the thrombin cleavage site is bolded and italicized, the bacteriophage T4 fibritin “foldon” or trimerization domain is underlined, the last amino acid of the trimerization domain, “G”, is the start of the boxed “V5” epitope tag, which is followed by the hexa histadine (HIS) epitope tag in bold. The hexa-HIS tag within the preceding C-terminal region is used for purification of recombinant HA proteins of the invention. Thus, recombinant HA0 precursor proteins that contain a trimerization domain are considered recombinant HA homotrimeric proteins of the invention.
Recombinant HA homotrimeric proteins of the invention retain the native signal sequence to allow efficient secretion from art-recognized cell lines maintained in vitro, e.g. 293 HEK cells as done by Immune Technology Corp. (http://www.immune-tech.com/). Moreover, within these recombinant HA homotrimeric proteins, or the HA0 precursors thereof, the native HA1/HA2 viral protease cleavage site was maintained, for instance, in all of the sequences provided in Table 2, except SEQ ID NO: 12, in which the native cleavage site positioned at amino acids 337-347 and consisting of the sequence “PQREGGRRRKR” (SEQ ID NO: 525) was substituted with the sequence “PQTETR” (SEQ ID NO: 526).
Furthermore, exemplary receptor binding domains of recombinant HA homotrimeric proteins, or the HA0 precursors thereof, include the following structural elements: a 190 α-helix, a 130-loop, and a 220-loop (see, sequence of Influenza A strain A/Vietnam/1203/2004) (or equivalent HA structures in other Influenza A strains that the ordinarily skilled artisan could readily obtain by accessing public databases, including GenBank, http://www.ncbi.nlm.nih.gov, and The Influenza Sequence Database, www.flu.lan1.gov, and downloading sequences) (Stevens et al. 2006. Science 312: 404-410). In other embodiments of the invention, in which the recombinant HA homotrimeric protein, or HA0 precursor thereof, encoded by this expression construct is partially or entirely expressed and administered to a subject, these receptor binding domains may be modified. The term “modified” is meant to describe the removal of one or more structural elements. Alternatively, or in addition, “modified” is meant to describe the addition, deletion, substitution, inversion, or translocation of one or more amino acids within a structural element of a receptor-binding domain of HA. For instance, a linear or discontinuous epitope to which a HuMHA antibody of the invention binds is administered to a subject at risk of contracting an influenza infection to prevent the infection. Alternatively or in addition, a linear or discontinuous epitope to which a HuMHA antibody of the invention binds is administered to a subject prior to exposure to an influenza virus to prevent influenza infection. In other embodiments a structural mimic of the conformational or discontinuous epitope is administered to a subject. When the above proteins are used for prophylactic purposes, for instance, as a vaccine, it may be advantageous to modify one or more receptor binding domains to control the resultant immune response in the subject. Exemplary structural elements of HA that are optionally modified include, but are not limited to, the 190 α-helix, the 130-loop, and the 220-loop of HA.
Recombinant homotrimeric HA proteins of the invention are encoded by the following amino acid sequences, wherein the native sequence is bolded and the sequence of SEQ ID NO: 1 is normal (see also, Table 2):
DTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDKHNGKLCKLRGVAPLHLGKCNIAGWILGNPECESLSTASSWSY
IVETPSSDNGTCYPGDFIDYEELREQLSSVSSFERFEIFPKTSSWPNHDSNKGVTAACPHAGAKSFYKNLIWLVKKGNS
YPKLSKSYINDKGKEVLVLWGIHHPSTSADQQSLYQNADTYVFVGSSRYSKKFKPEIAIRPKVRDQEGRMNYYWTLV
EPGDKITFEATGNLVVPRYAFAMERNAGSGIIISDTPVHDCNTTCQTPKGAINTSLPFQNIHPITIGKCPKYVKSTKLRL
ATGLRNIPSIQSRGLFGAIAGFIEGGWTGMVDGWYHHQNEQGSGYAADLKSTQNAIDEITNKVNSVIEKMNTQ
FTAVGKEFNHLEKRIENLNKKVDDGFLDIWTYNAELLVLLENERTLDYHDSNVKNLYEKVRSQLKNNAKEIGNGCFEF
YHKCDNTCMESVKNGTYDYPKYSEEAKLNREEIDGVKLESTRIYQSGRLVPRGSPGSGYIPEAPRDGQAYVRKDGEW
VLLSTFLGKPIPNPLLGLDSTGHHHHHH
DTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCLLKGIAPLQLGNCSVAGWILGNPECELLISRESWSYI
VEKPNPENGTCYPGHFADYEELREQLSSVSSFERFEIFPKESSWPNHTTTGVSASCSHNGESSFYKNLLWLTGKNGLY
PNLSKSYANNKEKEVLVLWGVHHPPNIGDQRALYHKENAYVSVVSSHYSRKFTPEIAKRPKVRDQEGRINYYWTLLE
PGDTIIFEANGNLIAPRYAFALSRGFGSGIINSNAPMDECDAKCQTPQGAINSSLPFQNVHPVTIGECPKYVRSAKLR
MVTGLRNIPSIQSRGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADQKSTQNAINGITNKVNSVIEKMN
TQFTAVGKEFNKLERRMENLNKKVDDGFIDIWTYNAELLVLLENERTLDFHDSNVKNLYEKVKSQLKNNAKEIGNGC
FEFYHKCNDECMESVKNGTYDYPKYSEESKLNREKIDGVKLESMGVYQSGRLVPRGSPGSGYIPEAPRDGQAYVRKD
GEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
MEARLLVLLCAFAATNADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCKLKGIAPLQLGKCNIAGWL
LGNPECDLLLTASSWSYIVETSNSENGTCYPGDFIDYEELREQLSSVSSFEKFEIFPKTSSWPNHETTKGVTAACSYAGA
SSFYRNLLWLTKKGSSYPKLSKSYVNNKGKEVLVLWGVHHPPTGTDQQSLYQNADAYVSVGSSKYNRRFTPEIAARP
KVRDQAGRMNYYWTLLEPGDTITFEATGNLIAPWYAFALNRGSGSGIITSDAPVHDCNTKCQTPHGAINSSLPFQNI
HPVTIGECPKYVRSTKLRMATGLRNIPSIQSRGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQGSGYAADQKSTQN
AIDGITNKVNSVIEKMNTQFTAVGKEFNNLERRIENLNKKVDDGFLDIWTYNAELLVLLENERTLDFHDSNVRNLYEK
VKSQLKNNAKEIGNGCFEFYHKCDDACMESVRNGTYDYPKYSEESKLNREEIDGVKLESMGVYQSGRLVPRGSPGSG
YIPEAPRDGQAYVRKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEKVDTNLERNVTVTHAKDILEKTHNGKLCKLNGIPPLELGDCSIAGWLLGNPECDRLLSVPEWSYI
MEKENPRDGLCYPGSFNDYEELKHLLSSVKHFEKVKILPKDRWTQHTTTGGSRACAVSGNPSFFRNMVWLTKEGSD
YPVAKGSYNNTSGEQMLIIWGVHHPIDETEQRTLYQNVGTYVSVGTSTLNKRSTPEIATRPKVNGQGGRMEFSWTL
LDMWDTINFESTGNLIAPEYGFKISKRGSSGIMKTEGTLENCETKCQTPLGAINTTLPFHNVHPLTIGECPKYVKSEKLV
LATGLRNVPQIESRGLFGAIAGFIEGGWQGMVDGWYGYHHSNDQGSGYAADKESTQKAFDGITNKVNSVIEKMN
TQFEAVGKEFGNLERRLENLNKRMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRMQLRDNVKELGN
GCFEFYHKCDDECMNSVKNGTYDYPKYEEESKLNRNEIKGVKLSSMGVYQSGRLVPRGSPGSGYIPEAPRDGQAYVR
KDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
QKLPGNDNSTATLCLGHHAVPNGTIVKTITNDQIEVTNATELVQSSSTGGICDSPHQILDGENCTLIDALLGDPQCDG
FQNKKWDLFVERSKAYSNCYPYDVPDYASLRSLVASSGTLEFNDESFNWTGVTQNGTSSSCKRRSNNSFFSRLNWL
TQLKFKYPALNVTMPNNEKFDKLYIWGVHHPVTDNDQIFLYAQASGRITVSTKRSQQTVIPNIGSRPRIRNIPSRISIY
WTIVKPGDILLINSTGNLIAPRGYFKIRSGKSSIMRSDAPIGKCNSECITPNGSIPNDKPFQNVNRITYGACPRYVKQNT
LKLATGMRNVPEKQTRGIFGAIAGFIENGWEGMVDGWYGFRHQNSEGIGQAADLKSTQAAINQINGKLNRLIGKT
NEKFHQIEKEFSEVEGRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFERTKKQLRENAEDMGNG
CFKIYHKCDNACIGSIRNGTYDHDVYRDEALNNRFQIKGVELKSGSGRLVPRGSPGSGYIPEAPRDGQAYVRKDGEWV
LLSTFLGKPIPNPLLGLDSTGHHHHHH
QNYTGNPVICLGHHAVSNGTMVKTLTDDQIEVVTAQELVESQHLPELCPSPLRLVDGQTCDIVNGALGSPGCDHLN
GAEWDVFIERPTAVDTCYPFDVPDYQSLRSILANNGKFEFIAEEFQWNTVKQNGKSGACKRANVNDFFNRLNWLT
KSDGNAYPLQNLTKVNNGDYARLYIWGVHHPSTDTEQTNLYKNNPGRVTVSTQTSQTSVVPNIGSRPWVRGLSSRI
SFYWTIVEPGDLIVFNTIGNLIAPRGHYKLNSQKKSTILNTAVPIGSCVSKCHTDKGSISTTKPFQNISRISIGDCPKYVK
QGSLKLATGMRSILEKATRGLFGAIAGFIENGWQGLIDGWYGFRHQNAEGTGTAADLKSTQAAIDQINGKLNRLIGK
PNEKYHQIEKEFEQVEGRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDVTDSEMNKLFERVRHQLRENAEDKGN
GCFEIFHQCDNSCIESIRNGTYDHDIYRDEAINNRFQIQGVKLIQGYKDSGRLVPRGSPGSGYIPEAPRDGQAYVRKDG
EWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
MERTVLLLATVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILERTHNGKLCDLNGVKPLILRDCSVAGWL
LGNPMCDEFINVPEWSYIVEKASPANDLCYPGNFNDYEELKHLLSRINHFEKIQIIPKSSWSNHDASSGVSSACPYLGR
SSFFRNVVWLIKKNSAYPTIKRSYNNTNQEDLLVLWGVHHPNDAAEQTKLYQNPTTYISVGTSTLNQRLVPEIATRPK
VNGQSGRMEFFWTILKPNDAINFESNGNFIAPEYAYKIVKKGDSTIMKSELEYGNCNTKCQTPMGAINSSMPFHNIH
PLTIGECPKYVKSNRLVLATGLRNTPQRERRRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSCYSADKEST
QKAIDGVTNKVNSIINKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVK
NLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVKNGTYDYPQYSEEARLNREEISGVKLESMGTYQSGRLVPR
GSPGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKKHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEW
SYIVEKANPVNDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKSSWSSHEASLGVSSACPYQGKSSFFRNVVWLIKKNST
YPTIKRSYNNTNQEDLLVLWGIHHPNDAAEQTKLYQNPTTYISVGTSTLNQRLVPRIATRSKVNGQSGRMEFFWTIL
KPNDAINFESNGNFIAPEYAYKIVKKGDSTIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRL
VLATGLRNSPQRERRRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSII
DKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAK
ELGNGCFEFYHKCDNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIGIYQSGRLVPRGSPGSGYIPEAPRDGQAY
VRKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEW
SYIVEKANPTNDLCYPGSFNDYEELKHLLSRINHFEKIQIIPKSSWSDHEASSGVSSACPYLGSPSFFRNVVWLIKKNST
YPTIKKSYNNTNQEDLLVLWGIHHPNDAAEQTRLYQNPTTYISIGTSTLNQRLVPKIATRSKVNGQSGRMEFFWTILK
PNDAINFESNGNFIAPEYAYKIVKKGDSAIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRLV
LATGLRNSPQRESRRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSIID
KMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKE
LGNGCFEFYHKCDNECMESIRNGTYNYPQYSEEARLKREEISGVKLESIGTYQSGRLVPRGSPGSGYIPEAPRDGQAYV
RKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFLNVSEW
SYIVEKINPANDLCYPGNFNNYEELKHLLSRINRFEKIQIIPKSSWPDHEASLGVSSACPYQGGPSFYRNVVWLIKKNN
TYPTIKKSYHNTNQEDLLVLWGIHHPNDEAEQTRIYKNPTTYISVGTSTLNQRLVPKIATRSKVNGQSGRVEFFWTILK
SNDTINFESNGNFIAPENAYKIVKKGDSTIMKSELEYGNCNTKCQTPIGAINSSMPFHNIHPLTIGECPKYVKSNRLVL
ATGLRNSPQGERRRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSIID
KMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKE
LGNGCFEFYHRCDNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIGTYQSGRLVPRGSPGSGYIPEAPRDGQAY
VRKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DHICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCDLNGVKPLILKDCSVAGWLLGNPMCDEFINVPEW
SYIVEKANPANDLCYPGNFNDYEELKHLLSRINHFEKIQIIPKDSWSDHEASLGVSSACPYQGNSSFFRNVVWLIKKGN
AYPTIKKSYNNTNQEDLLVLWGIHHPNDEAEQTRLYQNPTTYISIGTSTLNQRLVPKIATRSKVNGQSGRIDFFWTILK
PNDAINFESNGNFIAPEYAYKIVKKGDSTIMKSEVEYGNCNTRCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNKLV
LATGLRNSPQRERRRKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSIIDK
MNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKEL
GNGCFEFYHKCDNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIGTYQSGRLVPRGSPGSGYIPEAPRDGQAYV
RKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEW
SYIVEKANPANDLCYPGNFNDYEELKHLLSRINHFEKIQIIPKSSWSDHEASSGVSSACPYQGTPSFFRNVVWLIKKNN
TYPTIKRSYNNTNQEDLLILWGIHHSNDAAEQTKLYQNPTTYISVGTSTLNQRLVPKIATRSKVNGQSGRMDFFWTIL
KPNDAINFESNGNFIAPEYAYKIVKKGDSAIVKSEVEYGNCNTKCQTPIGAINSSMPFHNIHPLTIGECPKYVKSNKLVL
ATGLRNSPLRERRRKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNSIIDK
MNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKEL
GNGCFEFYHKCDNECMESVRNGTYDYPQYSEEARLKREEISGVKLESIGTYQSGRLVPRGSPGSGYIPEAPRDGQAYV
RKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DQICIGYHANNSTEQVDTIMEKNVTVTHAQDILEKTHNGKLCNLDGVKPLILKDCSVAGWLLGNPMCDEFLNVSEW
SYIVEKASPANGLCYPGDFNDYEELKHLLSRINHLKKIKIIPKSYWSNHEASSGVSAACSYLGEPSFFRNVVWLIKKNNT
YPPIKVNYTNTNQEDLLVLWGIHHPNDEKEQIRIYQNPNTSISVGTSTLNQRLVPKIATRPKVNGQSGRMEFFWTILK
PNDSINFDSNGNFIAPEYAYKIAKKGDSVIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRLV
LATGLRNAPQTETRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGITNKVNSIIDKMNT
QFEIVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMENERTLDFHDSNVKNLYEKVRLQLRDNAKELGNGC
FEFYHKCDNECMESVRNGTYDYPQYSEEARLSREEISGVKMESMVTYQSGRLVPRGSPGSGYIPEAPRDGQAYVRKD
GEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DKICIGYHANNSTTQVDTILEKNVTVTHSVELLENQKEERFCKILNKAPLDLRGCTIEGWILGNPQCDLLLGDQSWSYI
VERPTAQNGICYPGALNEVEELKALIGSGERVERFEMFPKSTWTGVDTSSGVTKACPYNSGSSFYRNLLWIIKTKSAA
YPVIKGTYNNTGSQPILYFWGVHHPPDTNEQNTLYGSGDRYVRMGTESMNFAKSPEIAARPAVNGQRGRIDYYWS
VLKPGETLNVESNGNLIAPWYAYKFVSTNNKGAIFKSNLPIENCDATCQTIAGVLRTNKTFQNVSPLWIGECPKYVKS
ESLRLATGLRNVPQIETRGLFGAIAGFIEGGWTGMIDGWYGYHHENSQGSGYAADKESTQKAIDGITNKVNSIIDKM
NTQFEAVDHEFSNLERRIDNLNKRMEDGFLDVWTYNAELLVLLENERTLDLHDANVKNLYEKVKSQLRDNANDLGN
GCFEFWHKCDNECIESVKNGTYDYPKYQDESKLNRQEIESVKLDNLGVYQSGRLVPRGSPGSGYIPEAPRDGQAYVRK
DGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DKICLGHHAVSNGTKVNTLTERGVEVVNATETVERTNVPRICSKGKRTVDLGQCGLLGTITGPPQCDQFLEFSADLIIE
RREGSDVCYPGKFVNEEALRQILRESGGIDKETMGFTYSGIRTNGTTSACRRSGSSFYAEMKWLLSNTDNAAFPQMT
KSYKNTRKDPALIIWGIHHSGSTTEQTKLYGSGNKLITVGSSNYQQSFVPSPGARPQVNGQSGRIDFHWLILNPNDT
VTFSFNGAFIAPDRASFLRGKSMGIQSEVQVDANCEGDCYHSGGTIISNLPFQNINSRAVGKCPRYVKQESLLLATG
MKNVPEIPKRRRRGLFGAIAGFIENGWEGLIDGWYGFRHQNAQGEGTAADYKSTQSAIDQITGKLNRLIEKTNQQF
ELIDNEFTEVERQIGNVINWTRDSMTEVWSYNAELLVAMENQHTIDLADSEMNKLYERVKRQLRENAEEDGTGCFE
IFHKCDDDCMASIRNNTYDHSKYREEAIQNRIQIDPVKLSSGYKDSGRLVPRGSPGSGYIPEAPRDGQAYVRKDGEWV
LLSTFLGKPIPNPLLGLDSTGHHHHHH
DRICIGYQSNNSTDTVNTLIEQKVPVTQTMELVETEKHPAYCNTDLGAPLELRDCKIEAVIYGNPKCDIHLKDQGWSY
IVERPSAPEGMCYPGSVENLEELRFVFSSAASYKRIRLFDYSRWNVTSSGTSKACNASTGGQSFYRSINWLTKKKPDT
YDFNEGTYVNNEDGDIIFLWGIHHPPDTKEQTTLYKNANTLSSVTTNTINRSFQPNIGPRPLVRGQQGRMDYYWGIL
KRGETLKIRTNGNLIAPEFGYLLKGESHGRTIQNEDIPIGNCYTKCQTYAGAINSSKPFQNASRHYMGECPKYVKKASL
RLAVGLRNTPSVEPRGLFGAIAGFIEGGWSGMIDGWYGFHHSNSEGTGMAADQKSTQEAIDKITNKVNNIVDKM
NREFEVVNHEFSEVEKRINMINDKIDDQIEDLWAYNAELLVLLENQKTLDEHDSNVKNLFDEVKRRLSANAIDAGNG
CFDILHKCDNECMETIKNGTYDHKEYEEEAKLERSKINGVKLEENTTYKSGRLVPRGSPGSGYIPEAPRDGQAYVRKDG
EWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
DKICIGYQSTNSTETVDTLTKTNVPVTQAKELLHTEHNGMLCATNLGHPLILDTCTIEGLIYGNPSCDLLLGGREWSYIV
ERPSAVNGMCYPGNVENLEELRLLFSSASSYQRVQIFPDTIWNVTYSGTSSACSNSFYRSMRWLTQKDNTYPVQDA
QYTNNRGKSILFMWGINHPPTDTVQTNLYTRTDTTTSVTTEDINRAFKPVIGPRPLVNGLQGRIDYYWSVLKPGQTL
RVRSNGNLIAPWYGHILSGESHGRILKSDLNSGNCVVQCQTERGGLNTTLPFHNVSKYAFGNCPKYVGVKSLKLAVG
MRNVPARSSRGLFGAIAGFIEGGWPGLVAGWYGFQHSNDQGVGMAADRDSTQKAIDKITSKVNNIVDKMNKQY
EIIDHEFSEIETRLNMINNKIDDQIQDIWAYNAELLVLLENQKTLDEHDANVNNLYNKVKRALGSNAMEDGKGCFEL
YHKCDDRCMETIRNGTYNRGKYKEESRLERQKIEGVKLESEGTYKSGRLVPRGSPGSGYIPEAPRDGQAYVRKDGEW
VLLSTFLGKPIPNPLLGLDSTGHHHHHH
METISLITILLVVTASNADKICIGHQSTNSTETVDTLTETNVPVTHAKELLHTEHNGMLCATSLGHPLILDTCTIEGLVYG
NPSCDLLLGGREWSYIVERSSAVNGTCYPGNVENLEELRTLFSSASSYQRIQIFPDTTWNVTYTGTSRACSGSFYRSM
RWLTQKSGFYPVQDAQYTNNRGKSILFVWGIHHPPTYTEQTNLYIRNDTTTSVTTEDLNRTFKPVIGPRPLVNGLQG
RIDYYWSVLKPGQTLRVRSNGNLIAPWYGHVLSGGSHGRILKTDLKGGNCVVQCQTEKGGLNSTLPFHNISKYAFGT
CPKYVRVNSLKLAVGLRNVPARSSRGLFGAIAGFIEGGWPGLVAGWYGFQHSNDQGVGMAADRDSTQKAIDKITS
KVNNIVDKMNKQYEIIDHEFSEVETRLNMINNKIDDQIQDVWAYNAELLVLLENQKTLDEHDANVNNLYNKVKRAL
GSNAMEDGKGCFELYHKCDDQCMETIRNGTYNRRKYREESRLERQKIEGVKLESEGTYKSGRLVPRGSPGSGYIPEAP
RDGQAYVRKDGEWVLLSTFLGKPIPNPLLGLDSTGHHHHHH
The recombinant and soluble HA expression constructs of SEQ ID NO: 2-19 were transfected into 293 HEK cells. Recombinant HA0 protein or HA cleaved into its respective subunits HA1 and HA2 and disulphide linked was purified from culture supernatant by standard procedures using the hexa-HIS tag at the C-terminal. The purified protein was analyzed by size exclusion chromatography and/or denaturing coomasie gel to confirm a recombinant protein of the expected size was present.
One hundred and twenty-six individual serum or plasma samples were screened for the presence of IgG antibody that bound to recombinant soluble homotrimeric HA proteins (Table 2) using a micro-array scanning system, bind to whole inactivated Influenza A virions (Table 3) using standard ELISA techniques, and inhibits or neutralizes virus infection of MDCK cells with Influenza A H1N1 A/Solomon Islands/3/06 or H3N2 A/Wisconsin/67/05. A portion of the plasma samples contained IgG antibodies that bound specifically to the recombinant soluble HA homotrimeric protein, bound to inactivated virions, and neutralized virus infectivity. This indicates that the antibodies could be binding linear or discontinuous epitopes in the HA homotrimer, as well as binding to conformational determinants of multiple variants of the HA homotrimer. Soluble targets include, but are not limited to, exemplary recombinant HA proteins derived from the influenza virus strains listed enable 2 and the inactivated virus strains listed in Table 4.
IgG+ memory B cells purified from a human blood sample were cultured for 9 days in order to activate, proliferate, and differentiate these memory B cells into IgG secreting plasma cells. The B cell culture media containing the IgG was screened for the presence of IgG antibody that bound to recombinant soluble homotrimeric HA proteins (Table 2) using a micro-array scanning system, bind to whole Influenza A virus (Table 3) using standard ELISA techniques, and inhibits or neutralizes virus infection of MDCK cells with Influenza A H1N1 A/Solomon Islands/3/06 or H3N2 A/Wisconsin/67/05. As shown in Tables 5, 6, and 7, thirty-nine BCC wells were identified that contained an IgG antibody with several virus, HA, or neutralizing profiles and the variable regions of the antibody were then cloned from the corresponding B cell cultures.
Transient transfections with monoclonal heavy and light chain pairs from each BCC well were performed in 293 6E cells to reconstitute and produce the antibody. Reconstituted antibody supernatants were then screened for IgG that binds to recombinant soluble homotrimeric HA proteins (Table 2) using a micro-array scanning system, bind to whole Influenza A virus (Table 4) using standard ELISA techniques, and inhibits or neutralizes virus infection of MDCK cells with Influenza A H1N1 A/Solomon Islands/3/06, and/or H1N1 A/California/04/09, and/or H3N2 A/Wisconsin/67/05 to identify the rescued anti-HA antibody. Binding and neutralization of the human IgG antibodies to the preceding targets is compared to the binding of the proprietary positive control antibody TCN-032 (specific for the N-terminal of the matrix 2 protein of influenza A, U.S. patent application Ser. No. 12/795,618) or to the binding of the broadly HA specific, non-neutralizing mAb TCN-504 (also known as 3251K17, and described herein), and the proprietary negative control antibody TCN-202 (specific for the AD2 site I epitope on human cytomegalovirus gB) to these same targets.
The sequences of the rescued antibodies are determined. In addition, the sequence of each of the polynucleotides encoding the antibody sequences is determined.
To determine whether the human mAbs in BCC SN or monoclonal transfection supernatant bind to purified virus, Enzyme-Linked ImmunoSorbent Assays (ELISAs) were performed according to the following methods. Briefly, various purified Influenza A virus subtype strains were coated directly onto an ELISA plate. A single dilution of BCC supernatant of the mAbs shown in Table 5 or of the monoclonal transfection supernatant shown in Table 8 and various dilutions of a positive control antibody (TCN-032) were then added to the virus coated wells. Unbound antibody was washed away and the bound antibody was detected with an anti-human antibody conjugated to HRP. The presence of anti-influenza antibodies was detected when the chromogen (TMB) is oxidized by the HRP conjugate, resulting in a blue color. The reaction is stopped by the addition of HCl, turning antibody positive wells yellow. The yellow color has a maximal absorbance at 450 nm.
Methods:
The following protocol was used:
1) Coat Microlon™ plates with 25 ul/well of 3 ug/ml inactivated influenza A virions.
2) Incubate plates overnight at 4° C.
3) Remove plates from 4° C. and wash four times with phosphate buffered saline with Calicum and Magnesium (PBS w/Ca2+, Mg2+), using EL405x (Wash program: ELISA—4x_wash).
4) Add 20 μl/well of 1% milk/PBS to plates.
5) Prepare control mAb curves by 1:3 dilutions of 6 ug/ml
6) 5 ul of each BCC SN or monoclonal transient transfection supernatant and control mAb curves are stamped onto the plate according to the plate map.
7) Incubate 2 hour (hr) at room temperature (RT).
8) Wash plates four times with PBS w/Ca2+, Mg2+, using EL405x (Wash program: ELISA—4x_wash)
9) Add 25 μl/well of polyclonal antibody (pAb) goat anti-human (aHuman) IgG Fc horseradish peroxidase (HRP) at a dilution of 1:5000.
10) Incubate 1 hr at RT.
11) Wash plates four times with PBS w/Ca2+, Mg2+, using EL405x (Wash program: ELISA—4x_wash)
12) Add 25 μl/well of Ultra-TMB (3,3′,5,5′-tetramethylbenzidine) at Neat.
13) Develop 30 minutes (min) at RT.
14) Stop by adding 25 μl/well of hydrochloric acid (HCl) at a concentration of 0.3M.
15) Read the plate at 450 nm with the Spectromax.
One or more of the following control antibodies were used in these experiments: TCN-504 (also known as 3251_K17, and described herein) TCN-032 (also known as 8110, specific for the influenza A M2 protein), and TCN-202 (also known as 2N9, specific for the AD2 site I epitope on human cytomegalovirus gB protein).
The following purified viruses were used in these experiments: A/Solomon Islands/3/2006(H1N1) (SEQ ID NO: 3), A/Japan/305/1957(H2N2) (SEQ ID NO: 4), A/Wisconsin/67/2005(H3N2) (SEQ ID NO: 5). As shown in table 8 the human monoclonal antibodies in the transient transfection supernatant bind strongly to one or more of the H1N1, H2N2, and/or H3N2 viruses reproducing the virus binding profile of the IgG antibody in the original BCC SN (Table 5).
To determine whether the human mAbs in BCC SN or monoclonal transfection supernatant bind to one or more of the recombinant homotrimeric HA proteins, a micro-array scanning system was used according to the following methods. Twenty Nexterion P (Schott) glass slides are incubated overnight in a humid chamber with 3 mg/ml goat anti-human, Fc-specific antibody. Nexterion P slides contain a hydrogel that terminates in an NHS ester reactive group that binds the capture antibody. The reaction is then quenched using 50 mM ethanolamine in 50 mM NaBorate (pH 8.0) buffer for 1 hour with agitation followed by 3 washes with ultrapure water. Transfection supernatants are transferred to 384-well array source plates. Control array source plates are made in 8-point, 3-fold serial dilutions of antibody starting at 3 ug/ml and ending 0 ug/ml in BCC or mock transfection media. Both BCC or transfection supernatant array source plates and control plates are loaded onto an Aushon 2470 microarray printer along with the 20 prepared slides.
Microarrays are printed in 48 subarray blocks with variable number of features and replicates depending on number of transfection supernatants are being printed. Printed microarrays are allowed to sit for at least 1 hour after printing (to overnight) in the printer's humidity controlled chamber (80%). They are then quickly removed from the printer, washed, and spun dry to prepare the slides for sample incubations. A LifterSlip is placed on each slide and 90 μl of sample is added to each. Each slide receives either one of 18 V5-tagged HA trimerics at predetermined concentrations, a horseradish peroxidase goat anti-human H+ L specific antibody at a 1 ug/ml, or a blank for a total of 20 slides. The slides are then incubated overnight in a humid chamber at room temperature. After washing, spin drying, and new LifterSlip application, 19 slides, excluding slide incubated with anti-human IgG, are incubated with anti-V5 conjugated to biotin at a 1:1000 dilution for 1 hour. Subsequently the slides are again washed, dried and prepared for an 1-hour incubation with a 1:300 dilution of NeutrAvidin-HRP. After further washing, drying and preparation all 20 slides are incubated for 1 hour with a Tyramide-AlexaFluor reagent according to kit instructions. After final washing and drying the slides are scanned on an Axon Genepix 4300A at an excitation wavelength of 594 nm and with an emission band ranging from 619 nm to 641 nm. Data is recovered using the Axon Genepix software and is then analyzed for binding profiles.
Methods:
The following protocol was used:
1. Dilute goat anti-human, FC-specific antibody (JacksonImmuno, 10 mg/ml) to 3 mg/ml in PBS 0.05&Tween and apply to 20 Nexterion P Slides (Schott) using 90 μl under lifterslips (Thermo).
2. Incubate in a humid chamber overnight at room temperature
3. Removing the lifterslip quench all slides in 50 mM ethanolamine (Fisher)) in 50 mM Sodium tetraborate decahydrate (Fisher, S248-500) at a pH of 8.0
4. Quench for 1 hour with incubation at room temperature
5. Wash all slides (3×2 min MilliQ water washes with agitation).
6. Load all slides onto Aushon 2470 MicroArray printer.
7. Prepare control plates using by spiking control antibodies into transfection media to form an 8 point 3-fold serial dilution starting at 3 μg/ml and ending in 0 μg/ml. Transfer control dilutions to 4 array source plates (Thermo).
8. Load all array source plates, control and sample, onto Aushon 2470 microarray printer and begin deposition after checking all required fluid levels. Number of replicates is based on number of transfection supernatants being printed. Typically 1 to 10 replicates.
9. Allow slides to sit at 80% humidity for at least an hour, to overnight, after deposition.
10. Immediately wash (PBS with 2% tween 20, 5 min; MilliQ water, 2 min, 3×) and spin dry (2000 RPM for 1 minute)
11. Using lifterslips and apply 90 μl of HA at the following concentration:
12. Use 1×PBS, 0.05% Tween 20, 10% Blocker Casein (Thermo, #37528) to bring the homotrimeric HA to the desired concentration.
13. Incubate overnight in a humid chamber at room temperature
14. Immediately wash (PBS with 2% tween 20, 5 min; MilliQ water, 2 min, 3×) and spin dry (2000 RPM for 1 minute)
15. Using lifterslips incubate all but slide previously incubated with anti-human IgG(H&L)-HRP with 90 μl of anti-V5-biotin (AbD Serotec, MCA1360B) at 1 μg/ml in 1×PBS 0.05% Tween 20 for 1 hour at room temperature in a humid chamber.
16. Immediately wash (PBS with 2% tween 20, 5 min; MilliQ water, 2 min, 3×) and spin dry (2000 RPM for 1 minute)
17. Using lifterslips incubate with 90 μl of horseradish peroxidase conjugated NeutrAvidin (Pierce #31030) for 1 hour at room temperature in a humid chamber.
18. Immediately wash (PBS with 2% tween 20, 5 min; MilliQ water, 2 min, 3×) and spin dry (2000 RPM for 1 minute)
19. Prepare Tyramide Signal Amplification reagent according to kit instructions (TSA Kit #25, Invitrogen, T20935). Briefly dilute 1 μl of hydrogen peroxide solution into 200 μl of amplification buffer. Take 20 μl of hydrogen peroxide/amplification buffer solution and add to 1940 μl of fresh amplification buffer. Then add 40 μl of tyramide-Alexa Fluor resulting in a total of 2 ml of amplification reagent
20. Incubate all 20 slides with amplification reagent for 1 hour at room temperature in a humid chamber.
21. Immediately wash (PBS with 2% tween 20, 5 min; MilliQ water, 2 min, 3×) and spin dry (2000 RPM for 1 minute)
22. Scan all slides on an Axon Genepix 4300A at an excitation wavelength of 594 nm and with an emission band ranging from 619 nm to 641 nm or optical scanner with similar capabilities.
23. Lay templates on each slide using GenePix Pro 7 or similar software to recover feature data.
24. Analyze feature data for binding profiles to each HA trimeric.
As shown in Table 9, the human monoclonal antibodies in the transient transfection supernatant bind strongly to one or more of the recombinant homotrimeric HA proteins reproducing the virus binding profile of the IgG antibody in the original BCC SN (Table 5).
MDCK cells were plated at 3×103 cells/well in a 384-well plate in complete DMEM media (supplemented with 10% FBS, 1× penicillin/streptomycin, 1× Glutamax™, and 1× Sodium Pyruvate) and incubated at 37° C. overnight.
Influenza A virus was preincubated with either BCC supernatant or monoclonal transfection supernatant or a positive control neutralizing monoclonal antibody (MAb), which was diluted in pooled BCC supernatant or in mock transfection supernatant at the desired concentrations and incubated overnight (˜16 hours) at 37° C. Void volumes and dilutions were made in PBS with Mg2+, Ca2+, 200 mM Mannose, and 1% BSA at 37° C. with a total volume of 30 μl/well.
Each sample well contained:
(a) 20 μl/well BCC supernatant; or
(b) 20 ul/well of monoclonal transfection
(c) 3000 IU/well A/Solomon Islands/03/2006 (H1N1) in 10 μl/well; or
(e) 3000 IU/well A/California/04/2009 (H1N1) in 10 ul/well; or
(f) 3000 IU/well A/Wisconsin/67/05 (H3N2) in 10 ul/well
Prior to infection, the MDCK cells were washed once with a solution containing PBS, Mg2+, and Ca2+ at 60 μl/well. After the wash, 25 ul of the virus/mAb mixture was transferred and the infection proceeded for 4 hours at 37° C.
After 4 hours of infection, the MDCK cells are washed twice with complete DMEM. After the last wash, 25 μl/well of complete DMEM remained, and the plates were incubated overnight at 37° C.
After the overnight incubation the culture media was removed and 20 μl of BD Cytofix/Cytoperm™ (cat#51-2090KZ) was added to each well and incubated at room temperature (RT) for 30 minutes. Next, the wells were washed three times using the M384 Atlas plate washer.
After the final wash, 15 μl/well of 100 μg/ml Rabbit IgG (Sigma) in PBS with Mg2+, Ca2+, and 1% BSA, was added and incubated for at least 5 minutes at RT. Twenty μl/well of anti-M2e mAb TCN-032 at 2 μg/ml in PBS with Mg2+, Ca2+, and 1% BSA, were added to each well and incubated for at least 30 mins at room temperature. The wells are washed one time using the Atlas plate washer with PBS with Mg2+, Ca2+ Twenty μl/well of 2 μg/ml Alexa Fluor® 647 anti-Human IgG H+ L (Invitrogen™) and 20 μg/ml Hoechst 33342 (Invitrogen™) was added and incubated in the dark for 45 mins at room temperature. Wells were washed three times using the Atlas plate washer with PBS with Mg2+, Ca2+. Twenty microliters of PBS with Mg2+, Ca2+, and 1% BSA was added to each well, and plates were sealed with black sealing tape. Plates were analyzed by scanning using an IN Cell analyzer. Specifically, the scan was performed using the IN Cell Developer Software, Protocol “384 GG Hoechst AF647 4x.” Analysis of the scan was performed using the Developer Tool Box software, Protocol “Cellular Binding Nuclei GG Density 4.”
The assay was able to detect well supernatants that individually neutralized the Influenza A infection. If an arbitrary cutoff was established at <150 nucleoprotein (NP)+ cells and the wells with a disrupted cell monolayer were subtracted, a total of 122 wells scored as positive.
Exemplary influenza neutralizing antibodies that were identified using this method are TCN-522 (3212_I12), TCN-521 (3280_D18), TCN-523 (5248_A17), TCN-526 (5084_C17), TCN-527 (5086_C06), TCN-528 (5087_P17), TCN-529 (5297_H01), TCN-530 (5248_H10a), TCN-531 (5091_H13), TCN-532 (5262_H18), TCN-533 (5256_A17a), TCN-534 (5249_B02), TCN-535 (5246_P19), TCN-536 (5095_N01), TCN-537 (3194_D21), TCN-538 (3206_O17), TCN-539 (5056_A08), TCN-540 (5060_F05), TCN-541 (5062_M11), TCN-542 (5079_A16), TCN-543 (5081_G23), TCN-544 (5082_A19), TCN-545 (5082_I15), TCN-546 (5089_L08), TCN-547 (5092_F11), TCN-548 (5092_P01), TCN-549 (5092_P04), TCN-550 (5096_F06), TCN-551 (5243_D01), TCN-552 (5249_I23), TCN-553 (5261_C18), TCN-554 (5277_M05), TCN-555 (5246_I16), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-558 (5248_H10b), TCN-559 (5097_G08), TCN-560 (5084_P10), TCN-563 (5237_B21), TCN-564 (5256_A17b), and TCN-504 (3251_K17). The individual neutralization activities of some of these antibodies are provided in Table 10.
Several antibodies were identified that may be non-neutralizing, including, TCN-504 (3251_K17), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-559 (5097_G08), and TCN-560 (5084_P10). These antibodies, similar to the neutralizing antibodies of the invention, bind to a broad range of HA proteins, including sequence and conformational variants. In certain embodiments of the invention, non-neutralizing antibodies, including TCN-504 (3251_K17), TCN-556 (5089_K12), TCN-557 (5081_A04), TCN-559 (5097_G08), and TCN-560 (5084_P10) may be used as antibody-drug conjugates.
For the antibodies listed in Table 11, milligram quantities of purified monoclonal IgG antibodies were made by transient transfection of 293 E cells with monoclonal heavy and light chain pairs followed by protein A purification to reconstitute and produce the antibody. To determine whether the purified mAbs bind to purified virus, Enzyme-Linked ImmunoSorbent Assays (ELISAs) were performed as described in Example 4 using an 8-point dilution series of test mAb. As shown in Table 11, at approximately 1.0 μg/ml, the purified mAbs bind strongly to one or more of the H1N1, H2N2, and/or H3N2 viruses reproducing the virus binding profile of the IgG antibody in the original BCC SN (Table 5) or monoclonal transfection SN (Table 8).
To determine whether the purified human mAbs bind to one or more of the recombinant homotrimeric HA proteins, a micro-array scanning system was used as described in Example 5 using an 8-point dilution series of test mAb. As shown in Table 12, the human mAbs bind strongly to one or more of the recombinant homotrimeric HA proteins. The binding profile shown in Table 12 substantially reproduces the virus binding profile of the IgG antibody in the original BCC SN (Table 5).
To determine whether the purified human mAbs inhibit or neutralize one or more strains of influenza virus, the assay described in Example 6 was performed with 11 H1N1 and 12 H3N2 strains (Table 13) using an 8-point dilution series of test mAb. The neutralization profile (% neutralization) of the tested mAbs is shown in table 13 when tested at 20,000 or 2,000 ng/ml. The neutralization profiles of the tested mAbs demonstrate that TCN-526, 529, 531, 532, 539, 540, 544, 549, 550, and 554 only neutralize H3N2 strains of influenza A. However, these data also show that TCN-536, 545, and 546 neutralize at least 1 strain of subtype H1 and H3. In addition, one mAb, TCN-543, neutralizes at least one stain of H1 and H3 influenza A (Table 13) and binds inactivated H1, H2, and H3 influenza A (Table 11) as well as the corresponding trimeric HA (Table 12). Therefore, it is expected that TCN-543 should also neutralize influenza A of the H2 subtype.
TCN-522, 523, 530, 533, 534, 535, 552, 553, 555, 558, 563, and 564 neutralize all of the H1N1 strains tested but do not neutralize any of the H3N2 strains tested. These data, combined with the trimeric HA and virus binding data shown in tables 12 and 13, indicate that these mAbs broadly neutralize influenza A subtypes H1, H2, H5, and H9.
TCN-522, 523, 530, 533, 534, 535, 552, 553, 555, 558, 563, and 564 were tested for neutralization of H1N1, H2N2, H3N2, H5N1, H7N7, and H9N2 strains at Midwest Research Institute (MRI) (www.mriglobal.org/lifesciences/Pages/default.aspx) by the method described infra.
Study Design
Influenza virus strains used in viral microneutralization (VMN) assays are shown in Table 14. Madin Darby canine kidney (MDCK) cells were used for the VMN assays. Purified anti-HA monoclonal antibodies TCN-522, 523, 529, 530, 533, 534, 535 and 202 were included in the study.
Viral Microneutralization Assay
Purified anti-HA monoclonal antibodies TCN-522, 523, 529, 530, 533, 534, 535 and 202 were included in the study as well as the negative control mAb TSN-202. Eleven (11) viruses, including, three belonging to the H1N1 subtype, one belonging to the H2N2 subtype, one belonging to the H3N2 subtype, four belonging to the H5N1 subtype, one belonging to the H7N7 subtype, and one belonging to the H9N2 subtype. Each antibody was tested against each of the eleven (11) antibodies listed in Table 14. All work was performed using aseptic technique.
Viral microneutralization (VMN) assays were performed using the Medical Research Institute (MRI) method described below, with a direct end-point read (presence of influenza virus-specific cytopathic effects) 5 days post inoculation of the cells with antibody-virus mixtures.
Although this study utilized the MRI method, alternative detection methods include, but are not limited to, ELISA detection of CPE using a colorimetric or an immunofluorescent readout and immunofluorescence for visual imaging (using, for example, GE InCell technology).
All viruses were grown in MDCK cells. During cell propagation, MDCK cells were fed Minimal Essential Medium with Earle's salts (EMEM) supplemented with 10% gamma-irradiated fetal bovine serum (FBS) with alanyl-glutamine (glutamax), antibiotics, and pyruvate. FBS was not added to EMEM during the propagation of viruses in MDCK cells. TPCK-treated trypsin was added to serum-free EMEM that was used to feed MDCK cells for the propagation of influenza A viruses.
Viruses were diluted in serum-free EMEM plus trypsin (“EMEM virus diluent”). The viruses were incubated with an anti-HA mAb of the invention (i.e., TCN-522, 523, 529, 530, 533, 534, 535 or 202) or the negative control Ab for 18 hrs prior to addition to MDCK cells.
Antibody diluent included trypsin-free EMEM+1% BSA (purified fraction V).
Experimental Procedure
Serial Dilution of Antibody.
The concentration of monoclonal antibody (mAb) was adjusted to 150.0 μg/ml in EMEM diluent w/1% BSA. To the plate in
Preparation of Ab/Virus Incubation Plate.
Virus (with known titer) was diluted to 5,000 TCID 50 units/mL in serum-free EMEM without trypsin. Eighty μl of serially-diluted mAb was transferred to a new U-Bottom plate. Twenty μL of 1.2 M Mannose was added to the plate [1.2 M mannose (Sigma M-6020) made in H2O]. Twenty μL (100 TCID50 units) of virus prep were added to the plate except for control wells in column 12 (plate having the same geometry as the plate shown
Addition of the mAb/Virus Mixture to MDCK Cells.
The same day the mAb/virus incubation plate was prepared, MDCK cells were plated at a density of 1.25×104 cells/well (in a 96-well plate) with complete EMEM media. MDCK cells were incubated at 37° C. overnight (i.e., 18 hrs). Prior to infection, the cells were washed twice (2×) with 200 μl EMEM without serum.
One hundred μl from the mAb/virus incubation plate was transferred to the washed MDCK cell plate and incubate 4 hours at 37° C. for H5N1 and CA/07 H1N1, and at 35° C. for all other subtypes. Thus, approximately 83.3% of the antibody-virus mix was added to the MDCK cells.
After infection, the mAb/virus mixture was removed and the cells were washed twice (2×) with 200 μl EMEM. After the last wash, 100-200 μl of EMEM with TPCK-treated trypsin was added. Infected and washed MDCK cells were incubated at 37° C. for those infected with H5N1 and CA/07 (H1N1), and at 35° C. for those infected with all other subtypes. The plates were incubated for 5 days for those infected with all viruses except CA/07 (H1N1). Plates infected with CA/07 (H1N1) were incubated for 7 days. The wells were re-fed every 3 days during the incubation period.
TCN-529 only neutralized H3N2 strains whereas TCN-532 neutralized all of the H1N1 and H3N2 strains tested. However, this contradicts the results shown in Table 13, in which TCN-532 only neutralized H3N2 strains and bound only H3N2 virus by ELISA (Table 11) and trimeric HA for H3 (A/Wisconsin/67/05) (Table 12).
Influenza A virus causes agglutination of chicken red blood cells (CRBC) when mixed together. Thus, the inhibition of agglutination by a molecule, such as an antibody binding to the receptor binding domain (RBD) on the hemagglutinin molecule on the influenza A virus, is indicative of the specificity of the test antibody for the RBD. If the test antibody does not inhibit agglutination of the CRBC, the specificity of the test antibody is for a region of the hemagglutinin molecule at some point distant from the RBD. Therefore, TCN-522, 523, 528, 530, 533, and 202 were tested for hemagglutination inhibition (HAI).
MAbs were serially diluted 1:3 from 30 ug/ml to 0.5 ng/ml, mixed with a set concentration of live H1N1 A/Solomon Island/3/06 and incubated overnight at 37° C. (i.e., 18 hours) prior to the addition of CRBC. The CRBC were allowed to pellet for 1 hr, and scored for antibody-mediated inhibition of hemagglutination. None of the tested mAbs inhibited CRBC agglutination which indicates the specificity of these mAbs is at some point distant from the RBD (Table 14).
The hemagglutinin molecule of influenza A mediates fusion of the viral membrane with the host cell membrane once exposed to a drop in pH in the endosome upon internalization. Therefore, TCN-522, 523, 528, 530, 533, and 202 were tested for the capacity to inhibit virus-induced membrane fusion. A set concentration of CRBC was mixed with a set concentration of live H1N1 A/Solomon Island/3/06 and incubated for 1 hour at 37° C. MAbs that were serially diluted 1:3 from 30 ug/ml to 0.5 ng/ml were then added to the virus/CRBC mix and incubated overnight at 37° C. The mix was subsequently treated with acid (pH 5.0) and hemolysis was ascertained by hemoglobin release into the supernatant, as measured by A540. TCN-522, 523, 530, 533, and 534 inhibited fusion, but the non-neutralizing mAb TCN-528 and the negative control mAb TCN-202 did not (Table 14). These results demonstrate that mAbs TCN-522, 523, 530, 533, and 534 likely bind to the region of the hemagglutinin molecule known to mediate fusion by undergoing a conformational shift at low pH, and, thus, block this event. By inhibiting hemagglutinin-mediated fusion, these mAbs neutralize infection.
To determine the affinity of several broadly neutralizing mAbs, Fab fragments of mAbs TCN-522, 523, 530, 534, and 535 were made by standard techniques and then tested against the recombinant trimeric HA of H1N1 A/California/04/09 (HA-CA) described in Table 2, SEQ ID NO: 2. A Fab fragment of the influenza strain-specific mAb TCN-536 was included as a negative control (a Fab fragment which neither binds recombinant trimeric HA nor neutralizes H1N1 A/California/04/09, Tables 12 and 13).
These experiments were performed using a ProteOn biosensor with a GLM sensor chip (BioRad). HA-CA was captured onto an anti-V5 surface at 5 different densities from 20 to 500 RU. The running buffer contained 10 mM HEPES pH 7.5, 150 mM NaCl, 0.01% tween-20 and 0.1 mg/ml BSA. Data were collected at 25° C. Fabs were tested at 50 nM as the highest concentration in a 3-fold dilution series using 5 total concentrations. Surfaces were regenerated with a 20 second injection of 1 to 100 dilution of phosphoric acid. The data from the 5 different density antigen surfaces were globally fit to a 1:1 interaction binding model (using Scrubber2, Biologic Software Ptd Ltd) to extract a binding constant for each interaction. The results are provided in Table 16.
All of the TCN Fabs, except TCN-522 and the negative control TCN-536, have a similar rate of association (ka) or “on-rate” for binding to HA-CA (Table 16). The on-rate for TCN-522 is 5-8 times slower than for the other Fabs (Table 16). However, the rate of dissociation or “off-rate” of TCN-522 is the slowest, and, therefore, most preferred rate of dissociation, of all of the Fabs tested with the corresponding affinity (KD) of 550 μM.
To determine the therapeutic efficacy of several broadly neutralizing monoclonal antibodies, a study was performed in a post-infection therapeutic model against a lethal H1N1 A/California/04/09 virus challenge in-vivo, according to the study design shown in Table 17.
Each group of mice included 4 or 5 mice (DBA/2), which were infected intra-nasally on day 0 with 25×LD50 of wild-type H1N1 A/California/04/09 (in a separate study the LD50 in DBA/2 mice was determined to be approximately 1 plaque forming unit of infectious virus). A single dose of mAb (15.0 or 1.5 mg/kg) was administered by intra-peritoneal injection in 200 ul of phosphate buffered saline (PBS) on day +1, or +3, or +5 post-infection. Weight loss and survival were monitored for 18 days. The same regimen was used for the negative control mAb TCN-202 (specific for human cytomegalovirus). Oseltamivir (OSC) was dosed at 10 mg/kg twice daily on days +1-5. Vehicle control alone was 200 ul of PBS. Untreated animals challenged with virus (UT/C) were included as a positive infection control. In vivo experiments were conducted in 2 separate studies with 6 mAbs in study A and 5 mAbs in study B, respectively. Values shown for loss of body weight were the average for all surviving animals in a treatment group.
Study A
Study A, 15 mg/kg, mAb Administration Day 1 Post Infection:
80-100% of the animals survived when treated with TCN-523, 530, 534, 535, 555, and 558. There was no survival in the control groups or oseltamivir treated animals (
Study A, 15 mg/kg, mAb Administration Day 3 Post Infection:
60-100% of the animals survived when treated with TCN-523, 530, 534, 535, 555, and 558. There was no survival in the control groups or oseltamivir treated animals (
Study A, 15 mg/kg, mAb Administration Day 5 Post Infection:
60% of the animals survived when treated with TCN-535, 40% survived when treated with TCN-530 and 534, and 20% survived when treated with TCN-523. There was no survival in the TCN-558 treated group, the control groups, or oseltamivir treated animals (
Study A, 1.5 mg/kg, mAb Administration Day 1 Post Infection:
50% of the animals survived when treated with TCN-530 and 555, 40% survived in the TCN-202 treated group, and 25% survived in the TCN-523 treated group. There was no survival in the TCN-534, 535 and 558 treated groups or in the control groups or oseltamivir treated animals (
Study A, 1.5 mg/kg, mAb Administration Day 3 Post Infection:
80% of the animals survived when treated with TCN-530 and 535, 60% survived in the TCN-523 and 558 treated groups, 40% survived in the TCN-555 treated group, and 20% survived in the TCN-534 treated group. There was no survival in the control groups or oseltamivir treated animals (
Study A, 1.5 mg/kg, mAb Administration Day 5 Post Infection:
40% of the animals survived when treated with TCN-530 or 535, 20% survived when treated with TCN-523, 534, or 555. There was no survival in the TCN-558 treated group, the control groups, or oseltamivir treated animals (
Study B
Study B, 15 mg/kg, mAb Administration Day 1 Post Infection:
100% of the animals survived when treated with TCN-522, 552, 553, 563, and 564, 60% survived in the PBS treated group, and 20% survived in the TCN-202 treated group. There was no survival in the oseltamivir treated animals (
Study B, 15 mg/kg, mAb Administration Day 3 Post Infection:
100% of the animals survived when treated with TCN-522, 80% survived in the TCN-563 treated group, 40% survived in the TCN-552 and 564 treated groups, and 20% survived in the TCN-553 and 202 treated groups. There was no survival in the PBS control group or in the oseltamivir treated animals (
Study B, 15 mg/kg, mAb Administration Day 5 Post Infection:
100% of the animals survived when treated with TCN-522, 80% survived in the TCN-553 treated group, 40% survived in the TCN-564 treated group, and 20% survived in the TCN-552 and 563 treated groups. There was no survival in the control groups, or oseltamivir treated animals (
Study B, 1.5 mg/kg, mAb Administration Day 1 Post Infection:
80% of the animals survived when treated with TCN-552 and 553, 60% survived in the TCN-563 and 202 treated groups, 40% survived in the TCN 564 and 202 treated groups, and 20% survived in the TCN-522 treated group. There was no survival in the oseltamivir treated animals (
Study B, 1.5 mg/kg, mAb Administration Day 3 Post Infection:
60% of the animals survived when treated with TCN-522, 40% survived in the TCN-564 treated group, and 20% survived in the TCN-552, 563, and 202 treated groups. There was no survival in the PBS control group or in the oseltamivir treated animals (
Study B, 1.5 mg/kg, mAb Administration Day 5 Post Infection:
40% of the animals survived when treated with TCN-522 or 202. There was no survival in any of the other mAb or control treated groups (
MAbs TCN-522, TCN-530, and TCN-533 were tested to determine the therapeutic window of treatment in murine model of lethal infection with the highly pathogenic H5N1 A/Hong Kong/156/1997 (HK156). Each group of mice consisted of 10 BALB/C mice (except the untreated/unchallenged group: 7 mice) which were infected intra-nasally on day 0 with 25×LD50 of HK156. A single dose of mAb of 15.0 mg/kg was administered by intra-peritoneal injection in 200 ul of phosphate buffered saline (PBS) on day +1, or +3, or +4, or day +5, or day +6 post-infection. Weight loss and survival were monitored for 15 days. The same regimen was used for the negative control mAb TCN-202 (specific for human cytomegalovirus). Oseltamivir (OSC) was dosed at 10 mg/kg twice daily on days +1-5. Vehicle control alone is 200 ul of PBS. Untreated animals challenged with virus (UT/C) were included as a positive infection control.
All of the mice survived challenge when antibodies TCN-522, TCN-530, or TCN-533 were administered on day +1 post-infection (
As shown in
As shown in
As shown in
As shown in
These data demonstrate that mAbs TCN-522, 530, and 533 can prevent mortality in mice due to a lethal infection with a highly pathogenic H5N1 influenza virus. Moreover, these results demonstrate that even 4 days post-infection the treatment with these mAbs prevented mortality in the majority of the treated mice.
Although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of provisional applications U.S. Ser. No. 61/373,191, filed Aug. 12, 2010 and U.S. Ser. No. 61/386,235, filed Sep. 24, 2010, the contents which are each herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3773919 | Boswell et al. | Nov 1973 | A |
3896111 | Kupchan et al. | Jul 1975 | A |
4137230 | Hashimoto et al. | Jan 1979 | A |
4151042 | Higashide et al. | Apr 1979 | A |
4248870 | Miyashita et al. | Feb 1981 | A |
4256746 | Miyashita et al. | Mar 1981 | A |
4260608 | Miyashita et al. | Apr 1981 | A |
4265814 | Hashimoto et al. | May 1981 | A |
4294757 | Asai | Oct 1981 | A |
4307016 | Asai et al. | Dec 1981 | A |
4308268 | Miyashita et al. | Dec 1981 | A |
4308269 | Miyashita et al. | Dec 1981 | A |
4309428 | Miyashita et al. | Jan 1982 | A |
4313946 | Powell et al. | Feb 1982 | A |
4315929 | Freedman et al. | Feb 1982 | A |
4317821 | Miyashita et al. | Mar 1982 | A |
4322348 | Asai et al. | Mar 1982 | A |
4331598 | Hasegawa et al. | May 1982 | A |
4361650 | Asai et al. | Nov 1982 | A |
4362663 | Kida et al. | Dec 1982 | A |
4364866 | Asai et al. | Dec 1982 | A |
4371533 | Akimoto et al. | Feb 1983 | A |
4424219 | Hashimoto et al. | Jan 1984 | A |
4450254 | Isley et al. | May 1984 | A |
4485045 | Regen | Nov 1984 | A |
4544545 | Ryan et al. | Oct 1985 | A |
4554101 | Hopp | Nov 1985 | A |
4676980 | Segal et al. | Jun 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4816567 | Cabilly et al. | Mar 1989 | A |
4975278 | Senter et al. | Dec 1990 | A |
5013556 | Woodle et al. | May 1991 | A |
5053394 | Ellestad et al. | Oct 1991 | A |
5208020 | Chari et al. | May 1993 | A |
5229275 | Goroff | Jul 1993 | A |
5416064 | Chari et al. | May 1995 | A |
5500362 | Robinson et al. | Mar 1996 | A |
5545806 | Lonberg et al. | Aug 1996 | A |
5545807 | Surani et al. | Aug 1996 | A |
5567610 | Borrebaeck et al. | Oct 1996 | A |
5569825 | Lonberg et al. | Oct 1996 | A |
5571894 | Wels et al. | Nov 1996 | A |
5587458 | King et al. | Dec 1996 | A |
5591669 | Krimpenfort et al. | Jan 1997 | A |
5627052 | Schrader | May 1997 | A |
5641870 | Rinderknecht et al. | Jun 1997 | A |
5648237 | Carter | Jul 1997 | A |
5712374 | Kuntsmann et al. | Jan 1998 | A |
5714586 | Kunstmann et al. | Feb 1998 | A |
5731168 | Carter et al. | Mar 1998 | A |
5739116 | Hamann et al. | Apr 1998 | A |
5739277 | Presta et al. | Apr 1998 | A |
5767285 | Hamann et al. | Jun 1998 | A |
5770701 | McGahren et al. | Jun 1998 | A |
5770710 | McGahren et al. | Jun 1998 | A |
5773001 | Hamann et al. | Jun 1998 | A |
5789199 | Joly et al. | Aug 1998 | A |
5821337 | Carter et al. | Oct 1998 | A |
5837234 | Gentile et al. | Nov 1998 | A |
5840523 | Simmons et al. | Nov 1998 | A |
5869046 | Presta et al. | Feb 1999 | A |
5877296 | Hamann et al. | Mar 1999 | A |
6331415 | Cabilly et al. | Dec 2001 | B1 |
6824780 | Devaux et al. | Nov 2004 | B1 |
7112439 | Johnson et al. | Sep 2006 | B2 |
20110033476 | Grandea, III et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
266710 | Aug 1985 | DE |
73657 | Mar 1983 | EP |
183070 | Jun 1986 | EP |
244234 | Nov 1987 | EP |
402226 | Dec 1990 | EP |
404097 | Dec 1990 | EP |
0425235 | May 1991 | EP |
WO-8101145 | Apr 1981 | WO |
WO-8807378 | Oct 1988 | WO |
WO-9013646 | Nov 1990 | WO |
WO-9100360 | Jan 1991 | WO |
WO-9202551 | Feb 1992 | WO |
WO-9220373 | Nov 1992 | WO |
WO-9308829 | May 1993 | WO |
WO-9311161 | Jun 1993 | WO |
WO-9316185 | Aug 1993 | WO |
WO-9321232 | Oct 1993 | WO |
WO-9404690 | Mar 1994 | WO |
WO-9411026 | May 1994 | WO |
WO-9607321 | Mar 1996 | WO |
WO-9616673 | Jun 1996 | WO |
WO-9717852 | May 1997 | WO |
WO-9738731 | Oct 1997 | WO |
WO-9802463 | Jan 1998 | WO |
Entry |
---|
Kashyap et al. “Protection From the 1009 H1N1 Pandemic Influenza by an Antibody From Combinatorial Survivor-Based Libraries.” PLoS Pathogens. 6.7(2010):e1000990. |
Krause et al. “Naturally Occuring Human Monoclonal Antibodies Neutralize Both 1918 and 200 Pandemic Influenza A (H1N1) Viruses.” J. Virology. 84.6(2010):3127-3130. |
Simmons et al. “Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies Against H5N1 Influenza.” PLoS Med. 4.5(2007):3178. |
Throsby et al. “Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective Against H5N1 and H1N1 Recovered From Human IgM+ Memory B Cells.” PLoS One. 3.12(2008):e3942. |
Altschul et al. “Basic Local Alignment Search Tool.” J. Mol. Biol. 215.3(1990):403-410. |
Altschul et al. “Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs.” Nucl. Acids Res. 25.17(1997):3389-3402. |
ATCC Accession No. 12424, Nov. 16, 2011. |
ATCC Accession No. 16045, Nov. 16, 2011. |
ATCC Accession No. 24178, Nov. 16, 2011. |
ATCC Accession No. 27325, Dec. 14, 2011. |
ATCC Accession No. 31446, Nov. 16, 2011. |
ATCC Accession No. 31537, Nov. 16, 2011. |
ATCC Accession No. 36906, Nov. 16, 2011. |
ATCC Accession No. 56500, Nov. 16, 2011. |
ATCC Accession No. CCL10, Nov. 16, 2011. |
ATCC Accession No. CCL2, Nov. 16, 2011. |
ATCC Accession No. CCL34, Nov. 16, 2011. |
ATCC Accession No. CCL51, Nov. 16, 2011. |
ATCC Accession No. CCL70, Nov. 16, 2011. |
ATCC Accession No. CCL75, Nov. 16, 2011. |
ATCC Accession No. CRL1442, Nov. 16, 2011. |
ATCC Accession No. CRL1587, Nov. 16, 2011. |
ATCC Accession No. CRL1651, Nov. 16, 2011. |
Babcock et al. “A Novel Strategy for Generating Monoclonal Antibodies from Single, Isolated Lymphocytes Producing Antibodies of Defined Specificities.” PNAS. 93.15(1996):7843-7848. |
Bird et al. “Single-Chain Antigen-Binding Proteins.” Science. 242(1988):423-426. |
Bitter et al. “Expression and Secretion Vectors for Yeast.” Meth. Enzymol. 153(1987):516-544. |
Bolton et al. “The Labelling of Proteins to High Specific Radioactives by Conjugation to a 125l-Containing Acylating Agent.” Biochem. J. 133.3(1973):529-538. |
Brennan et al. “Preparation of Bispecific Antibodies by Chemical Recombination of Monoclonal Immunoglobulin G1 Fragments.” Science. 229(1985):81-83. |
Broglie et al. “Light-Regulated Expression of a Pea Ribulose-1,5-Bisphosphate Carboxylase Small Subunit Gene in Transformed Plant Cells.” Science. 224(1984):838-843. |
Brüggermann et al. “Designer Mice: The Production of Human Antibody Repertoires in Transgenic Animals.” The Year in Immunology: Generation of Antibodies by Cell and Gene Immortalization. Terhorst et al., eds. New York: Karger. 7(1993):33-40. |
Capel et al. “Heterogeneity of Human IgC Receptors.” Immunometh. 4.1(1994):25-34. |
Carlsson et al. “Protein Thiolating and Reversible Protein-Protein Conjugation.” Biochem. J. 173(1978):723-737. |
Caron et al. “Engineered Humanized Dimeric Forms of IgG are More Effective Antibodies.” J. Exp. Med. 176(1992):1191-1195. |
Carter et al. “High Level Escherichia coli Espression and Production of a Bivalent Humanized Antibody Fragment.” Bio/Technology. 10(1992):163-167. |
Casadevall. “Antibodies for Defense Against Biological Attack.” Nat. Biotech. 20(2002):114. |
Chari et al. “Immunoconjugates Containing Novel Maytansinoids: Promising Anticancer Drugs.” Cancer Res. 52(1992):127-131. |
Chothia et al. “Canonical Structures for the Hypervariable Regions of Immunoglobulins.” J. Mol. Biol. 196.4(1987):901-917. |
Clackson et al. “Making Antibody Fragments Using Phage Display Libraries.” Nature. 352(1991):624-628. |
Clynes et al. “Fc Receptors are Required in Passive and Active Immunity to Melanoma.” PNAS. 95.2(1998):652-656. |
Colbère-Garapin et al. “A New Dominant Hybrid Selective Marker for Higher Eukoaryotic Cells.” J. Mol. Biol. 150.1(1981):1-14. |
Coruzzi et al. “Tissue-Specific and Light-Regulated Expression of a Pea Nuclear Gene Encoding the Small Subunit of Ribulose-1,5-bisphosphate Carboxylase.” EMBO J. 3.8(1984):1671-1680. |
Cunningham et al. “High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis.” Science. 244(1989):1081-1085. |
Dayhoff et al. “A Model of Evolutionary Change in Proteins.” Atlas of Protein Sequence and Structure. Washington, D.C.: National Biomedical Research Foundation. Dayhoff, ed. 5.S3(1978):345-358. |
Daëron. “Fc Receptor Biology.” Annu. Rev. Immunol. 15(1997):203-234. |
de Haas et al. “Fc Gamma Receptors of Phagocytes.” J. Lab. Clin. Med. 126.4(1995):330-341. |
Engelhard et al. “The Insect Tracheal System: A Conduit for the Systemic Spread of Autographa califormica M Nuclear Polyhedrosis Virus.” PNAS. 91.8(1994):3224-3227. |
Eppstein et al. “Biological Activity of Liposome-Encapsulated Murine Interferon Gamma is Mediated by a Cell Membrane Receptor.” PNAS. 82.11(1985):3688-3692. |
Fraker et al. “Protein and Cell Membrane Iodinations with a Sparingly Soluble Chloroadmide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril.” Biochem. Biophys. Res. Commun. 80.4(1978):849-857. |
Gabizon et al. “Pharmacokinetics and Tissue Distribution of Doxorubicin Encapsulated in Stable Liposome with Long Circulation Times.” J. Natl. Cancer Inst. 81.19(1989):1484-1488. |
Gazzano-Santoro et al. “A Non-Radioactive Complement-Dependent Cytotoxicity Assay for Anti-CD20 Monoclonal Antibody.” J. Immunol. Meth. 202.2(1997):163-171. |
Graham et al. “Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5.” J. gen. Virol. 36(1977):59-72. |
Gruber et al. “Efficient Tumor Cell Lysis Mediated by a Bispecific Single Chain Antibody Expressed in Escherichia coli.” J. Immunol. 152(1994):5368-5374. |
Guss et al. “Structure of the IgG-Binding Regions of Streptococcal Protein G.” EMBO J. 5.7(1986):1567-1575. |
Guyer et al. “Immunoglobulin Binding by Mouse Intestinal Epithelial Cell Receptors.” J. Immunol. 117.2(1976):587-593. |
Hartman et al. “Two Dominant-Acting Selectable Markers for Gene Transfer Studies in Mammalian Cells.” PNAS. 85.21(1988):8047-8051. |
Hein. “Unified Approach to Alignment and Phylogenes.” Meth. Enzymol. 183(1990):626-645. |
Henikoff et al. “Amino Acid Substitution Matrices from Protein Blocks.” PNAS. 89(1992):10915-10919. |
Higgins et al. “Fast and Senstive Multiple Sequence Alignments on a Microcomputer.” CABIOS. 5.2(1989):151-153. |
Hobbs et al. “Genetic Engineering.” McGraw Hill Yearbook of Science and Technology. New York: McGraw Hill. (1992):189-196. |
Holliger et al. “Diabodies'L Small Bivalent and Bispecific Antobody Fragments.” PNAS. 90.14(1993):6444-6448. |
Honegger et al. “Yet Another Numbering Scheme for Immunoglobulin Variable Domains: An Automatic Modeling and Analysis Tool.” J. Mol. Biol. 309.3(2001):657-670. |
Hwang et al. “Hepatic Uptake and Degradation of Unilamellar Sphinogomyelin/Cholestorol Liposomes: A Kinetic Study.” PNAS. 77.7(1980):4030-4034. |
Igarashi et al. “Human Immunodeficience Virus Type 1 Neutralizing Antibodies Accelerate Clearance of Cell-Free Cirions From Blood Plasma.” Nat. Med. 5.2(1999):211-216. |
Jakobovits et al. “Analysis of Homozygous Mutant Chimeric Mice: Deletion of the Immunoglobulin Heavy-Chain Joining Region Blocks B-Cell Development and Antibody Production.” PNAS. 90.6(1993):2551-2555. |
Jakobovits et al. “Germ-Line Transmission and Expression of a Human-Derived Yeast Artificial Chromosome.” Nature. 362(1993):255-258. |
Jones et al. “Replacing the Complementarity-Determining Regions in a Human Antibody With Those From a Mouse.” Nature. 321(1986):522-525. |
Keller et al. “Passive Immunity in Prevention and Treatment of Infectious Diseases.” Clin. Microbiol. Rev. 13.4(2000):602-614. |
Kim et al. “Localization of the Site of the Murine IgG1 Molecule That is Involved in Binding to the Murine Intestinal Fc Receptor.” Eur. J. Immunol. 24(1994):2429-2434. |
Kostelny et al. “Formation of a Bispecific Antibody by the Use of Leucine Zippers.” J. Immunol. 148.5(1992):1547-1553. |
Kroll et al. “A Multifunctional Prokaryotic Protein Expression System: Overproduction, Affinity Purification and Selective Detection.” DNA Cell Biol. 12(1993):441-453. |
Kyte et al. “A Simple Method for Displaying the Hydropatric Character of a Protein.” J. Mol. Biol. 157.1(1982):105-132. |
Köhler et al. “Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity.” Nature. 256(1975):495-497. |
Lefranc et al. “IMGT Unique Numbering for Immunoglobulin and T Cell Receptor Variable Regions and Ig Superfamily V-Like Domains.” Dev. Comp. Immunol. 27.1(2003):55-77. |
Lefranc et al. “IMGT, the International ImMunoGeneTics Database.” Nucl. Acids Red. 27.1(1999):209-212. |
Lefranc. “The IMGT Unique Numbering for Immunoglobulins, T Cell Receptors and Ig-Like Domains.” Immunologist. 7(1999):132-136. |
Lefranc. “Unique Database Numbering System for Immunogenetic Analysis.” Ummunol. Today. 18.11(1997):509. |
Lindmark et al. “Binding of Immunoglobulins to Protein A and Immunoglonulin Levels in Mammalian Sera.” J. Immunol. Meth. 62.10(1983):1-13. |
Liu et al. “Eradication of Large Colon Tumor Xenografts by Targeted Delivery of Maytansinoids.” PNAS. 93.18(1998):8818-8623. |
Logan et al. “Adenovirus Tripartite Leader Sequence Enhances Translation of mRNAs Late After Infection.” PNAS. 81.12(1984):3655-3659. |
Lowy et al. “Isolation of Transforming DNA: Cloning the Hamster Aprt Gene.” Cell. 22.3(1980):817-823. |
Macken et al. “The Value of a Database in Surveillance and Vaccine Selection.” International Congress Series. 219(2001):103-106. |
Maddox et al. “Elevated Serum Levels in Human Pregnancy of a Molecule Immunochemically Similar to Eosinophil Granule Major Basic Protein.” J. Exp. Med. 158(1983):1211-1226. |
Marks et al. “By-Passing immunization: Human Antibodies From V-Gene Libraries Displayed on Phage.” J. Mol. Biol. 222.3(1991):581-597. |
Martin et al. “Irreversible Coupling of Immunoglobulin Fragments to Preformed Vesicles.” J. Biol. Chem. 257.1(1982)286-288. |
Massey. “Catalytic Antibodies Catching On.” Nature. 328(1987):457-458. |
Mather et al. “Culture of Testicular Cells in Hormone-Supplemented Serum-Free Medium.” Ann. N.Y. Acad. Sci. 383(1982):44-68. |
Mather. “Establishment and Characterization of Two Distinct Mouse Testicular Epithelial Cell Lines,” Biol. Reprod. 23.1(1980)243-252. |
Milstein et al. “Hybrid Hybridomas and Their Use in Immunohistochemistry.” Nature. 305(1983):537-540. |
Morimoto et al. “Single-Step Purification of F(ab')2 Fragments of Mouse Monoclonal Antibodies (Immunoglobulins G1) by Hydrophobic Interaction High Performance Liquid Chromatography using TSKgel Phenyl-5PW.” J. Biochem. Biophys. Methods. 24.1-2(1992):107-117. |
Morrison et al. “Chimeric Human Antibody Molecules: Mouse Antigen-Binding Domains with Human Constant Region Domains.” PNAS. 81.21(1984):6851-6855. |
Morrison. “The Determination of the Exposed Proteins on Membranes by the Use of Lactoperoxidase.” Meth. Enzymol. 3(1974):103-109. |
Murakami et al. “Cell Cycle Regulation, Oncogenes, and Antineoplastic Drugs.” The Molecular Basis of Cancer. Mendelsohn et al., eds. Philadelphia: WB Saunders. (1995)1-17. |
Muster et al. “A Conserved Neutralizing Epitope on gp41 of Human Immunodeficiency Virus Type 1.” J. Virol. 67.11(1993):6642-6647. |
Myers et al. “Optimal Alignments in Linear Space.” CABIOS, 4.1(1988)11-17. |
Needleman et al. “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins.” J. Mol. Biol. 48.3(1970):443-453. |
Neuberger et al. “Recombinant Antibodies Possessing Novel Effctor Functions.” Nature. 312(1984):604-608. |
Pearson et al. “Improved Tools for Biological Sequence Comparison.” PNAS85(1988):2444-2448. |
Plückthun et al. “Expression of Functional Antibody Fv and Feb Fragments in Escherichia coli.” Meth. Enzymol. 178(1989):497-515. |
Plückthun. “Antibodies from Escherichia coil.” The Pharmacology of Monoclonal Activities. Rosenburg et al., eds. New York: Springer-Verlag. 113(1994):269-315. |
Porath. “Immobilized Metal Ion Affinity Chromatography.” Prot. Exp. Purif. 3.4(1992)263-281. |
Presta. “Antibody Engineering.” Curr. Op. Struct. Biol. 2.4(1992):263-281. |
Ravetch et al. “Fc Receptors.” Annu. Rev. Immunol. 9(1991).457-492. |
Rhodes et al. “Transformation of Maize by Electroporation of Embryos.” Methods Mol. Biol. 55(1995):121-131. |
Riechmann el al. “Reshaping Human Antibodies for Therapy.” Nature. 332(1988):323-327. |
Robinson. “Comparison of Label Tree with Valency Three.” J. Combin. Ther. Ser. B. 11(1971):105-119. |
Ruiz et al. “IMGT, the International ImMunoGeneTics Database.” Nucl. Acids Res. 28.1(2000):219-221. |
Saitou et al. “The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees.” Mol. Biol. Evol. 4.4(1987)406-425. |
Sanger et al. “DNA Sequencing with Chain-Terminating Inhibitors.” PNAS. 74.12(1977):5463-5467. |
Scatchard et al. “The Attractions of Proteins for Small Molecules and Ions.” Ann. N.Y. Acad. Sci. 51(1949):660-672. |
Shalaby et al. “Development of Humanized Bispecific Antibodies Reactive with Cytotoxic Lumphocytes and Tumor Cells Overexpressing the HER2 Protooncogene.” J. Exp. Med. 175(1992):217-225. |
Shibata et al. “Neutralizing Antibody Directed Against the HIV-1 Envelope Glycoprotein Can Completely Block HIV-1/SIV Chimeric Virus Infections of Macaque Monkeys.” Nat. Med. 5.2(1999):204-210. |
Shapes, “A Genetically Engineered Human IgG Mutant with Enhanced Cytolytic Activity.” J. Immunol. 148.9(1992)2918-2922. |
Smith et al. “Comparison of Biosequences.” Adv. Appl. Math. 2.4(1981):482-489. |
Stevens et al. “Structure and Receptor Specificity of the Hemagglutinin From an H5N1 Influenza Virus.” Science. 312(2006)404-410. |
Stevenson et al. “A Chimeric Antibody with Dual Fc Receptor Regions (bisFabFc) Prepared b Manipulations at the IgG Hinge.” Anti-Cancer Drug Des., 1989. |
Stites et al., ed. Basic and Clinical Immunology. Norwalk, CT: Appleton & Lange. 8(1994):71. |
Suresh et al. “Bispecific Monoclonal Antibodies from Hybrid Hybridomas.” Meth. Enzymol. 121(1986):210-228. |
Syvanen et al. “Preparation of 125l-Catalytic Subunit of Aspartate Transcarbamylase and Its Use in Studies of the Regulatory Subunit.” J. Biol. Chem. 248.11(1973):3762-3768. |
Takamatsu et al. “Expression of Bacterial Chloramphenicol Acetyltransferase Gene in Tobacco Plants Mediated by TMV-RNA.” EMBO J. 6.2(1987):307-311. |
Traunecker et al. “Bispecific Single Chain Molecules (Janusins) Target Cytotoxic Lumphocytes on HIV Infected Cells.” EMBO J. 10.12(1991):3655-3659. |
Tutt et al. “Trispecific F(ab')3 Derivatives that Use Cooperative Signaling via the TCR/CD3 Complex and CD2 to Activate and Redirect Resting Cytotoxic T Cells.” J. Immunol. 147.1(1991):60-69. |
Urlaub et al. “Isolation of Chinese Hamster Cell Mutants Deficient in Dihydrofolate Reductase Activity.” PNAS. 77.7(1980):4216-4220. |
Van Heeke et al. “Expression of Human Asparagine Synthetase in Escherichia coli.” J. Biol. Chem. 264.10(1989):5503-5509. |
Verhoeyen et al. “Reshaping Human Antibodies: Grafting an Antilysozyme Activity.” Science. 239(1988):1534-1536. |
Vitetta et al. “Redesigning Nature's Poisons to Create Anti-Tumor Reagents.” Science. 238(1987):1098-1104. |
Wigler at al. “Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells.” Cell. 11.1(1977):223-232. |
Wigler et al. “Transformation of Mammalian Cells with an Amplifiable Dominant-Acting Gene.” PNAS. 77.6(1980):3567-3570. |
Wilbur et al. “Rapid Similarity Searches of Nucleic Acid and Protein Data Banks.” PNAS. 80.3(1983):726-730. |
Wiley et al. “Structural Identification of the Antibody-Binding Sites of Hong Kong Influenza Haemagglutinin and Their Involvement in Antigenic Variation.” Nature. 289(1981):373-378. |
Winter et al. “The Expression of Heat Shock Protein and Cognate Genes During Plant Development.” Results Probl. Cell Differ. 17(1991):85-105. |
Wolff et al. “Monoclonal Antibody Homodimers: Enhanced Antitumor Activity in Nude Mice.” Cancer Res. 53(1993):2560-2565. |
Yaniv. “Enhancing Elements for Activation of Eukaryotic Promoters.” Nature. 297(1982):17-18. |
Yewdell et al. “The Antigenic Structure of the Influenza Virus A/PR/8/34 Hemagglutinin (H1 Subtype).” Cell. 31.2(1982):417-427. |
Zapata et al. “Engineering Linear F(ab')2 Fragments for Efficient Production in Escherichia coli and Enhanced Antiproliferative Activity.” Protein Eng. 8.10(1995):1057-1062. |
Number | Date | Country | |
---|---|---|---|
20120039899 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61373191 | Aug 2010 | US | |
61386235 | Sep 2010 | US |