This invention relates to antimicrobial rebonded carpet underlay and more particularly to a method of making such underlay by mixing an anti-microbial agent in binder used to make the rebonded carpet underlay.
Carpet, especially wall-to-wall carpet, is normally installed with an underlay, often in the form of a foam pad or cushion. Moisture, dirt, food particles, and other debris tend to filter through the carpet to the pad. These conditions provide a breeding ground for various bacteria and mold that may produce undesirable odors, cause degradation of the carpet and/or pad, and/or contribute to a poor indoor air quality environment for occupants of the premises.
A typical carpet pad consists of ground polyurethane foam particles of a specific size range that are rebonded back together to form a continuous foam pad of various densities and thickness. Typically, carpet pad ranges in density from four to eight pounds per cubic foot. Rebonded pad is made from recycled polyurethane foam, typically from scraps of foam reclaimed from padding used in furniture, bedding, and automobile seating. The scraps are often of different sizes and colors. The rebonded foam is produced by grinding or chopping the scraps, mixing the chopped scraps with a binder, curing the binder, and slicing the resulting block of rebonded foam particles into a desired pad thickness. The binder may typically form ten percent of the weight of the final rebonded pad. Various films or webs may be bonded to one or both sides of the pad for various purposes.
A method of making antimicrobial rebonded carpet pad includes mixing zinc pyrithione with a polyol to form an antimicrobial polyol mixture concentrate, and blending the antimicrobial polyol mixture concentrate with a binder stream used to make rebonded carpet pad.
In an embodiment, the percentage of zinc pyrithione mixed with the polyol and the addition ratio of the antimicrobial polyol mixture concentrate with the binder stream are selected to provide an overall concentration of zinc pyrithione in the binder of at least about 7500 ppm.
In one embodiment, an antimicrobial carpet underlay comprises a rebonded pad comprising particles of foam joined together with a binder prepared according the described method.
In one embodiment, an effective biocide, or antimicrobial, compound known as zinc pyrithione (e.g. the material sold under the trademark ZINC OMADINE by Arch Chemicals Inc.) is incorporated into rebonded carpet pad 12 by the following method. The chemical name for this compound is Bis(1-hydroxy-2(1H)-pyridinethionato-O,S)-(T-4)Zinc. The zinc pyrithione in powdered form is mixed with a triol polyol of a molecular weight typically ranging from 3000 to 3500 to form a 20% strength antimicrobial/polyol mixture concentrate. Then, the 20% antimicrobial/polyol mixture concentrate is added to a binder stream at a 3.90% to 6.50% addition level to render a zinc pyrithione concentration of between 7500 to 12500 ppm in the binder 16. The antimicrobial/polyol mixture concentrate and binder stream are preferably held at between about 90 and about 100 degrees F. during mixing and use. The binder 16 is typically composed of ⅓ aromatic oil, ⅓ triol polyol, and ⅓ polymeric MDI. The binder is added to ground foam particles, mixed together, compressed, injected with steam, and dried in the form of a large block of rebonded foam particles. The block is then sliced into thicknesses suitable for carpet pad, e.g. three-eighth to five-eighth inch, to produce the rebonded foam pad 12. The binder to ground foam weight ratio is approximately 1:10. The final concentration of Zinc Pyrithione in the rebonded pad 12 is therefore from about 750 ppm to about 1250 ppm.
If desired, the particular concentration of zinc pyrithione in the antimicrobial/polyol mixture concentrate may be selected to be more or less than the 20% concentration used in this embodiment. The addition level of the antimicrobial/polyol mixture concentrate in the binder 16 may then be adjusted to achieve a zinc pyrithione concentration of at least about 7500 ppm and preferably between about 7500 to about 12500 ppm in the binder 16.
If desired, a binder 16 to ground foam weight ratio of more or less than 1:10 may be used. If other ratios are used, the particular concentration of zinc pyrithione in the antimicrobial/polyol mixture concentrate and/or the addition level of the antimicrobial/polyol mixture concentrate in the binder 16 may then be adjusted to achieve a final concentration of Zinc Pyrithione in the rebonded pad 12 from about 750 ppm to about 1250 ppm.
During production of rebonded pad 12, a variable speed Watson Marlow pump 26 was used to flow the antimicrobial/polyol mixture concentrate from the run tank 24 at a controllable rate. The rate is controlled by a control panel 28 and a variable frequency drive 30. The discharge side of pump 26 is connected to the vacuum side of a binder pump 32. A tank 34 of binder also has an outlet connected to the vacuum side of a binder pump 32. The discharge side of pump 32 is connected to a static mixer 36. The outlet 38 of mixer 36 is coupled to a blender where polyurethane particles 14 are mixed with binder 16 to produce the finished rebonded polyurethane pad 12.
During the operation of the system of
It is sometimes desirable to include laminating film 18 on one or both surfaces of carpet pad 12. For example, such a film 18 may facilitate laying and stretching of carpet by allowing the carpet to slide easily on top of the pad 12 and avoiding undesirable movement or buckling of the pad 12. The film may also prevent fluids spilled on carpet from penetrating into the pad 12. In one embodiment of the present invention, an antimicrobial laminating film 18 is laminated onto one or both surfaces of a carpet pad. The carpet pad may or may not include an antimicrobial compound as disclosed above.
The anti-microbial laminating film 18 of this embodiment inhibits the growth of certain bacteria and fungus when used in combination with prime polyurethane foam pad or rebonded polyurethane foam pad 12 as carpet underlay. The anti-microbial film may be thermally laminated to the top and/or bottom surfaces of prime polyurethane foam pad or re-bonded polyurethane flexible foam pad 12 where it acts as a barrier to inhibit the growth of microbes that accumulate on the surfaces of carpet underlay. This film 18 may also inhibit the growth of microorganisms in other products where this film can be used as a lamination barrier.
In this embodiment, a 0.45 to 0.50 mil monolayer blown film 18 includes between 500 and 1500 ppm of the antimicrobial compound zinc pyrithione (e.g. the material sold under the trademark ZINC OMADINE by Arch Chemicals Inc.). The chemical name for this compound is Bis(1-hydroxy-2(1H)-pyridinethionato-O,S)-(T-4)Zinc. The zinc pyrithione powder is incorporated at 10% by weight into a LLDPE, linear low density polyethylene, resin concentrate supplied by PolyChem Alloy, Inc. under the trademark POLYSEPT 554Z. The chemical description of the resin concentrate is Mercaptopyridine-N-oxide in Polypropylene. This resin concentrate has a specific melt index of 20 grams/10 mins. and 0.93 density. About 1% to about 3% by weight of this concentrate is then blended with a LLDPE/Copolymer resin mixture. Due to thermal breakdown of zinc pyrithione during processing of the film, the initial 10% concentration of zinc pyrithione in the concentrate may be effectively reduced to less than 6%. After mixing with the resin mixture and processing it into a film, the net effective concentration of zinc pyrithione in the processed film is about 500 ppm to 1500 ppm. Suitable copolymer resins may be EVA, EMA, or EMAA. The copolymer resin consists of approximately 60-70% by weight of the total mixture. The remaining mixture is 30-40% LLDPE by weight, including the 1-3% LLDPE concentrate treated with zinc pyrithione. The blended resins may then be extruded at between 450 and 550 degrees F. with a blow up ratio, i.e. bubble diameter to die diameter, of between 1.8 and 2.5:1. It is preferred that the extrusion temperature be kept below 500 degrees F. to minimize thermal breakdown of the zinc pyrithione.
It is apparent that zinc pyrithione powder may be incorporated at more or less than 10% by weight into the resin concentrate. If other addition levels are selected, the percentage of the concentrate blended with the LLDPE/Copolymer resin mixture may be adjusted to achieve a net effective concentration of zinc pyrithione in the processed film of from about 500 ppm to 1500 ppm.
The anti-microbial treated film may be thermally laminated (e.g. at about 250-450 degrees F., 0.5 sec dwell time) to one or both sides of a prime polyurethane foam pad or rebonded pad 12 which may typically be from about three-eighth inch to about five-eighth inch thick or other desired thickness. Other laminating methods may be used if desired, e.g. by use of an adhesive. The anti-microbial film may be laminated to an anti-microbial treated pad or non-anti-microbial treated pad. The anti-microbial film may also be laminated to another anti-microbial treated or untreated film for lamination to anti-microbial treated pad or non-anti-microbial treated pad.
Biocidal effectiveness of the rebonded carpet pad 12 and/or film 18 according the present invention may be determined by measuring inhibition of growth of bacterial and/or fungus using AATCC (American Association of Textile Chemists and Colorists) 174, ASTM E2180-1, and ASTM D 3273 test protocols compared to non-treated control standards. The AATCC 174 protocol was developed for determining the antimicrobial activity of new carpet materials.
A number of specimens of carpet underlay 10 were made by methods described above, with various concentrations of zinc pyrithione in the binder 16 and film 18 for testing to determine levels that provide an effective antimicrobial effect. The specimens included a film 18 on one side as illustrated in
The AATCC 174 test method includes three parts. Part I is a qualitative test for antibacterial activity. Test specimens are placed into contact with a nutrient agar which has been streaked with a bacterial culture. The specimens are then incubated. After incubation, a clear area of interrupted growth underneath and along the sides of the test specimen indicates antibacterial activity of the specimen. Standard strains of bacteria are used, with Staphylococcus aureus and Klebsiella pneumoniae being the representative organisms.
In the AATCC 174, Part I tests various washed and unwashed specimens were tested. An unwashed foam side specimen with 751 ppm of zinc pyrithione passed the test with a one millimeter zone of inhibition for Klebsiella pneumoniae and a two millimeter zone of inhibition for Staphylococcus aureus. All unwashed and washed foam side specimens with a concentration of 1096 ppm or more of zinc pyrithione inhibited the growth of Klebsiella pneumoniae from underneath and along the sides of the specimen.
The AATCC 174, Part II test provides a quantitative procedure for the evaluation of the degree of antibacterial activity. Test specimens are inoculated with the test microorganisms. After incubation, the bacteria are eluted from specimens by shaking in 100 milliliters of liquid. The number of bacteria present in the liquid is determined and the percent reduction produced by the specimen is calculated.
In the AATCC 174, Part II tests, washed foam side specimens containing 751 and 1096 ppm of zinc pyrithione provided a 90% reduction in the numbers of both Staphylococcus aureus and Klebsiella pneumoniae. In all unwashed and washed film and foam side specimens containing a concentration of 500 ppm or more of zinc pyrithione in the film and 1096 ppm of zinc pyrithione in the pad, there was a reduction of at least 66% in Staphylococcus aureus with an average reduction of 92%.
The AATCC 174, Part III protocol provides a qualitative test for antifungal activity. Specimens are subjected to the growth of a common fungus, Aspergillus niger, on Sabouraud Dextrose agar. Prewet specimens are inoculated and incubated at 28 degrees C. for seven days. Specimens are then assessed for growth of the fungus.
In the AATCC 174, Part III tests, washed and unwashed foam side samples with a concentration of 1096 ppm of zinc pyrithione in the pad produced no observable fungus growth. No growth was observed on washed and unwashed film side samples when the concentration of zinc pyrithione in the film was 1500 ppm or greater.
Inhibitory mold activity was also tested by the ASTM E2180-01 test method. Good inhibitory activity for Aspergillus niger was observed when film side specimens had a total minimum combined concentration of 1600 ppm of zinc pyrithione. The total combined concentration is the sum of the concentration in the pad 12 of a specimen and the concentration in the film 18 of the specimen. The tests indicate that a minimum of 500 ppm may be preferred in the film 18, with a preferred complement minimum of 1100 ppm in the pad 12. Alternatively, a minimum concentration of 750 ppm may be preferred in the pad 12 with a preferred complement minimum of 850 ppm in the film 18. Good results were achieved for some, but not all, specimens with a total combined concentration of 1251 ppm, i.e. 751 ppm in the pad 12 and 500 ppm in the film 18. Therefore, the preferred minimum combined concentration is about 1600 ppm.
Mold susceptibility tests were also performed under the ASTM D3273 test method. No Aspergillus niger mold colonization was observed on film 18 side specimens when the specimens had a total minimum combined concentration of about 1600 ppm zinc pyrithione. The tests indicate that a minimum of 500 ppm may be preferred in the film 18, with a preferred complement minimum of 1100 ppm in the pad 12. Alternatively, a minimum concentration of 750 ppm may be preferred in the pad 12 with a preferred complement minimum of 850 ppm in the film 18.
The above described tests indicate that an effective antimicrobial carpet underlay 10 can be made by incorporating 7500 to 12500 ppm of zinc pyrithione into binder used to bind foam particles to make rebonded carpet pad. The net concentration in the foam pad 12 is from 750 to 1250 ppm of zinc pyrithione when the binder to foam weight is 1:10. If different ratios of binder to foam are used, it is preferred to adjust the concentration in the binder stream to achieve at least about 750 ppm of zinc pyrithione in the final foam pad 12.
The tests also indicate that an effective antimicrobial film can be made by incorporating 500 to 1500 ppm of zinc pyrithione in the film 18. As noted above, the initial concentration is preferably adjusted to account for thermal degradation which occurs during film processing. Thus, the initial ten percent concentration of zinc pyrithione in the resin concentrate may be reduced to an effective five to six percent after processing.
The tests also show that when both a foam pad 12 and a film 18 including a biocide are combined to form a carpet underlay, lower concentrations of zinc pyrithione may be used than may be necessary if only the pad 12 or the film 18 contains the biocide. In general, in a carpet underlay having a biocide treated pad 12, but an untreated film 18, the pad 12 preferably has a biocide concentration near the upper end of the range tested, e.g. at least about 1100 to 1250 ppm of zinc pyrithione. For an underlay having an untreated pad 12, and a treated film 18, the film 18 preferably has a biocide concentration near the upper end of the range tested, e.g. at least about 1100 to 1500 ppm of zinc pyrithione. When both the pad 12 and film 18 are treated, it is preferred that the combined concentrations for foam pad 12 and film 18 be at least about 1600 ppm.
In the above disclosure, the concentrations of biocide in the foam pad 12 and film 18 have been discussed in terms of ranges having a lower limit and an upper limit. It is apparent that it is preferred to include concentrations at or above the lower limits to achieve an effective antimicrobial activity in the products. That is, concentrations above the ranges tested should also be effective. Concentrations should be kept below a level at which the biocide may affect the mechanical integrity of the product. Since the biocide is a relatively high cost part of the product, normal practice should be to avoid using more of the biocide than is needed to achieve effective biocidal or antimicrobial activity.
The particular choice of an effective amount of the biocide also depends upon the particular application in which the carpet pad will be used. In some applications, there is a requirement that carpet products exhibit effective antimicrobial activity after being washed. For those applications, it may be desirable to use a concentration at or near the upper limits of the ranges given above. In the tests reported above, the specimens at the upper ends of the ranges provided effective antimicrobial activity after washing. If the application does not require washing, a lower concentration of biocide provides an effective biocidal activity.
In the above description of making the rebonded foam pad 12, zinc pyrithione was initially mixed in powder form with a polyol. The resulting mixture is basically a suspension of particles in a liquid. As noted in the description of
While the present invention has been disclosed in terms of specific structures, chemical compositions and mixtures, and methods of making carpet underlay, it is apparent that various changes and substitutions of materials and steps may be made within the scope of the present invention as defined by the appended claims.
While various embodiments in accordance with the principles disclosed herein have been shown and described above, modifications thereof may be made by one skilled in the art without departing from the spirit and the teachings of the disclosure. The embodiments described herein are representative only and are not intended to be limiting. Many variations, combinations, and modifications are possible and are within the scope of the disclosure. Accordingly, the scope of protection is not limited by the description set out above, but is defined by the claims which follow, that scope including all equivalents of the subject matter of the claims. Furthermore, any advantages and features described above may relate to specific embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages or having any or all of the above features.
Additionally, the section headings used herein are provided for consistency with the suggestions under 37 C.F.R. 1.77 or to otherwise provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Field of the Invention,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a limiting characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. The term “comprising” as used herein is to be construed broadly to mean including but not limited to, and in accordance with its typical usage in the patent context, is indicative of inclusion rather than limitation (such that other elements may also be present). In all instances, the scope of the claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
This is a Continuation Application of co-pending U.S. patent application Ser. No. 11/627,610, filed Jan. 26, 2007, entitled “Anti-Microbial Carpet Underlay and Method of Making,” which is in turn a Divisional Application of U.S. patent application Ser. No. 10/840,309, filed May 6, 2004, entitled “Anti-Microbial Carpet Underlay and Method of Making,” which claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 60/506,688 filed Sep. 26, 2003 and entitled “Anti-Microbial Carpet Pad and Method of Making,” all of which are hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1474423 | Maynard | Nov 1923 | A |
1658178 | Wenrich | Feb 1928 | A |
1721861 | Oden | Jul 1929 | A |
1793666 | Baldwin | Feb 1931 | A |
1872846 | Thiele | Aug 1932 | A |
1971439 | Arnold | Aug 1934 | A |
2069755 | Foster | Feb 1937 | A |
2118076 | Farr | May 1938 | A |
2160729 | Graham et al. | May 1939 | A |
2196387 | Elmendorf | Apr 1940 | A |
2430934 | Kemmler et al. | Nov 1947 | A |
2590032 | Petry | Mar 1952 | A |
2622039 | Bingell | Dec 1952 | A |
2638638 | McBride | May 1953 | A |
2809971 | Bernstein et al. | Oct 1957 | A |
2957793 | Dickey | Oct 1960 | A |
3172072 | Willy | Mar 1965 | A |
3262134 | Bramble, Jr. | Jul 1966 | A |
3360422 | Desch | Dec 1967 | A |
3385751 | Willard et al. | May 1968 | A |
3455772 | Mason et al. | Jul 1969 | A |
3497416 | Critchfield et al. | Feb 1970 | A |
3516894 | Slosberg | Jun 1970 | A |
3546060 | Hoppe et al. | Dec 1970 | A |
3576706 | Baumann et al. | Apr 1971 | A |
3619315 | Carrack et al. | Nov 1971 | A |
3620890 | Kemmler | Nov 1971 | A |
3664863 | Dijkhuizen et al. | May 1972 | A |
3713868 | Gordon et al. | Jan 1973 | A |
3726624 | Schwarz | Apr 1973 | A |
3804699 | Johnson | Apr 1974 | A |
3804700 | Hoey | Apr 1974 | A |
3821065 | Copeland et al. | Jun 1974 | A |
3886941 | Duane et al. | Jun 1975 | A |
3891487 | Hoey | Jun 1975 | A |
3911186 | Trotman | Oct 1975 | A |
3933548 | Anderson, Jr. et al. | Jan 1976 | A |
4015041 | Koschatzky et al. | Mar 1977 | A |
4037013 | Sprague | Jul 1977 | A |
4073998 | O'Connor | Feb 1978 | A |
4078293 | Aine | Mar 1978 | A |
4083324 | Krumweide | Apr 1978 | A |
4088805 | Wiegand | May 1978 | A |
4096303 | Doerfling | Jun 1978 | A |
4175154 | Faust et al. | Nov 1979 | A |
4185146 | Burke | Jan 1980 | A |
4187337 | Romageon | Feb 1980 | A |
4195634 | DiSalvo et al. | Apr 1980 | A |
4199635 | Parker | Apr 1980 | A |
4234649 | Ward | Nov 1980 | A |
4237181 | Tanabe et al. | Dec 1980 | A |
4251587 | Mimura et al. | Feb 1981 | A |
4262051 | Welz et al. | Apr 1981 | A |
4283456 | Creasy | Aug 1981 | A |
4289818 | Casamayor | Sep 1981 | A |
4329386 | Samowich | May 1982 | A |
4336293 | Eiden | Jun 1982 | A |
4401770 | Hance | Aug 1983 | A |
4405668 | Wald | Sep 1983 | A |
4409275 | Samowich | Oct 1983 | A |
4421807 | Clausing et al. | Dec 1983 | A |
4423694 | Senneville | Jan 1984 | A |
4463053 | Brinegar | Jul 1984 | A |
4482593 | Sagel et al. | Nov 1984 | A |
4500591 | Peltier et al. | Feb 1985 | A |
4510201 | Takeuchi et al. | Apr 1985 | A |
4533588 | Kraft | Aug 1985 | A |
4579764 | Peoples, Jr. et al. | Apr 1986 | A |
4647484 | Higgins | Mar 1987 | A |
4658554 | Riley et al. | Apr 1987 | A |
4710415 | Slosberg et al. | Dec 1987 | A |
4766031 | Kohl | Aug 1988 | A |
4804425 | Hoffmann et al. | Feb 1989 | A |
4824498 | Goodwin et al. | Apr 1989 | A |
4828908 | Park et al. | May 1989 | A |
4844765 | Reith | Jul 1989 | A |
4853280 | Poteet | Aug 1989 | A |
4933011 | Rei | Jun 1990 | A |
4957798 | Bogdany | Sep 1990 | A |
4966609 | Callinan et al. | Oct 1990 | A |
5037690 | van der Kooy | Aug 1991 | A |
5045389 | Campagna | Sep 1991 | A |
5082705 | Rose | Jan 1992 | A |
5104712 | Walters | Apr 1992 | A |
5108094 | Quinn et al. | Apr 1992 | A |
5110843 | Bries et al. | May 1992 | A |
5114984 | Branch et al. | May 1992 | A |
5120587 | McDermott, III et al. | Jun 1992 | A |
5215805 | Pavia, Jr. | Jun 1993 | A |
5230940 | Bohm et al. | Jul 1993 | A |
5262735 | Hashimoto et al. | Nov 1993 | A |
5295883 | Moran | Mar 1994 | A |
5312888 | Nafziger et al. | May 1994 | A |
5314987 | Kim et al. | May 1994 | A |
5346278 | Dehondt | Sep 1994 | A |
5416142 | Bush et al. | May 1995 | A |
5460870 | Arthurs | Oct 1995 | A |
5501895 | Finley et al. | Mar 1996 | A |
5503840 | Jacobson et al. | Apr 1996 | A |
5531849 | Collins et al. | Jul 1996 | A |
5536556 | Juriga | Jul 1996 | A |
5543193 | Tesch | Aug 1996 | A |
5565259 | Juriga | Oct 1996 | A |
5578363 | Finley et al. | Nov 1996 | A |
5582906 | Romesberg et al. | Dec 1996 | A |
5601910 | Murphy et al. | Feb 1997 | A |
5645664 | Clyne | Jul 1997 | A |
5653099 | MacKenzie | Aug 1997 | A |
5681637 | Kessler et al. | Oct 1997 | A |
5707903 | Schottenfeld | Jan 1998 | A |
5736466 | Wierer et al. | Apr 1998 | A |
5762650 | Ruggiero et al. | Jun 1998 | A |
5762735 | Collins et al. | Jun 1998 | A |
5763040 | Murphy et al. | Jun 1998 | A |
5765318 | Michelsen | Jun 1998 | A |
5804262 | Stevens et al. | Sep 1998 | A |
5817703 | Blair et al. | Oct 1998 | A |
5837620 | Kajander | Nov 1998 | A |
5846461 | Collins et al. | Dec 1998 | A |
5846620 | Compton | Dec 1998 | A |
5854144 | Hawley | Dec 1998 | A |
5863845 | Owen | Jan 1999 | A |
5874371 | Owen | Feb 1999 | A |
5880165 | Triolo et al. | Mar 1999 | A |
5902658 | Wyman | May 1999 | A |
5910358 | Thoen et al. | Jun 1999 | A |
5935675 | Hayden et al. | Aug 1999 | A |
5935878 | Glasser | Aug 1999 | A |
5950389 | Porter | Sep 1999 | A |
5951799 | Williamson et al. | Sep 1999 | A |
5968630 | Foster | Oct 1999 | A |
5994242 | Arthurs | Nov 1999 | A |
6022617 | Calkins | Feb 2000 | A |
6061876 | Rowe | May 2000 | A |
6130174 | Hawley et al. | Oct 2000 | A |
6132844 | Altshuler et al. | Oct 2000 | A |
6136870 | Triolo et al. | Oct 2000 | A |
6159583 | Calkins | Dec 2000 | A |
6162748 | Schilling et al. | Dec 2000 | A |
6187865 | Brodeur, Jr. | Feb 2001 | B1 |
6189279 | Fiechtl | Feb 2001 | B1 |
6214456 | Boyd et al. | Apr 2001 | B1 |
6221796 | Hawley et al. | Apr 2001 | B1 |
6253526 | Murphy et al. | Jul 2001 | B1 |
6255237 | Sakamoto et al. | Jul 2001 | B1 |
6261667 | Yang | Jul 2001 | B1 |
6279284 | Moras | Aug 2001 | B1 |
6294589 | Moody | Sep 2001 | B1 |
6296075 | Gish et al. | Oct 2001 | B1 |
6329437 | Vincent et al. | Dec 2001 | B1 |
6416854 | Hunter, Jr. | Jul 2002 | B2 |
6418687 | Cox | Jul 2002 | B1 |
6448305 | Watterson, III et al. | Sep 2002 | B1 |
6451868 | Kaneda et al. | Sep 2002 | B1 |
6558786 | Jupina | May 2003 | B1 |
6576577 | Garner | Jun 2003 | B1 |
6607803 | Foster | Aug 2003 | B2 |
6629340 | Dale et al. | Oct 2003 | B1 |
6631785 | Khambete et al. | Oct 2003 | B2 |
6659223 | Allison et al. | Dec 2003 | B2 |
6769217 | Nelson | Aug 2004 | B2 |
6872445 | Vinod | Mar 2005 | B2 |
RE39010 | Gish et al. | Mar 2006 | E |
7008691 | Ogle | Mar 2006 | B2 |
7047705 | Foster | May 2006 | B2 |
7096630 | Keene et al. | Aug 2006 | B1 |
7279058 | Morgan | Oct 2007 | B2 |
7491753 | Krishnan | Feb 2009 | B2 |
20010049917 | Simonelli et al. | Dec 2001 | A1 |
20020013560 | Erspamer et al. | Jan 2002 | A1 |
20020025751 | Chen et al. | Feb 2002 | A1 |
20020094404 | Schottenfeld | Jul 2002 | A1 |
20020119281 | Higgins et al. | Aug 2002 | A1 |
20020132085 | Higgins et al. | Sep 2002 | A1 |
20020142126 | Higgins et al. | Oct 2002 | A1 |
20020145089 | Calkins | Oct 2002 | A1 |
20020155274 | Ramesh et al. | Oct 2002 | A1 |
20020193026 | Ota et al. | Dec 2002 | A1 |
20020197922 | Sobonya et al. | Dec 2002 | A1 |
20030033779 | Downey | Feb 2003 | A1 |
20030035942 | Mertl et al. | Feb 2003 | A1 |
20030036323 | Aliabadi | Feb 2003 | A1 |
20030072911 | Higgins et al. | Apr 2003 | A1 |
20030074855 | Nelson | Apr 2003 | A1 |
20030096545 | Payne | May 2003 | A1 |
20030104205 | Brodeur, Jr. et al. | Jun 2003 | A1 |
20030116379 | Khambete et al. | Jun 2003 | A1 |
20030165657 | Rockwell, Jr. | Sep 2003 | A1 |
20030170420 | Higgins et al. | Sep 2003 | A1 |
20030175475 | Higgins et al. | Sep 2003 | A1 |
20030198802 | Vinod | Oct 2003 | A1 |
20030203152 | Higgins et al. | Oct 2003 | A1 |
20030215618 | Hynicka et al. | Nov 2003 | A1 |
20030219582 | Ramesh et al. | Nov 2003 | A1 |
20040022994 | Higgins et al. | Feb 2004 | A1 |
20040050015 | Foster | Mar 2004 | A1 |
20040069924 | Lemieux et al. | Apr 2004 | A1 |
20040071927 | Murphy et al. | Apr 2004 | A1 |
20040099476 | Swift et al. | May 2004 | A1 |
20040121691 | Klein | Jun 2004 | A1 |
20040131836 | Thompson | Jul 2004 | A1 |
20040140151 | Gallant | Jul 2004 | A1 |
20040172905 | Collison et al. | Sep 2004 | A1 |
20050003163 | Krishnan | Jan 2005 | A1 |
20050004245 | Hamrick et al. | Jan 2005 | A1 |
20050069694 | Gilder et al. | Mar 2005 | A1 |
20050079314 | Brodeur, Jr. et al. | Apr 2005 | A1 |
20050126681 | Morgan | Jun 2005 | A1 |
20050257469 | Bennett et al. | Nov 2005 | A1 |
20060035990 | Hennington et al. | Feb 2006 | A1 |
20060070326 | Collison et al. | Apr 2006 | A1 |
20060144012 | Manning et al. | Jul 2006 | A1 |
20060179752 | Swanson et al. | Aug 2006 | A1 |
20060207170 | Smith | Sep 2006 | A1 |
20060251881 | Gilder | Nov 2006 | A1 |
20060270747 | Griggs | Nov 2006 | A1 |
20070039268 | Ambrose, Jr. et al. | Feb 2007 | A1 |
20070066697 | Gilder et al. | Mar 2007 | A1 |
20070078193 | Gilder et al. | Apr 2007 | A1 |
20070122608 | Gilder et al. | May 2007 | A1 |
20070154672 | Higgins et al. | Jul 2007 | A1 |
20070199270 | Weir et al. | Aug 2007 | A1 |
20070275827 | Glaser | Nov 2007 | A1 |
20080008862 | Ogle et al. | Jan 2008 | A1 |
20080050577 | Gilder et al. | Feb 2008 | A1 |
20080072374 | Abesingha | Mar 2008 | A1 |
20080075915 | Wening et al. | Mar 2008 | A1 |
20080226584 | Krishnan | Sep 2008 | A1 |
20090123688 | Miller et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
846453 | Jul 1970 | CA |
0878589 | Nov 1998 | EP |
0967340 | Dec 1999 | EP |
1365086 | Nov 2003 | EP |
1182458 | Feb 1970 | GB |
2042368 | Sep 1980 | GB |
1581169 | Dec 1980 | GB |
2349356 | Nov 2000 | GB |
8277622 | Oct 1996 | JP |
2002086655 | Mar 2002 | JP |
2002331625 | Nov 2002 | JP |
2004099660 | Dec 2004 | KR |
2004111301 | Dec 2004 | KR |
2005036036 | Apr 2005 | KR |
WO 02052114 | Jul 2002 | WO |
2007040265 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080050577 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60506688 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10840309 | May 2004 | US |
Child | 11627610 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11627610 | Jan 2007 | US |
Child | 11931121 | US |