The present application claims priority to Great Britain Patent Application No. 2018613.6, filed Nov. 26, 2020, and Great Britain Patent Application 2109187.1, filed Jun. 25, 2021, the disclosures of which are incorporated by reference into the present application in its entirety.
The present disclosure relates to an anti-ligature device for attachment to an edge of a door leaf.
In psychiatric hospitals and prisons, a problem exists that patients and inmates may wish to cause themselves harm using a ligature created by securing a rope or cable around an available anchor point in a room. One solution to this problem is to design room fixtures and fittings such that they do not provide such anchor points. However, in some cases this is difficult or impossible. An example of this is door fittings. Individuals may try to create a ligature by securing a rope or cable around an edge of a door leaf.
One solution is to attach a device which includes a ribbon switch to an edge (e.g. top edge) of a door leaf. When a ligature is secured around the device, the ribbon switch is caused to close, thereby completing an electrical circuit and activating an alert. Accordingly, while the door leaf may itself remain a potential ligature hazard, safety is nonetheless improved because a nearby prison officer or healthcare professional is alerted when an individual attempts to secure a ligature around the door leaf. Unfortunately, however, this solution is imperfect. Sensitivity of the ligature detection is non-adjustable. Additionally, the ligature detection can in some cases be unreliable.
The present disclosure has been developed to address at least some of the problems noted above.
In a first aspect there is provided an anti-ligature device for attachment to an edge of a door leaf, the anti-ligature device comprising a proximity sensor arranged to detect a ligature secured around the anti-ligature device. For example, the proximity sensor may be arranged to detect a weight being suspended from a ligature secured around the anti-ligature device.
When the anti-ligature device is secured along an edge (e.g. top edge, bottom edge, or closing edge) of a door leaf, it enables a ligature secured around the edge of the door leaf to be detected. By using a proximity sensor, rather than a ribbon switch (or indeed any type of mechanical switch), sensitivity is improved. In fact, because the output of the sensor may be non-binary, the sensitivity of the device may be adjustable. That is to say, the sensitivity may be user-controllable, such that the anti-ligature device can be calibrated once affixed to a door leaf. This improves reliability. The fact that there are no moving parts to the proximity sensor itself also improves reliability and durability.
The proximity sensor may be a sensor that is configured to detect the presence of a nearby object (for example a target) without requiring any physical contact between the sensor and the nearby object. The proximity sensor may be any of an electromagnetic proximity sensor (for example infrared proximity sensor); an inductive proximity sensor; a capacitive proximity sensor; or a photoelectric proximity sensor.
The proximity sensor may be configured to operate in combination with a target. For example, the proximity sensor may be configured to detect changes in proximity of the target (e.g. changes in distance between the target and the proximity sensor). In some examples, the anti-ligature device may comprise a target opposing the proximity sensor, wherein the target is moveable relative to (e.g. towards or away from) the proximity sensor when a ligature is secured around the anti-ligature device, and wherein the proximity sensor is configured to detect a change in proximity of the target. Where the target is moveable towards the proximity sensor when a ligature is secured around the device, the target may be resiliently biased away from the proximity sensor. Similarly, where the target is moveable away from the proximity sensor when a ligature is secured around the device, the target may be resiliently biased towards the proximity sensor.
Where the proximity sensor is a capacitive proximity sensor or a photoelectric proximity sensor, the target may comprise a range of materials, such as plastic, ceramic, and/or metal. The target may be plastic to save construction costs; or may be metal for durability. Where the proximity sensor is an electromagnetic (e.g. infrared) proximity sensor, the target may be formed of any material that is opaque to the electromagnetic radiation used by the proximity sensor. For example, the target may be metal. Where the proximity sensor is an inductive proximity sensor, the target may be an electrical conductor, e.g. a metal target, such as an aluminium target. As the reader will understand, other metals such as steel or copper could be used for the target.
The target may be moveable between a first position in which it is separated from the proximity sensor by a first distance, and a second position in which it is separated from the proximity sensor by a second distance. The proximity sensor may be configured to detect when the separation between the target and the proximity sensor crosses a predetermined threshold distance. One of the first and second distances may be larger than the threshold distance, and the other of the first and second distances may be smaller than the threshold distance. The target may be resiliently biased into one of the first position and the second position. The target may be moveable into the other of the first position and the second position when a ligature is secured around the anti-ligature device.
For example, the target may be moveable between a first position in which it is spaced from the proximity sensor, and a second position in which the target is substantially adjacent the proximity sensor. The target may be resiliently biased into the first position. The target may be moveable into the second position when a ligature is secured around the anti-ligature device.
The travel of the target may be limited. For example, the first and second positions may comprise respective limits to the target's travel. For example, the anti-ligature device may comprise a surface for preventing movement of the target past the first position. Abutment between the first and second parts may prevent movement of the target past the second position.
The proximity sensor may be housed within the anti-ligature device. The target may be housed within the anti-ligature device. Accordingly, tampering of the anti-ligature device may be prevented, thus improving safety. Durability may also be improved.
The anti-ligature device may be compressible to thereby move the target relative to the proximity sensor. For example, anti-ligature device may be configured such that a ligature being secured around the anti-ligature device causes a compression of the anti-ligature device, thereby moving the target relative to the proximity sensor as described above. In some examples, the anti-ligature device may comprise a compressible enclosure, wherein the proximity sensor is attached to an inner surface of the enclosure, and wherein the target is attached to the inner surface of the enclosure so as to oppose the proximity sensor. In some examples, a portion of the enclosure opposing the proximity sensor may comprise the target.
The anti-ligature device may comprise a first part for attachment to a door leaf, and a second part coupled with the first part; wherein the proximity sensor is connected to one of the first part and the second part; and the other of the first part and the second part comprises the target.
In some examples, the anti-ligature device which comprises a first part for attachment to a door leaf; a second part coupled with the first part; and a proximity sensor attached to the first part; wherein the second part comprises a target arranged to oppose the proximity sensor; and wherein the second part is moveable relative to (e.g. towards and away from) the first part. The second part may be configured to move relative to the first part when a ligature is secured around the device. Movement of the second part relative to the first part may thereby be detectable by the proximity sensor.
In some examples, the target may be attached to the second part. In other examples, the second part may comprise the target. For example, where the second part is plastic, it may constitute a suitable target for use with a capacitive proximity sensor or a photoelectric proximity sensor. Where the second part is metal, it may constitute a suitable target for use with any type of proximity sensor. In one example, an inductive proximity sensor is used in combination with a second part that is metal, e.g. aluminium.
The first and second parts may collectively form an enclosure within which the target and the proximity sensor are located.
The second part may be configured to float relative to the first part. Accordingly, the second part may be moveable relative to (e.g. towards and away from) the first part. Accordingly, the target is thereby moveable relative to the proximity sensor (e.g. between the first and second positions).
The second part may be resiliently biased into one of the first position and the second position. The second part may be moveable into the other of the first position and the second position when a ligature is secured around the device (or when a weight is suspended from a ligature secured around the device). That is to say, the second part may be resiliently biased into a position in which the target is in one of the first position and the second position; and may be moveable into a position in which the target is in the other of the first position and the second position.
In an example, the second part is resiliently biased into the first position, i.e. into a position in which the target is spaced from the proximity sensor. The second part is then moveable into the second position, i.e. into a position in which the target adjacent the proximity sensor.
The second part may be coupled to the first part in such a way that its travel relative to the first part (and hence the target's travel relative to the proximity sensor) is limited. In particular, the second part may be coupled to the first part such that the second part cannot move further from the first part than the first position.
The anti-ligature device may be elongate. For example, each of the first and second parts may be elongate. The device may thereby be configured for attachment along at least a portion of an edge of a door leaf.
The anti-ligature device may comprise an opening for receiving a lock element. For example, the second part may comprise an opening for receiving a lock element. The first part may also comprise an opening for receiving the lock element. The opening in the second part may be aligned with the opening in the first part. The lock element may be an electromagnetic lock element (e.g. electromagnetic lock plate), or a mechanical lock element (e.g. lock bolt).
The anti-ligature device may comprise an electromagnetic lock element. The electromagnetic lock element may extend through an opening in the second part. The electromagnetic lock element may be coupled to the first part. Alternatively, the anti-ligature device may comprise openings in both the first part and the second part, to receive a mechanical lock element therethrough.
The anti-ligature device may comprise more than one proximity sensor, such as two proximity sensors, or four proximity sensors, or more than four proximity sensors. For example, the device may comprise a first proximity sensor at a first end thereof, and a second proximity sensor at a second end thereof. The device may comprise a first proximity sensor at a first lateral edge thereof, and a second proximity sensor at a second lateral edge thereof. In some examples, the device may comprise an inductive pressure sensor at each corner of the anti-ligature device. Accordingly, the anti-ligature device may comprise a first target located at the first end of the device to oppose the first proximity sensor; and a second target located at the second end of the device to oppose the second proximity sensor. In examples in which the second part of the anti-ligature device is used in lieu of a separate target, the second part may comprise both the first and second targets.
The (or each) proximity sensor may be configured to produce an analog electrical output having a signal characteristic (e.g. amplitude and/or frequency) that is indicative of a separation distance from the target. For example, an amplitude of the electrical output may be inversely proportional to the separation distance from the target. That is to say, as the separation distance decreases, the amplitude of the electrical output may increase. In another example, the proximity sensor may comprise internal circuitry configured to produce a binary output indicative of the separation distance. The binary output may be an electrical output. Alternatively, the binary output may be a provided by a LED. Where the output is a binary output, the proximity sensor may be configured to provide a first binary output (e.g. ‘off’ or ‘zero’) when the separation distance from the target is equal to or greater than a threshold distance; and to provide a second binary output (e.g. ‘on’ or ‘one’) when the separation distance from the target is less than the threshold distance. Where the proximity sensor is configured to provide a binary output, the threshold distance may be user configurable.
The (or each) proximity sensor may be connected to an alarm system. The alarm system may be configured to receive and process the output from the (or each) proximity sensor. The alarm system may be configured to activate an alarm when at least one of the or each proximity sensors indicates that a ligature is secured around the anti-ligature device. For example, the alarm system may be configured to activate an alarm when the output from at least one of the or each proximity sensors is indicative of the separation distance from the target being below the threshold distance.
In some examples, the alarm system may be housed within the anti-ligature device. In other examples, the alarm system may be external from the anti-ligature device. Where the alarm system is external to the anti-ligature device, it may be connected to the anti-ligature device by a wired connection, or a wireless connection. For example, the wireless connection may be a wireless personal area network “PAN” connection (such as Bluetooth), a wireless local area network “LAN” connection (such as WiFi), or a wireless wide area network “WAN” connection (such as Cellular).
In some examples, the sensitivity of the alarm may be user adjustable by changing the threshold at which the alarm is activated. The alarm may comprise a notification, e.g. an SMS message, email, or other computer notification. In other examples, the alarm may comprise a buzzer. In other examples, the alarm may comprise a light, for example an LED. Where the alarm system is separate from the anti-ligature device, it may be located at a remote location, for example a nurses' station.
In a second aspect there is provided a door leaf comprising an anti-ligature device according to the first aspect. The anti-ligature device may extend along at least a portion of the edge. In some examples, the anti-ligature device may extend along substantially the entire edge. The door leaf may comprise a first anti-ligature device according to the first aspect attached to a first edge thereof; and a second anti-ligature device according to the first aspect attached to a second edge thereof. In another example, the door leaf may comprise a first anti-ligature device according to the first aspect attached to a first edge thereof; a second anti-ligature device according to the first aspect attached to a second edge thereof; and a third anti-ligature device according to the first aspect attached to a third edge thereof. A hinge may be attached to a free edge (e.g. the fourth edge) of the door leaf.
In a third aspect there is provided a door system comprising a door leaf pivotally attached to a door frame, and further comprising an anti-ligature device according to the first aspect attached to one of a top edge, bottom edge, and closing edge, of the door leaf. The door system may comprise a first anti-ligature device according to the first aspect attached to a first edge of the door leaf; and a second anti-ligature device according to the first aspect attached to a second edge of the door leaf. The door system may further comprise a third anti-ligature device according to the first aspect attached to a third edge of the door leaf. The door leaf may be pivotally attached to the door frame by a hinge along the fourth edge.
The first edge may comprise one of the top edge, bottom edge, and closing edge. The second edge may comprise another of the top edge, bottom edge, and closing edge. The third edge may comprise the last of the top edge, bottom edge, and closing edge.
Examples of the present disclosure will now be described, by way of example only, with reference to the accompanying figures, in which:
Like reference numerals are used for like components throughout the drawings and detailed description.
A piece of resiliently deformable foam 114 is located within the channel 110, and arranged to bias the second part 106 away from the first part 104. Accordingly, in its rest configuration (i.e. in which no external forces are applied, such as by a ligature), as illustrated in
Attached to the first part 104 of the anti-ligature device 100 are a first inductive proximity sensor 116A, and a second inductive proximity sensor 116B. The inductive proximity sensors 116A, 116B face the second part 106. The inductive proximity sensors 116A, 116B are thus configured to detect the separation distance from the second part 106. Moreover, they are configured to detect changes in the separation distance.
In effect, the second part 106 provides an inductive target for the inductive proximity sensors 116A, 116B to detect. The second part 106 is aluminium, so that it is detectable by the inductive proximity sensors 116A, 116B. As the reader will understand, any conductor could be used for the target/second part. Thus, when the second part 106 moves towards the inductive proximity sensors 116A, 116B, the inductive sensors can detect the change in separation distance from the second part 106. This is described in more detail below, in relation to
Referring still to
Each of the first part 104 and the second part 106 have a uniform cross-section. They are aluminium, and formed by aluminium extrusion.
As the skilled person will appreciate, the anti-ligature device 100 can have a variety of dimensions, dependent on the size of the door leaf 102 to which it is to be fitted. Nonetheless, dimensions of an example anti-ligature device 100 will now be provided for illustrative purposes.
The anti-ligature device 100 of
The anti-ligature device 100 has an outer width (in the horizontal direction when fitted to a door) of 44 mm. Thus, the pressure monitor having these dimensions is particularly suited for attachment to a door leaf having an edge that is 1 m long, and a thickness of 44 mm.
In the uncompressed configuration as shown in
Referring now to
When the force F1 or F2 is removed, the foam will return to its original shape, thereby returning the anti-ligature device to the configuration shown in
The inductive proximity sensor(s) 116 used may be IFFM 08P17A6/L inductive sensors from Baumer. The inductive proximity sensor 116 is configured to produce a binary output. In particular, each sensor is configured to activate an LED when the separation distance from the target drops below 2 mm. As the reader will understand, different proximity sensors could equally be used. Accordingly, if the separation distance between the second part 106 and any one of the inductive proximity sensors 116A-116H of
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other implementations will be apparent to those of skill in the art upon reading and understanding the above description. Although the present disclosure has been described with reference to a specific example implementation, it will be recognized that the disclosure is not limited to the implementations described, but can be practiced with modification and alteration insofar as such modification(s) and alteration(s) remain within the scope of the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense. The scope of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Date | Country | Kind |
---|---|---|---|
2018613.6 | Nov 2020 | GB | national |
2109187.1 | Jun 2021 | GB | national |