The present invention relates to an anti-microbial liquid detergent composition.
Consumer products have evolved to address user needs for an anti-microbial benefit, in =addition to their original intended functions. For example, an anti-microbial laundry detergent product is desired by users as it cleans fabrics whilst having an anti-microbial benefit on fabrics. Currently, various anti-microbial agents, e.g., bleaching agents, Chloroxylenol (PCMX), Benzalkonium Chloride (BKC), diphenyl ethers, are known for use in consumer product formulations to deliver an anti-microbial effect. Anti-microbial agents comprise two main types, in which one type functions as agents for removing microorganisms during the wash (e.g. bleaching agents, PCMX, BKC) and the other type functions as agents for preventing microorganisms during storage or use (e.g., diphenyl ethers).
However, in the context of liquid detergent products, it is still challenging to achieve a desired anti-microbial efficacy. In one aspect, for the anti-microbial agents that functions as agents for removing microorganisms during the wash, there is still a need for applicable solutions because known actives cannot work in liquid detergent products due to negative interaction with surfactants (e.g., PCMX and BKC) or cannot be added into liquid detergent products (e.g., bleaching agents).
In the other aspect, for the anti-microbial agents that function as agents for preventing microorganisms during storage or use, there is a need for an improved efficacy as well. Particularly, most of the anti-microbial agents are eventually washed away along with the washing solution during a washing cycle. As such, only a small amount of anti-microbial agents can be deposited onto washed fabrics, and therefore the actual microbial prevention effect of these liquid detergents is quite limited. Correspondingly, a larger amount of anti-microbial agents is typically needed in the liquid detergent products to compensate for such low deposition rate and to ensure that the resulting products has a desired anti-microbial efficacy. Such increased amount of anti-microbial agents in the liquid detergent products inevitably increases the manufacturing costs and processing complexity of such products.
Thus, there is a need for liquid detergent compositions that enable improved anti-microbial efficacy, preferably both in the aspects of microbial removal and microbial prevention.
It is a surprising and unexpected discovery of the present invention that the anti-microbial liquid detergent composition according to the present disclosure can meet the need as above, i.e., the anti-microbial liquid detergent composition according to the present disclosure can deliver both an improved efficacy of microbial removal and an improved efficacy of microbial prevention.
Particularly, the efficacy of microbial prevention is significantly improved in the anti-microbial liquid detergent composition according to the present disclosure (i.e., the low-pH formulation) compared to common liquid detergent composition (i.e., neutral-pH or high-pH formulation). Further, it is even more surprising that, in addition to the microbial prevention, the anti-microbial liquid detergent composition according to the present disclosure can further deliver an efficacy of microbial removal (i.e. removing microorganism from garments).
Correspondingly, the present invention in one aspect relates to an anti-microbial liquid detergent composition, comprising:
a) from 0.01% to 3% by weight of the composition, of an anti-microbial agent selected from the group consisting of diphenyl ethers and combinations thereof;
b) from 4.5% to 40% by weight of the composition, of an organic acid; and
c) from 4% to 60% by weight of the composition, of a surfactant system;
wherein the surfactant system comprises an anionic surfactant selected from the group consisting of C6-C20 linear alkylbenzene sulfonate (LAS), C6-C20 alkyl sulfates (AS), C6-C20 alkyl alkoxy sulfates (AAS), C6-C20 methyl ester sulfonates (MES), C6-C20 alkyl ether carboxylates (AEC), and combinations thereof, wherein the composition has a neat pH of from 1.5 to 5.0.
Preferably, the composition may have a neat pH of from 1.6 to 4.5, preferably from 1.7 to 4.0, more preferably from 1.8 to 3.5, most preferably from 1.9 to 3.1. Surprisingly, when the neat pH of the liquid detergent composition in accordance with the present invention is within the preferred range, the efficacy of microbial removal may be further improved.
Preferably, the through-the-wash (TTW) pH during the wash sub-cycle may be from 2.5 to 6.0, preferably from 3.0 to 5.0, more preferably from 3.2 to 4.0, most preferably from 3.3 to 3.8.
Particularly, the composition may further comprise from 0.01% to 1%, preferably from 0.02% to 0.5%, by weight of the composition, of an anti-microbial agent that is hydroxyl diphenyl ether of formula (I):
wherein:
each Y is independently selected from chlorine, bromine, or fluorine,
each Z is independently selected from SO2H, NO2, or C1-C4 alkyl,
r is 0, 1, 2, or 3,
o is 0, 1, 2, or 3,
p is 0, 1, or 2,
m is 1 or 2, and
n is 0 or 1,
wherein preferably said hydroxyl diphenyl ether is selected from the group consisting of 4-4′-dichloro-2-hydroxy diphenyl ether, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, and a combination thereof, more preferably 4-4′-dichloro-2-hydroxy diphenyl ether.
Preferably, the composition may comprise from 5.5% to 30%, preferably from 6% to 20%, more preferably from 6.5% to 18%, by weight of the composition of the organic acid. Particularly, the organic acid may be a hydroxy carboxylic acid, preferably wherein the organic acid may be selected from the group consisting of citric acid, lactic acid, tartaric acid, malic acid and any combinations thereof.
Preferably, the anti-microbial liquid detergent composition according to any one of the preceding claims, wherein said surfactant system is present in an amount ranging from 5% to 50%, preferably from 6% to 40%, more preferably from 10% to 30%, by weight of the composition. Preferably, the surfactant system may further comprise a nonionic surfactant that is preferably selected from the group consisting of alkyl alkoxylated alcohols, alkyl alkoxylated phenols, alkyl polysaccharides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, sucrose esters, sorbitan esters and alkoxylated derivatives of sorbitan esters, and any combinations thereof.
The anionic surfactant suitable for the composition in the present invention may be selected from the group consisting of C6-C20 linear alkylbenzene sulfonates (LAS), C6-C20 alkyl sulfates (AS), C6-C20 alkyl alkoxy sulfates (AAS), C6-C20 methyl ester sulfonates (MES), C6-C20 alkyl ether carboxylates (AEC), and any combinations thereof.
The nonionic surfactant suitable for the composition in the present invention may be selected from the group consisting of alkyl alkoxylated alcohols, alkyl alkoxylated phenols, alkyl polysaccharides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, sucrose esters, sorbitan esters and alkoxylated derivatives of sorbitan esters, and any combinations thereof.
The ratio of the anionic surfactant to the nonionic surfactant may be between 0.01 and 100, preferably between 0.05 and 20, more preferably between 0.1 and 10, and most preferably between 0.2 and 5, for example 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5 or any ranges therebetween. In some preferred embodiments, the ratio of the anionic surfactant to the nonionic surfactant may be between 0.2 and 1.5, preferably between 0.3 and 1.2. In some embodiments, the composition may comprise from 2% to 35%, preferably from 3% to 30%, more preferably from 4% to 25%, most preferably from 5% to 20%, for example 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20% or any ranges therebetween, by weight of the composition of the anionic surfactant comprising C6-C20 linear alkylbenzene sulfonates (LAS). In some preferred embodiments, the composition may comprise from 2% to 35%, preferably from 3% to 30%, more preferably from 4% to 25%, most preferably from 5% to 20%, for example 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20% or any ranges therebetween, by weight of the composition of C6-C20 linear alkylbenzene sulfonates (LAS).
In some embodiments, the composition may comprise from 2% to 35%, preferably from 3% to 30%, more preferably from 5% to 25%, most preferably from 7% to 20%, for example 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20% or any ranges therebetween, by weight of the composition of the nonionic surfactant comprising C6-C20 alkoxylated alcohol. In some preferred embodiments, the composition may comprise from 2% to 35%, preferably from 3% to 30%, more preferably from 5% to 25%, most preferably from 7% to 20%, for example 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20% or any ranges therebetween, by weight of the composition of C6-C20 alkoxylated alcohol.
Particularly, the composition may further comprise from 0.1% to 5%, preferably from 0.2% to 2%, by weight of the composition of an amphoteric surfactant that is preferably selected from the group consisting of C10-C16 alkyldimethyl amine oxides and combinations thereof, and wherein preferably said amphoteric surfactant is selected from the group consisting of dodecyldimethyl amine oxide, tetradecyldimethyl amino oxide, and a combination thereof.
Preferably, the total surfactants in the composition may be present in an amount within the range of from 4% to 50%, preferably from 6% to 40%, more preferably from 10% to 30%, by weight of the composition.
Particularly, the composition may further comprise from 0.1% to 10%, preferably from 0.5% to 5%, by weight of the composition of a polyamine, preferably a polyethyleneimine, more preferably an alkoxylated polyethyleneimine.
In some particular embodiments of the present invention, the anionic surfactant may be present as the main surfactant, preferably as the majority surfactant, in the composition. Preferably, the ratio of anionic surfactant to nonionic surfactant may be between 1.05 and 100, preferably between 1.1 and 20, more preferably between 1.2 and 10, and most preferably between 1.3 and 5. Particularly, the anionic surfactant may comprise C6-C20 linear alkylbenzene sulfonates (LAS).
In some particular embodiments of the present invention, the nonionic surfactant may be present as the main surfactant, preferably as the majority surfactant, in the composition. Preferably, the ratio of anionic surfactant to nonionic surfactant may be between 0.01 and 0.95, preferably between 0.05 and 0.9, more preferably between 0.1 and 0.85, and most preferably between 0.2 and 0.8. Particularly, the nonionic surfactant may comprise C6-C20 alkoxylated alcohol.
In a particular embodiment of the present invention, the composition may comprise:
a) from 0.02% to 0.5% by weight of the composition, of 4-4′-dichloro-2-hydroxy diphenyl ether;
b) from 6.5% to 18% by weight of the composition of a citric acid;
c) from 5% to 20% by weight of the composition of C10-C16 linear alkylbenzene sulfonate; and
d) from 7% to 20% by weight of the composition of C12-C18 alkyl ethoxylate;
wherein the composition has a neat pH of from 1.9 to 3.1.
In another aspect, the present invention relates to a liquid detergent composition as mentioned hereinabove for the use of removing microorganisms from garments.
In another aspect, the present invention relates to a method of pretreating or treating a soiled fabric comprising contacting the soiled fabric with the liquid detergent composition as mentioned hereinabove.
In another aspect, the present invention relates to a process of removing biofilm on a biofilm-affected surface comprising contacting the biofilm-affected surface with the liquid detergent composition as mentioned hereinabove. Particularly, the biofilm-affected surface is in washing machines. More particularly, the biofilm-affected surface is an inner surface of a washing machine drum.
In another aspect, the present invention relates to a process of removing biofilm on a biofilm-affected surface comprising the steps of:
a) providing a biofilm-affected surface in a washing machine; and
b) contacting said biofilm-affected surface with a liquid detergent composition comprising from 2% to 60% by weight of the composition of a surfactant system and from 4.5% to 40% by weight of the composition of an organic acid,
wherein the composition has a neat pH of from 1.5 to 5.0.
It is an advantage of the liquid detergent composition according to the present disclosure that it may improve the microbial prevention. In the context of the present disclosure, removing microorganism includes but not limited to prevent the growth or reproduction of microorganism.
It is another advantage of the liquid detergent composition according to the present disclosure that it may improve the microbial removal. Particularly, the liquid detergent composition according to the present disclosure may significantly remove microorganism from fabrics during the wash. In the context of the present disclosure, removing microorganism includes but not limited to kill, deactivate, eliminate and/or wash away microorganism.
As used herein, the articles including “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
As used herein, the terms “comprise”, “comprises”, “comprising”, “include”, “includes”, “including”, “contain”, “contains”, and “containing” are meant to be non-limiting, i.e., other steps and other ingredients which do not affect the end of result can be added. The above terms encompass the terms “consisting of” and “consisting essentially of”.
As used herein, when a composition is “substantially free” of a specific ingredient, it is meant that the composition comprises less than a trace amount, alternatively less than 0.1%, alternatively less than 0.01%, alternatively less than 0.001%, by weight of the composition, of the specific ingredient.
As used herein, the term “liquid detergent composition” herein refers to compositions that are in a form selected from the group consisting of pourable liquid, gel, cream, and combinations thereof. The liquid detergent composition may be either aqueous or non-aqueous, and may be anisotropic, isotropic, or combinations thereof.
As used herein, the term “anti-microbial agent” refers to a chemical compound of which the principle intended function is to kill bacteria and/or to prevent their growth or reproduction. Traditional anti-microbial agents include cationic anti-microbial agents (e.g., certain ammonium chlorides), nonionic anti-microbial agents, etc. diphenyl ether compounds that are used in the present invention are nonionic anti-microbial agents.
As used herein, the term “main surfactant” refers to a surfactant that is present in a composition at an amount that is greater than any other surfactant contained by such composition. As used herein, the term “majority surfactant” refers to a surfactant that is present in a composition at an amount that is at least 50% by weight of the total surfactant content in such composition.
As used herein, the term “alkyl” means a hydrocarbyl moiety which is branched or unbranched, substituted or unsubstituted. Included in the term “alkyl” is the alkyl portion of acyl groups.
As used herein, the term “washing solution” refers to the typical amount of aqueous solution used for one cycle of laundry washing, preferably from 1 L to 50 L, alternatively from 1 L to 20 L for hand washing and from 20 L to 50 L for machine washing.
As used herein, the term “soiled fabric” is used non-specifically and may refer to any type of natural or artificial fibers, including natural, artificial, and synthetic fibers, such as, but not limited to, cotton, linen, wool, polyester, nylon, silk, acrylic, and the like, as well as various blends and combinations.
The liquid detergent composition of the present invention comprises a surfactant system and an organic acid, in which the composition has a neat pH of from 1.5 to 5.0, preferably from 1.6 to 4.5, more preferably from 1.7 to 4.0, most preferably from 1.8 to 3.6. Further, the liquid detergent composition of the present invention may preferably comprise an anti-microbial agent that is a diphenyl ether. It has been surprisingly found that, by combining a surfactant system with an organic acid achieved by an organic acid, an excellent efficacy of removing microorganisms can be achieved. Such effect is unexpected because either a similar surfactant system or an acid solution alone cannot deliver such efficacy.
Preferably, the composition may comprise from 5.5% to 30%, preferably from 6% to 20%, more preferably from 6.5% to 18%, by weight of the composition of the organic acid. Particularly, the organic acid may be a hydroxy carboxylic acid, preferably wherein the organic acid may be selected from the group consisting of citric acid, lactic acid, tartaric acid, malic acid and any combinations thereof.
In a laundry washing solution, the through-the-wash (TTW) pH during the wash sub-cycle may be preferably from 2.5 to 6.0, preferably from 3.0 to 5.0, more preferably from 3.2 to 4.0.
The composition may further an anti-microbial agent which is a hydroxyl diphenyl ether. Preferably, the anti-microbial agent may be selected from the group consisting of 4-4′-dichloro-2-hydroxy diphenyl ether, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, and a combination thereof.
The laundry detergent composition herein provides efficacy for removing Gram positive bacteria (e.g., Staphylococcus aureus) and/or Gram negative bacteria (e.g., E. coli). In one embodiment, the laundry detergent composition provides a Microbial Removal Value of at least a log 1.0 reduction, preferably at least a log 1.5 reduction, more preferably at least a log 2.0 reduction, yet more preferably a log 2.5 reduction, yet more preferably a log 3.0 reduction, most preferably a log 3.5 reduction, against Gram positive bacteria and/or Gram negative bacteria, to treated fabrics versus non-treated fabrics.
Further, the composition may preferably provide an improved efficacy for microbial prevention to the fabrics treated by the composition. Without being bound by any theory, it is believed that the anti-microbial agent may more effectively deposit onto the fabrics during a washing cycle by using the liquid detergent composition according to the present invention and subsequently the deposited (i.e., residual) anti-microbial agent may more effectively prevent bacteria growth onto the fabrics during drying or storage or wear. In one embodiment, the laundry detergent composition provides a Bacteriostatic Activity Value of at least a log 1.0 reduction, preferably at least a log 1.5 reduction, more preferably at least a log 2.0 reduction, yet more preferably a log 2.5 reduction, against Gram positive bacteria and/or Gram negative bacteria, to treated fabrics versus non-treated fabrics. Preferably, the composition provides at least a log 1.0 reduction, preferably at least a log 1.5 reduction, more preferably at least a log 2.0 reduction, yet more preferably a log 2.5 reduction, against E. coli, Staphylococcus aureus and/or Klebsiella pneumoniae after a 10 minutes contact time in a 1055 ppm aqueous solution as determined by the JISL 1902 method (that is described below). More preferably, the composition provides at least a log 1.0 reduction, preferably at least a log 1.5 reduction, more preferably at least a log 2.0 reduction, yet more preferably at least a log 2.5 reduction, yet more preferably at least a log 3.0 reduction, most preferably a log 3.5 reduction, against Staphylococcus aureus.
The laundry detergent composition can have any suitable viscosity depending on factors such as formulated ingredients and purpose of the composition. In one embodiment, the composition has a high shear viscosity value, at a shear rate of 20/sec and a temperature of 21° C., of about 100 to about 3,000 cP, alternatively about 300 to about 2,000 cP, alternatively about 500 to about 1,000 cP, and a low shear viscosity value, at a shear rate of 1/sec and a temperature of 21° C., of about 500 to about 100,000 cP, alternatively about 1000 to about 10,000 cP, alternatively about 1,500 to about 5,000 cP.
The composition according to the present disclosure comprises a surfactant system. The surfactant system comprises an anionic surfactant. Preferably, the surfactant system may further comprise a nonionic surfactant.
The anionic surfactant suitable for the composition in the present invention may be selected from the group consisting of C6-C20 linear alkylbenzene sulfonates (LAS), C6-C20 alkyl sulfates (AS), C6-C20 alkyl alkoxy sulfates (AAS), C6-C20 methyl ester sulfonates (MES), C6-C20alkyl ether carboxylates (AEC), and any combinations thereof. For example, the laundry detergent composition may contain a C6-C20 alkyl alkoxy sulfates (AAxS), wherein x is about 1-30, preferably about 1-15, more preferably about 1-10, most preferably x is about 1-3. The alkyl chain in such AAxS can be either linear or branched, with mid-chain branched AAxS surfactants being particularly preferred. A preferred group of AAxS include C12-C14 alkyl alkoxy sulfates with x of about 1-3. In some embodiments, the composition comprises from 1% to 30%, preferably from 2% to 25%, more preferably from 3% to 20%, for example, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 14%, 16%, 18%, 20%, or any ranges therebetween, by weight of the composition of the anionic surfactant.
The nonionic surfactant suitable for the composition in the present invention may be selected from the group consisting of alkyl alkoxylated alcohols, alkyl alkoxylated phenols, alkyl polysaccharides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, sucrose esters, sorbitan esters and alkoxylated derivatives of sorbitan esters, and any combinations thereof. Non-limiting examples of nonionic surfactants suitable for use herein include: C12-C18 alkyl ethoxylates, such as Neodol® nonionic surfactants available from Shell; C6-C12 alkyl phenol alkoxylates wherein the alkoxylate units are a mixture of ethyleneoxy and propyleneoxy units; C12-C18 alcohol and C6-C12 alkyl phenol condensates with ethylene oxide/propylene oxide block alkyl polyamine ethoxylates such as Pluronic® available from BASF; C14-C22 mid-chain branched alkyl alkoxylates, BAEx, wherein x is from about 1 to about 30; alkylpolysaccharides, specifically alkylpolyglycosides; polyhydroxy fatty acid amides; and ether capped poly(oxyalkylated) alcohol surfactants. Also useful herein as nonionic surfactants are alkoxylated ester surfactants such as those having the formula R1C(O)O(R2O)nR3 wherein R1 is selected from linear and branched C6-C22 alkyl or alkylene moieties; R2 is selected from C2H4 and C3H6 moieties and R3 is selected from H, CH3, C2H5 and C3H7 moieties; and n has a value between about 1 and about 20. Such alkoxylated ester surfactants include the fatty methyl ester ethoxylates (MEE) and are well-known in the art. In some particular embodiments, the alkoxylated nonionic surfactant contained by the laundry detergent composition of the present invention is a C6-C20 alkoxylated alcohol, preferably C8-C18 alkoxylated alcohol, more preferably C10-C16 alkoxylated alcohol. The C6-C20 alkoxylated alcohol is preferably an alkyl alkoxylated alcohol with an average degree of alkoxylation of from about 1 to about 50, preferably from about 3 to about 30, more preferably from about 5 to about 20, even more preferably from about 5 to about 9. In some embodiments, the composition comprises from 1% to 30%, preferably from 2% to 25%, more preferably from 3% to 20%, for example, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 14%, 16%, 18%, 20%, or any ranges therebetween, by weight of the composition of the nonionic surfactant.
The ratio of the anionic surfactant to the nonionic surfactant may be between 0.01 and 100, preferably between 0.05 and 20, more preferably between 0.1 and 10, and most preferably between 0.2 and 5.
In some embodiments, the anionic surfactant comprises a C6-C20 linear alkylbenzene sulfonate surfactant (LAS), preferably C10-C16 LAS, and more preferably C12-C14 LAS.
In some particular embodiments of the present invention, the anionic surfactant may be present as the main surfactant, preferably as the majority surfactant, in the composition. Preferably, the ratio of anionic surfactant to nonionic surfactant may be between 1.05 and 100, preferably between 1.1 and 20, more preferably between 1.2 and 10, and most preferably between 1.3 and 5. Particularly, the anionic surfactant may comprise C6-C20 linear alkylbenzene sulfonates (LAS).
In some particular embodiments of the present invention, the nonionic surfactant may be present as the main surfactant, preferably as the majority surfactant, in the composition. Preferably, the ratio of anionic surfactant to nonionic surfactant may be between 0.01 and 0.95, preferably between 0.05 and 0.9, more preferably between 0.1 and 0.85, and most preferably between 0.2 and 0.8. Particularly, the nonionic surfactant may comprise C6-C20 alkoxylated alcohol.
The laundry detergent composition of the present invention may further comprise a cationic surfactant. Non-limiting examples of cationic surfactants include: quaternary ammonium surfactants, which can have up to 26 carbon atoms include: alkoxylate quaternary ammonium (AQA) surfactants; dimethyl hydroxyethyl quaternary ammonium; dimethyl hydroxyethyl lauryl ammonium chloride; polyamine cationic surfactants; and amino surfactants, specifically amido propyldimethyl amine (APA).
The laundry detergent composition of the present invention may further comprise another amphoteric surfactant (i.e., besides AO). Non-limiting examples of other amphoteric surfactants include: derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Preferred examples include: betaine, including alkyl dimethyl betaine and cocodimethyl amidopropyl betaine, sulfo and hydroxy betaines, such as N-alkyl-N,N-dimethylammino-1-propane sulfonate where the alkyl group can be C8-C18 or C10-C14.
The diphenyl ether-based anti-microbial agent of the present invention is a nonionic compound. In the present invention, it has been found that due to its nonionic property, the anti-microbial agent of the present invention allows for a stable liquid detergent composition.
Preferably, the anti-microbial agent is a hydroxyl diphenyl ether. The anti-microbial agent herein can be either halogenated or non-halogenated, but preferably is halogenated. In one embodiment, the anti-microbial agent is a hydroxyl diphenyl ether of formula (I):
In the above definition for formula (I), 0 means nil. For example, when p is 0, then there is no Z in formula (I). Each Y and each Z could be the same or different. In one embodiment, o is 1, r is 2, and Y is chlorine or bromine. This embodiment could be: one chlorine atom bonds to a benzene ring while the bromine atom and the other chlorine atom bond to the other benzene ring; or the bromine atom bonds to a benzene ring while the two chlorine atoms bond to the other benzene ring.
More Preferably, the anti-microbial agent is selected from the group consisting of 4-4′-dichloro-2-hydroxy diphenyl ether (“Diclosan”), 2,4,4′-trichloro-2′-hydroxy diphenyl ether (“Triclosan”), and a combination thereof. Most preferably, the anti-microbial agent is 4-4′-dichloro-2-hydroxy diphenyl ether, commercially available from BASF, under the trademark name Tinosan®HP100.
In addition to the diphenyl ether, other anti-microbial agents may also be present, provided that these are not present at a level which causes instability in the formulation. Among such useful further antimicrobial agents are chelating agents, which are particularly useful in reducing the resistance of Gram negative microbes in hard water. Acid biocides may also be present.
The amphoteric surfactant suitable for use in the present invention can be selected from the group consisting of C6-C20 alkyldimethyl amine oxides (AO) and combinations thereof.
where R1 is a C6-20 alkyl, a C6-20 hydroxyalkyl, or a C6-20 alkyl phenyl group; each R2 is a C2-5 alkylene, or a C2-5 hydroxyalkylene group; x is from 0 to about 3; and each R3 is a C1-3 alkyl, a C1-3 hydroxyalkyl, or a polyethylene oxide containing from about 1 to about 3 ethoxylene (EO) units. Preferably, the amine oxide surfactant may be a C8-18 alkyldimethyl amine oxide, preferably a C10-16 alkyldimethyl amine oxide.
Preferably, the amphoteric surfactant is selected from the group consisting of dodecyldimethyl amine oxide, tetradecyldimethyl amino oxide, and a combination thereof. More preferably, the amphoteric surfactant contains dodecyldimethyl amino oxide having the following formula (II):
Such a compound is also referred to as lauryldimethyl amine oxide or dodecydimethyl amine-N-oxide (DDAO). It is commercially available from Huntsman under the tradename Oxamin® LO.
The laundry detergent composition herein may further comprise from 0.1% to 10%, preferably from 0.5% to 5%, by weight of the composition of a polyamine, preferably a polyethyleneimine, more preferably an alkoxylated polyethyleneimine.
The polyamine suitable for the laundry detergent composition herein may be of Mw higher than 400 g/mol. A preferred class of polyamines is polyethyleneimines (PEIs) and derivatives thereof such as ethoxylated PEI polymers, propoxylated PEI polymers, polyamines, polyquats, polyglycerol quats, and other PEI derivatives, their salts or mixtures thereof. In some preferred embodiments, the PEIs are branched, spherical polymeric amines, and the molecular weight of the PEI or PEI salt used is from about 800 daltons to about 2 million Daltons. In addition, in some preferred embodiments, the charge density of the PEI or PEI salt used is from about 15 meq/g to about 25 meq/g, more preferably from about 16 meq/g to about 20 meq/g. Examples of such preferred PEIs include the BASF products LUPASOL WF (25 kDa; 16-20 meq/g) and Lupasol® FG (800 daltons; 16-20 meq/g), and the SOKALAN® family of polymers available from BASF, e.g., SOKALAN® HP20, and SOKALAN® HP22 G.
The laundry detergent composition herein may comprise adjunct ingredients. Suitable adjunct materials include but are not limited to: builders, chelating agents, rheology modifiers, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, photobleaches, perfumes, perfume microcapsules, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents, hueing agents, structurants and/or pigments. The precise nature of these adjunct ingredients and the levels thereof in the laundry detergent composition will depend on the physical form of the composition and the nature of the cleaning operation for which it is to be used.
In one embodiment, the composition herein comprises a rheology modifier (also referred to as a “structurant” in certain situations), which functions to adjust the viscosity of the composition so as to be more applicable to the packaging assembly. The rheology modifier herein can be any known ingredient that is capable of suspending particles and/or adjusting rheology to a liquid composition. Preferably the rheology modifier is selected from the group consisting of hydroxy-containing crystalline material, polyacrylate, polysaccharide, polycarboxylate, alkali metal salt, alkaline earth metal salt, ammonium salt, alkanolammonium salt, C12-C20 fatty alcohol, di-benzylidene polyol acetal derivative (DBPA), di-amido gallant, a cationic polymer comprising a first structural unit derived from methacrylamide and a second structural unit derived from diallyl dimethyl ammonium chloride, and a combination thereof. Preferably, the rheology modifier is a hydroxy-containing crystalline material generally characterized as crystalline, hydroxyl-containing fatty acids, fatty esters and fatty waxes, such as castor oil and castor oil derivatives. More preferably the rheology modifier is a hydrogenated castor oil (HCO).
In one embodiment, the composition may further comprise from 0.1% to 5%, preferably from 0.2% to 2%, by weight of the composition of a chelating agent, preferably diethylene triamine penta-acetic acid (DTPA) and/or glutamic acid diacetate (GLDA).
The laundry detergent composition of the present invention is generally prepared by conventional methods such as those known in the art of making laundry detergent compositions. Such methods typically involve mixing the essential and optional ingredients in any desired order to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like, thereby providing laundry detergent compositions containing ingredients in the requisite concentrations.
Another aspect of the present invention is directed to a method of using the laundry detergent composition to treat a fabric with a microbial removal benefit and optionally a microbial preventive benefit. The method comprises the step of administering from 1 g to 200 g of the above-mentioned laundry detergent composition into a laundry washing basin comprising water to form a washing solution. The washing solution in a laundry washing basin herein preferably has a volume from 1 L to 50 L, alternatively from 1 L to 20 L for hand washing and from 20 L to 50 L for machine washing. Preferably, the microbial removal benefit herein is determined by the method as described in Test 1 (D&S FTC Jokin method) and the microbial preventive benefit herein is determined by the method as described in Test 2 (i.e. JISL 1902 method). The temperatures of the laundry washing solution preferably range from 5° C. to 60° C.
The dosing amount in the method herein may be different depending on the washing type. In one embodiment, the method comprises administering from about 1 g to about 60 g of the laundry detergent composition into a hand washing basin (e.g., about 2-4 L). In an alternative embodiment, the method comprises administering from about 1 g to about 100 g, preferably from about 10 g to about 65 g of the laundry detergent composition into a washing machine (e.g., about 30-45 L).
Preferably, the method herein further comprises the step of contacting a soiled fabric with the washing solution. For example, the presence of Gram-positive bacteria and/or Gram-negative bacteria is suspected on the fabric. The step of contacting the soiled fabric with the washing solution is preferably after the step of administering the laundry detergent composition in a laundry washing basin. The method may further comprise the step of contacting a fabric with the laundry detergent composition prior to the step of administering the laundry detergent composition in a laundry washing basin, i.e., pre-treat the fabric with the laundry detergent composition for certain time, preferably from 1 minute to 10 minutes.
The efficacy of microbial removal for laundry detergent compositions is determined by the method as defined in the D&S FTC Jokin method and described hereinafter.
1. Microorganism Preparation:
2. Fabric and Spindle Preparation:
3. Procedure:
I. Serially dilute the neutralizing broth containing a single carrier. Plate 1.0 mL in duplicate of 10−1 through 10−4 dilutions in or on agar containing neutralizers as needed. Incubate plates at 35±2° C. for 48±2 h. To determine survivors, count colonies and record as CFU/plate. Average duplicate plates and multiply by the dilution factor to arrive at CFU/carrier. This average count should be converted into log10. Take the log10 value of CFU value as Nb.
4. Calculation of Microbial Removal Activity Value:
Microbial Removal Activity (LogR)=Na−Nb
A Microbial Removal Activity Value of no less than 2.0 represents acceptable microbial removal efficacy. And a Microbial Removal Activity Value of lower than 2.0 indicates unacceptable poor microbial removal efficacy.
The efficacy of microbial prevention for laundry detergent compositions is determined by the method as defined in the JISL 1902 method and described hereinafter.
1. Microorganism Preparation:
2. Fabric washing:
3. Fabric Incubation:
4. Calculation of Bacteriostatic Activity Value:
Bacteriostatic Activity Value=(Ct−C0)−(Tt−T0)
Anti-microbial agents are extracted from treated fabrics by using the methanol-based Accelerated Solvent Extraction (ASE) method described hereinafter. The resulting extract is then subjected to gradient reversed-phase high performance liquid chromatographic (HPLC) separation on a C18 column and is quantified by tandem mass spectrometry (MS/MS) operating under multiple reaction monitoring (MRM) conditions at negative mode.
As a first step, about three (3) grams of the treated fabrics is accurately weighed and then filled into a steel ASE tube. The extraction protocol is run for about five (5) minutes using methanol as the extraction solvent at an elevated temperature of about 100° C. and a pressure of about 2000 pound per square inch (psi). The resulting extract is collected and transferred into a 25-ml flask, which is then filled to its full volume with methanol. The resulting solution is then diluted by about twenty-five (25) fold by using a mixture of methanol and water at a 50:50 ratio, which is used as an injection sample for the subsequent LC-MS/MS analysis.
Next, about five (5) ul of the above-mentioned injection sample is injected and separated on a Waters ACQUITY UPLC C18 column with gradient from about 70% mobile phase A (1% formic water solution)/30% mobile phase B (0.1% formic acid in methanol) to 5% mobile phase A/95% mobile phase B in about three (3) minutes, and the final gradient is kept for another three (3) minutes. The anti-microbial agent, for example Tinosan®HP100, is detected at the negative MRM mode. The ion pair of m/z 253>142 is used as quantification transition, while m/z of 253>125 is used for identification.
Subsequently, spiked matrix standards in the range of 0.5 mg/ml to 500 ng/ml are injected for creation of a calibration curve. Concentration of the anti-microbial agent, for example Tinosan®HP100, in the injection sample is determined by extrapolation using weighted (1/x2) quadratic regression of the calibration curve.
1. Culture Preparation
2. Reactor Preparation
3. Procedure
4. Product Treatment
5. Calculation of biofilm removal efficacy
Log Reduction=average of log10(control coupons)−average of log10(product treated coupons).
Seven (7) sample liquid laundry detergent compositions were prepared containing the ingredients as shown in Table 1 below, in which Samples 1 to 4 comprise a surfactant system containing a non-ionic (NI) surfactant and an anionic (AI) surfactant as well as a relatively high level of citric acid (CA) (i.e., at least 7%) resulting in low product pH (i.e. from around 2 to around 3.2), Samples 5 and 6 comprise a similar surfactant system with Samples 1 to 4 but low level of CA (i.e., less than 4%) resulting in relatively high product pH (i.e., around 3.7 to around 8), and Sample 7 comprises a high level of citric acid resulting in low pH but no surfactants.
a C11-13LAS
b Neodol ®25-7 which is C12-C15 alcohol ethoxylated with an average of 7 moles of ethylene oxide as a nonionic surfactant, available from Shell
c Tinosan ®HP100 is 4-4′-dichloro-2-hydroxy diphenyl ether, available from BASF
d Polyethyleneimines (PEI) polymer ethoxylated or ethoxylated and propoxylated, available from BASF
Then, the efficacy of microbial removal for the above samples at a dose of 1000 ppm finished product was determined in accordance with Test 1: Efficacy of Microbial Removal in which Gram-negative bacteria E. coli was used. The results are shown below.
As the data shown above, it is surprising and completely unexpected that the combination of the surfactant system and a relatively high level of organic acid (i.e., corresponding to low pH) can deliver a very strong microbial removal efficacy (i.e., more than log 3 reduction, even more than log 4 reduction). In other words, the Samples 1 to 4 can remove more than 99.9% (even more than 99.99% in Samples 1 and 3) microorganisms in the microbial removal test. On the contrary, the surfactant system alone (Samples 5 and 6) or the organic acid alone (Sample 7) does not show any significant efficacy of microbial removal (i.e. around log 0 reduction).
a C11-13LAS
b Neodol ®25-7 which is C12-C15 alcohol ethoxylated with an average of 7 moles of ethylene oxide as a nonionic surfactant, available from Shell
c Tinosan ®HP100 is 4-4′-dichloro-2-hydroxy diphenyl ether, available from BASF
d Polyethyleneimines (PEI) polymer ethoxylated or ethoxylated and propoxylated, available from BASF
Then, the efficacy of microbial prevention for the above samples at a dose of 1000 ppm finished product is determined in accordance with Test 2: Efficacy of Microbial Prevention in which Gram-negative bacteria Klebsiella pneumoniae was used. The results are shown below:
It is greatly surprising from the data as shown above that the efficacy of microbial prevention is significantly improved in the low-pH liquid detergent composition compared to high-pH liquid detergent composition (i.e., 3.5 vs 2.4 and 3.8 vs 2.8). In other words, the introduction of a significant amount of organic acid (i.e., citric acid) results in a reduction of one order of magnitude of CFU (i.e. the count of bacteria) on fabrics treated by the low-pH liquid detergent composition compared to high-pH liquid detergent composition. Without being bound by any theory, it is believed that the anti-microbial agent (i.e., Tinosan in this example) more effectively deposits onto the fabrics during a washing cycle by using the low-pH liquid detergent composition according to the present invention and subsequently the deposited (i.e., residual) anti-microbial agent more effectively prevents bacteria growth onto the fabrics during drying or storage or wear. Further, when a higher level of anionic surfactants is present, an even more improved efficacy of microbial prevention can be obtained. Without being bound by any theory, it is believed that the anti-microbial agent (i.e., Tinosan) more effectively deposits onto the fabrics during a washing cycle in the presence of a higher level of anionic surfactants (i.e., LAS).
Three (3) sample liquid laundry detergent compositions are prepared containing the ingredients as shown in Table 5 below, in which Samples 12 and 13 comprise a surfactant system containing an anionic (AI) surfactant and a non-ionic (NI) surfactant as well as a relatively high level of citric acid (CA) (i.e. 14.1% or 10.0%) resulting in low product pH (i.e., around 2.4 to 2.6), while Samples 14 comprise a similar surfactant system with Samples 12 and 13 but low level of CA resulting in relatively high product pH (i.e., above 8).
a C11-13LAS
b Neodol ®25-7 which is C12-C15 alcohol ethoxylated with an average of 7 moles of ethylene oxide as a nonionic surfactant, available from Shell
c Tinosan ®HP100 is 4-4′-dichloro-2-hydroxy diphenyl ether, available from BASF
d Polyethyleneimines (PEI) polymer ethoxylated or ethoxylated and propoxylated, available from BASF
Then, the efficacy of biofilm removal for the above samples at a dose of 1000 ppm finished product is determined in accordance with Test 4: Biofilm Removal Test including biofilm generation (ASTM E2562) and removal in washing machines in which Gram-negative bacteria P. aeruginosa was used. The results are shown below:
It is greatly surprising from the data as shown above that the efficacy of biofilm removal is significantly improved in the low-pH liquid detergent composition compared to high-pH liquid detergent composition (i.e., 2.43 or 2.54 vs 0.89).
The following liquid laundry detergent compositions shown in Table 7 are made comprising the listed ingredients in the listed proportions (weight %).
The liquid laundry detergent compositions A-F in Example 4 are prepared by the following steps:
a) mixing a combination of NaOH (if any) and water in a batch container by applying a shear of 200 rpm;
b) adding citric acid (if any), boric acid (if any), and C11-C13LAS into the batch container, keeping on mixing by applying a shear of 200 rpm;
c) cooling down the temperature of the combination obtained in step b) to 25° C.;
d) adding C12-14AE1-3S, Na-DTPA (if any), Neodol®25-7, dodecyldimethyl amine oxide, C12-C18 fatty acid, 1,2 propanediol (if any), monoethanolamine (if any), calcium chloride (if any), sodium cumene sulphonate (if any), silicone emulsion (if any), sodium polyacrylate (if any), and Tinosan®HP100 into the batch container, mixing by applying a shear of 250 rpm until the combination is homogeneously mixed, and adjusting pH to 8;
e) adding brightener (if any), protease (if any), amylase (if any), dye (if any), and perfume oil (if any) into the batch container, mixing by applying a shear of 250 rpm, thus forming a liquid laundry detergent composition, wherein each ingredient in the composition is present in the level as specified for compositions A-F in Example 4.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2020/138574 | Dec 2020 | CN | national |