The present disclosure pertains to medical devices, methods for manufacturing medical devices, and uses thereof. More particularly, the present disclosure pertains to an anti-migration stent for implantation in a body lumen, and associated methods.
Implantable stents are devices that are placed in a body lumen, such as the esophageal tract, the gastrointestinal tract (including the intestine, stomach and the colon), tracheobronchial tract, urinary tract, biliary tract, vascular system, etc. to provide support and to maintain the body lumen open. These stents are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known stents, delivery systems, and methods, each has certain advantages and disadvantages. For example, in some stents, the compressible and flexible properties that assist in stent delivery may also result in a stent that has a tendency to migrate from its originally deployed position. For example, stents that are designed to be positioned in the esophageal or gastrointestinal tract may have a tendency to migrate due to peristalsis (i.e., the involuntary constriction and relaxation of the muscles of the esophagus, intestine, and colon which push the contents of the canal therethrough). Thus, there is an ongoing need to provide alternative stents having anti-migration features and associated delivery systems as well as alternative methods for manufacturing and using stents having anti-migration features and associated delivery systems.
This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. An example medical device may include a stent.
In a first example, a stent may comprise an elongated tubular member comprising at least one strut forming a tubular wall having a plurality of cells extending through a thickness of the tubular wall, the elongated tubular member configured to move between a radially collapsed configuration and a radially expanded configuration, a coating disposed on the elongated tubular member and spanning the plurality of cells, the coating forming a pocket within at least some of the plurality of cells and extending radially inward of the tubular wall to define a void, and a partition positioned within at least some of the pockets, each partition extending radially outward from a bottom surface of the pocket and transecting the void.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend generally perpendicular to a central longitudinal axis of the elongated tubular member.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend generally parallel to a central longitudinal axis of the elongated tubular member.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend at an oblique angle relative to a central longitudinal axis of the elongated tubular member.
Alternatively or additionally to any of the examples above, in another example, a height of the partitions may be approximately equal to a height of the at least one strut having the coating disposed thereon.
Alternatively or additionally to any of the examples above, in another example, the at least one strut may form a plurality of cross-over points.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend between adjacent cross-over points.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend from a first side of the pocket to a second side of the pocket in which it is positioned.
Alternatively or additionally to any of the examples above, in another example, at least one pocket may include two or more partitions.
Alternatively or additionally to any of the examples above, in another example, the coating may define an entirety of a surface of a lumen extending longitudinally through the stent.
Alternatively or additionally to any of the examples above, in another example, at least some of the pockets may include an aperture formed therethrough.
Alternatively or additionally to any of the examples above, in another example, the coating and the partitions may be formed as a single monolithic structure.
Alternatively or additionally to any of the examples above, in another example, the coating may be disposed over an inner surface and/or an outer surface of the elongated tubular member.
In another example, a stent may comprise an elongated tubular member comprising at least one strut forming a tubular wall having a plurality of cells extending through a thickness of the tubular wall, the elongated tubular member configured to move between a radially collapsed configuration and a radially expanded configuration and a coating disposed on the elongated tubular member and spanning the plurality of cells, the coating forming a pocket within at least some of the plurality of cells and extending radially inward of the tubular wall to define a void. The pockets may be pyramidal shaped, with four converging side walls and a base wall intersecting each of the four converging side walls.
Alternatively or additionally to any of the examples above, in another example, the stent may further comprise a partition positioned within at least some of the pockets, each partition extending radially outward from the base surface of the pocket and transecting the void.
In another example, a stent may comprise an elongated tubular member comprising at least one interwoven filament forming a tubular wall, the at least one interwoven filament forming a plurality of cross-over points and defining a plurality of cells therebetween extending through a thickness of the tubular wall, the elongated tubular member configured to move between a radially collapsed configuration and a radially expanded configuration, a polymer coating disposed on the elongated tubular member, the coating forming a pocket within at least some of the plurality of cells and extending radially inward of the tubular wall to define a void, and a partition formed within at least some of the pockets, each partition extending radially outward from a bottom surface of the pocket and transecting the void between opposing cross-over points of the at least one strut forming the cell in which the pocket is positioned.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend generally perpendicular to a central longitudinal axis of the elongated tubular member.
Alternatively or additionally to any of the examples above, in another example, at least some of the partitions may extend generally parallel to a central longitudinal axis of the elongated tubular member.
Alternatively or additionally to any of the examples above, in another example, the coating may define an entirety of a surface of a lumen extending longitudinally through the stent.
Alternatively or additionally to any of the examples above, in another example, the coating and the partitions may be formed as a single monolithic structure.
Alternatively or additionally to any of the examples above, in another example, a radial outermost extent of the partitions may be located flush with or radially inward of an outer surface of the tubular wall.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
Although some suitable dimensions ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.
In some instances, it may be desirable to provide an endoluminal implant, or stent, that can deliver luminal patency in a patient with an esophageal stricture or other medical condition. Such stents may be used in patients experiencing dysphagia, sometimes due to esophageal cancer. An esophageal stent may allow a patient to maintain nutrition via oral intake during cancer treatment or palliation periods. However, a common complication of gastrointestinal (GI) stents is stent migration due to the peristaltic motion subjected to the stent. Uncoated stents allow the granulation tissue of the esophagus to encompass the stent and effectively grip the wires of the stent. While this tissue ingrowth may help prevent the migration of the stent, the stent may be difficult to remove. It may be desirable to provide a stent that can deliver luminal patency while minimizing migration of the stent and allowing for removal of the stent. While the embodiments disclosed herein are discussed with reference to esophageal stents, it is contemplated that the stents described herein may be used and sized for use in other locations such as, but not limited to: bodily tissue, bodily organs, vascular lumens, non-vascular lumens and combinations thereof, such as, but not limited to, in the coronary or peripheral vasculature, trachea, bronchi, colon, small intestine, biliary tract, urinary tract, prostate, brain, stomach and the like.
The stent 10 may be expandable from a first radially collapsed configuration (not explicitly shown) to a second radially expanded configuration. In some cases, the stent 10 may be deployed to a configuration between the collapsed configuration and a fully expanded configuration. The stent 10 may be structured to extend across a stricture and to apply a radially outward pressure to the stricture in a lumen to open the lumen and allow for the passage of foods, fluids, air, etc.
In some embodiments, the proximal end 14 of the stent 10 may include a plurality of loops 38. The loops 38 may be configured to receive a retrieval tether or suture (not explicitly shown) interwoven therethrough, or otherwise passing through one or more of the loops 38. The retrieval suture may be used to collapse and retrieve the stent 10, if so desired. For example, the retrieval suture may be pulled like a drawstring to radially collapse the proximal end 14 of the stent 10 to facilitate removal of the stent 10 from a body lumen.
The stent 10 may have a woven structure, fabricated from a number of filaments or struts 36 forming a tubular wall. In some embodiments, the stent 10 may be knitted or braided with a single filament or strut interwoven with itself and defining open cells 46 extending through the thickness of the tubular wall of the stent 10. In other embodiments, the stent 10 may be braided with several filaments or struts interwoven together and defining open cells 46 extending along a length and around the circumference of the tubular wall of the stent 10. The open cells 46 may each define an opening from an outer surface of the tubular wall to an inner surface of the tubular wall (e.g., through a thickness thereof) that is free from the filaments or struts 36. Some exemplary stents including braided filaments include the WallFlex®, WALLSTENT®, and Polyflex® stents, made and distributed by Boston Scientific, Corporation. In another embodiment, the stent 10 may be knitted, such as the Ultraflex™ stents made by Boston Scientific, Corporation. In yet another embodiment, the stent 10 may be of a knotted type, such the Precision Colonic™ stents made by Boston Scientific, Corporation. In still another embodiment, the stent 10 may be a laser cut tubular member, such as the EPIC™ stents made by Boston Scientific, Corporation. A laser cut tubular member may have an open and/or closed cell geometry including one or more interconnected monolithic filaments or struts defining open cells 46 therebetween, with the open cells 46 extending along a length and around the circumference of the tubular wall. The open cells 46 may each define an opening from an outer surface of the tubular wall to an inner surface of the tubular wall (e.g., through a thickness thereof) that is free from the interconnected monolithic filaments or struts. In some instances, an inner and/or outer surface of the tubular wall of the stent 10 may be entirely, substantially, or partially, covered with a polymeric covering or coating 40, as will be described in more detail herein. The covering or coating 40 may extend across and/or occlude one or more, or a plurality of the cells 46 defined by the struts or filaments 36. The covering or coating 40 may help reduce food impaction and/or tumor or tissue ingrowth. In some cases, the stent 10 may be a self-expanding stent (SES), although this is not required.
In some instances, in the radially expanded configuration, the stent 10 may include a first end region 20 proximate the proximal end 14 and a second end region 22 proximate the second end 16. In some embodiments, the first end region 20 and the second end region 22 may include retention features or anti-migration flared regions 24, 26 having enlarged diameters relative to the intermediate portion 18. The anti-migration flared regions 24, 26, which may be positioned adjacent to the first end 14 and the second end 16 of the stent 10, may be configured to engage an interior portion of the walls of the esophagus or other body lumen. In some embodiments, the retention features, or flared regions 24, 26 may have a larger diameter than the cylindrical intermediate region 18 of the stent 10 to prevent the stent 10 from migrating once placed in the esophagus or other body lumen. It is contemplated that the transition 28, 30 from the cross-sectional area of the intermediate region 18 to the retention features or flared regions 24, 26 may be gradual, sloped, or occur in an abrupt step-wise manner, as desired.
In some embodiments, the first anti-migration flared region 24 may have a first outer diameter and the second anti-migration flared region 26 may have a second outer diameter. In some instances, the first and second outer diameters may be approximately the same, while in other instances, the first and second outer diameters may be different. In some embodiments, the stent 10 may include only one or none of the anti-migration flared regions 24, 26. For example, the first end region 20 may include an anti-migration flare 24 while the second end region 22 may have an outer diameter similar to the intermediate region 18. It is further contemplated that the second end region 22 may include an anti-migration flare 26 while the first end region 20 may have an outer diameter similar to an outer diameter of the intermediate region 18. In some embodiments, the stent 10 may have a uniform outer diameter from the first end 14 to the second end 16. In some embodiments, the outer diameter of the intermediate region 18 may be in the range of about 15 to 25 millimeters. The outer diameter of the anti-migration flares 24, 26 may be in the range of about 20 to 30 millimeters. It is contemplated that the outer diameter of the stent 10 may be varied to suit the desired application.
It is contemplated that the elongated tubular member of the stent 10 can be made from a number of different materials such as, but not limited to, metals, metal alloys, shape memory alloys and/or polymers, as desired, enabling the stent 10 to be expanded into shape when accurately positioned within the body. In some instances, the material may be selected to enable the stent 10 to be removed with relative ease as well. For example, the elongated tubular member of the stent 10 can be formed from alloys such as, but not limited to, nitinol and Elgiloy®. Depending on the material selected for construction, the stent 10 may be self-expanding or require an external force to expand the stent 10. In some embodiments, composite filaments may be used to make the stent 10, which may include, for example, an outer shell or cladding made of nitinol and a core formed of platinum or other radiopaque material. It is further contemplated the elongated tubular member of the stent 10 may be formed from polymers including, but not limited to, polyethylene terephthalate (PET). In some instances, the filaments of the stent 10, or portions thereof, may be bioabsorbable or biodegradable, while in other instances the filaments of the stent 10, or portions thereof, may be biostable.
In some instances, the pockets 44 may be formed using a mandrel and/or mold. For example, a mandrel may be formed having protrusions or recesses of the desired size and shape of the pockets 44. The struts 36 may be wound, braided, woven, or otherwise disposed about the mandrel with the cells of the tubular wall aligned with the protrusions or recesses. A sleeve made of, for example, silicone or other polymer material, may be disposed over the mandrel and struts 36. The sleeve may be heated or otherwise molded to the shape of the mandrel to form the coated stent 10 including the pockets 44 between the struts 36. Alternatively, a polymeric material may be spray or dip coated onto the mandrel and struts 36 such that the polymeric material flows over the protrusions and/or into the recesses of the mandrel. In instances that the pockets are formed by protrusions of the mandrel, the pockets may thereafter be inverted to extend radially inward of the tubular wall of the stent 10 subsequent to removing the stent 10 from the mandrel.
It is contemplated that the volume of tissue that fills the voids defined by the pockets 44 may be manipulated by changing a volume of the pockets 44. While the pockets 44 are illustrated as having generally uniform dimensions (e.g., are all approximately the same size, shape, and/or volume), the pockets 44 need not all have the same dimensions. For example, some pockets 44 may be larger than others. In some embodiments, one or more of the pockets 44 may include an opening 54, such as, but not limited to, an aperture or slit to allow for limited tissue ingrowth. Limited tissue ingrowth may further reduce migration of the stent 10 while still allowing for the removal of the stent 10 with little difficulty. Alternatively, or additionally, slits or apertures 54 may be provided to allow for a peripheral vessel to drain into the lumen 50 (for example, but not limited to, at the ampulla to allow bile to flow into the duodenum) or to create a drainage channel in the stent 10. In some cases, the physician may create the slits or apertures 54 by cutting or punching through the pockets 44.
The stent 100 may be expandable from a first radially collapsed configuration (not explicitly shown) to a second radially expanded configuration. In some cases, the stent 100 may be deployed to a configuration between the collapsed configuration and a fully expanded configuration. The stent 100 may be structured to extend across a stricture and to apply a radially outward pressure to the stricture in a lumen to open the lumen and allow for the passage of foods, fluids, air, etc.
In some embodiments, the proximal end 114 of the stent 100 may include a plurality of loops 138. The loops 138 may be configured to receive a retrieval tether or suture (not explicitly shown) interwoven therethrough, or otherwise passing through one or more of the loops 138. The retrieval suture may be used to collapse and retrieve the stent 100, if so desired. For example, the retrieval suture may be pulled like a drawstring to radially collapse the proximal end 114 of the stent 100 to facilitate removal of the stent 100 from a body lumen.
The stent 100 may have a woven structure, fabricated from a number of filaments or struts 136 forming a tubular wall. In some embodiments, the stent 100 may be knitted or braided with a single filament interwoven with itself and defining open cells 146 extending along a length and around the circumference of the tubular wall of the stent 100. The open cells 146 may each define an opening from an outer surface of the tubular wall to an inner surface of the tubular wall (e.g., through a thickness thereof) that is free from the filaments or struts 136. In other embodiments, the stent 100 may be braided with several filaments or struts interwoven together and defining open cells 146. In another embodiment, the stent 100 may be knitted. In yet another embodiment, the stent 100 may be of a knotted type. In still another embodiment, the stent 100 may be a laser cut tubular member. A laser cut tubular member may have an open and/or closed cell geometry including one or more interconnected monolithic filaments or struts defining open cells 146 therebetween with the open cells 146 extending along a length and around the circumference of the tubular wall. The open cells 146 may each define an opening from an outer surface of the tubular wall to an inner surface of the tubular wall (e.g., through a thickness thereof) that is free from the interconnected monolithic filaments or struts. In some instances, an inner and/or outer surface of the tubular wall of the stent 100 may be entirely, substantially, or partially, covered with a polymeric covering or coating 140, as will be described in more detail herein. The covering or coating 140 may extend across and/or occlude one or more, or a plurality of the cells 146 defined by the struts or filaments 136. The covering or coating may help reduce food impaction and/or tumor or tissue ingrowth. In some cases, the stent 100 may be a self-expanding stent (SES), although this is not required.
In some instances, in the radially expanded configuration, the stent 100 may include a first end region 120 proximate the proximal end 114 and a second end region 122 proximate the second end 116. In some embodiments, the first end region 120 and the second end region 122 may include retention features or anti-migration flared regions 124, 126 having enlarged diameters relative to the intermediate portion 118. The anti-migration flared regions 124, 126, which may be positioned adjacent to the first end 114 and the second end 116 of the stent 10, may be configured to engage an interior portion of the walls of the esophagus or other body lumen. In some embodiments, the retention features, or flared regions 124, 126 may have a larger diameter than the cylindrical intermediate region 118 of the stent 100 to prevent the stent 100 from migrating once placed in the esophagus or other body lumen. It is contemplated that the transition 128, 130 from the cross-sectional area of the intermediate region 118 to the retention features or flared regions 124, 126 may be gradual, sloped, or occur in an abrupt step-wise manner, as desired.
In some embodiments, the first anti-migration flared region 124 may have a first outer diameter and the second anti-migration flared region 126 may have a second outer diameter. In some instances, the first and second outer diameters may be approximately the same, while in other instances, the first and second outer diameters may be different. In some embodiments, the stent 100 may include only one or none of the anti-migration flared regions 124, 126. For example, the first end region 120 may include an anti-migration flare 124 while the second end region 122 may have an outer diameter similar to the intermediate region 118. It is further contemplated that the second end region 122 may include an anti-migration flare 126 while the first end region 120 may have an outer diameter similar to an outer diameter of the intermediate region 118. In some embodiments, the stent 100 may have a uniform outer diameter from the first end 114 to the second end 116. In some embodiments, the outer diameter of the intermediate region 118 may be in the range of about 15 to 25 millimeters. The outer diameter of the anti-migration flares 124, 126 may be in the range of about 20 to 30 millimeters. It is contemplated that the outer diameter of the stent 100 may be varied to suit the desired application.
It is contemplated that the elongated tubular member of the stent 100 can be made from a number of different materials such as, but not limited to, metals, metal alloys, shape memory alloys and/or polymers, as desired, enabling the stent 100 to be expanded into shape when accurately positioned within the body. In some instances, the material may be selected to enable the stent 100 to be removed with relative ease as well. For example, the elongated tubular member of the stent 100 can be formed from alloys such as, but not limited to, nitinol and Elgiloy®. Depending on the material selected for construction, the stent 100 may be self-expanding or require an external force to expand the stent 10. In some embodiments, composite filaments may be used to make the stent 10, which may include, for example, an outer shell or cladding made of nitinol and a core formed of platinum or other radiopaque material. It is further contemplated the elongated tubular member of the stent 100 may be formed from polymers including, but not limited to, polyethylene terephthalate (PET). In some instances, the filaments of the stent 10, or portions thereof, may be bioabsorbable or biodegradable, while in other instances the filaments of the stent 10, or portions thereof, may be biostable.
In some cases, the pocket 144 may be divided or split using a partition or wall 148. It is contemplated that the partition or wall 148 may be formed from the same material as or a different material from the coating 140, as desired. Each partition or wall 148 may extend across the pocket 144 to transect the void formed by the pocket 144. For example, each partition or wall 148 may extend entirely across the void from a first side of the pocket 144 to a second side of the pocket 144 in which it is situated and radially outward from a bottom surface thereof. For example, each partition or wall 148 may extend entirely across the void from a first side wall of the pocket 144 to a second side wall of the pocket 144 in which it is situated and radially outward from a base wall thereof. In other instances, each partition or wall may extend only across a portion of the void and have one or more ends spaced away from the side walls of the pocket 144. The partitions or walls 148 may be formed as a single monolithic structure with the coating 140 and pockets 144. In other embodiments, the partitions or walls 148 may be formed as a separate structure and subsequently secured within the pocket 144 using, for example, heat and/or adhesives. In some cases, the partition or wall 148 may be configured to extend between opposing cross-over points 160 of intersecting struts 136. For instance, in some instances, the partition or wall 148 may extend from a first corner to an opposite corner of a pyramidal shaped pocket 144. This may divide the void defined by the pocket 144 in approximately half. In some cases, the partitions or walls 148 may extend generally orthogonal to a central longitudinal axis 162 (see, for example,
The partitions or walls 148 may have first and second opposing side surfaces facing first and second divided regions of the void, respectively. The partitions or walls 148 may have a base joined to the base wall of the pocket 144, and an opposite free end extending radially outward therefrom.
In some instances, the pockets 144 and/or partitions or walls 148 may be formed using a mandrel and/or mold. For example, a mandrel may be formed having recesses of the desired size and shape of the pockets 144 with protrusions extending outward from the recesses to form the partitions or walls 148. The struts 136 may be wound, braided, woven, or otherwise disposed about the mandrel with the cells of the tubular wall aligned with the recesses. A sleeve made of, for example, silicone or other polymer material, may be disposed over the mandrel and struts 136. The sleeve may be heated or otherwise molded to the shape of the mandrel to form the coated stent 100 including the pockets 144 and partitions or walls 148 between the struts 136. Alternatively, a polymeric material may be spray or dip coated onto the mandrel and struts 136 such that the polymeric material flows over the protrusions and/or into the recesses of the mandrel.
It is contemplated that the volume of tissue that fills the voids of the pockets 144 may be manipulated by changing a volume of the pockets 144 and/or the size of the walls partitions or 148. While the pockets 144 and partitions or walls 148 are each illustrated as having generally uniform dimensions (e.g., are all approximately the same size, shape, and/or volume), the pockets 144 and/or partitions or walls 148 need not all have the same dimensions. For example, some pockets 144 and/or partitions or walls 148 may be larger than others. In some embodiments, one or more of the pockets 144 may include an opening, such as, but not limited to, an aperture or slit to allow for limited tissue ingrowth. Limited tissue ingrowth may further reduce migration of the stent 100 while still allowing for the removal of the stent 100 with little difficulty. Alternatively, or additionally, slits or apertures may be provided to allow for a peripheral vessel to drain into the lumen 150 or to create a drainage channel in the stent 100. In some cases, the physician may create the slits or apertures by cutting or punching through the pockets 144.
The stents, delivery systems, and the various components thereof, may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys, nickel-copper alloys, nickel-cobalt-chromium-molybdenum alloys, nickel-molybdenum alloys, other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys; platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.
Some examples of suitable polymers for the stents or delivery systems may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), MARLEX® high-density polyethylene, MARLEX® low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.
In at least some embodiments, portions or all of the stents or delivery systems may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are generally understood to be materials which are opaque to RF energy in the wavelength range spanning x-ray to gamma-ray (at thicknesses of <0.005″). These materials are capable of producing a relatively dark image on a fluoroscopy screen relative to the light image that non-radiopaque materials such as tissue produce. This relatively bright image aids the user of the stents or delivery systems in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the stents or delivery systems to achieve the same result.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
The present application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/960,470, filed on Jan. 13, 2020, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4994071 | MacGregor | Feb 1991 | A |
5591197 | Orth et al. | Jan 1997 | A |
5674277 | Freitag | Oct 1997 | A |
5681346 | Orth et al. | Oct 1997 | A |
5800526 | Anderson et al. | Sep 1998 | A |
5814063 | Freitag | Sep 1998 | A |
6027526 | Limon et al. | Feb 2000 | A |
6210429 | Vardi et al. | Apr 2001 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
7060089 | Ley et al. | Jun 2006 | B2 |
7527644 | Mangiardi et al. | May 2009 | B2 |
7547321 | Silvestri et al. | Jun 2009 | B2 |
7604660 | Borg et al. | Oct 2009 | B2 |
7608099 | Johnson et al. | Oct 2009 | B2 |
7637934 | Mangiardi et al. | Dec 2009 | B2 |
7637942 | Mangiardi et al. | Dec 2009 | B2 |
7651520 | Fischell et al. | Jan 2010 | B2 |
7731654 | Mangiardi et al. | Jun 2010 | B2 |
7740791 | Kleine et al. | Jun 2010 | B2 |
7785360 | Freitag | Aug 2010 | B2 |
7803180 | Burpee et al. | Sep 2010 | B2 |
7806918 | Nissl et al. | Oct 2010 | B2 |
7815673 | Bloom et al. | Oct 2010 | B2 |
7875068 | Mangiardi et al. | Jan 2011 | B2 |
7887579 | Mangiardi et al. | Feb 2011 | B2 |
7942921 | Nissl et al. | May 2011 | B2 |
7959671 | Mangiardi et al. | Jun 2011 | B2 |
8080053 | Satasiya et al. | Dec 2011 | B2 |
8128679 | Casey | Mar 2012 | B2 |
8142488 | Reynolds et al. | Mar 2012 | B2 |
8206436 | Mangiardi et al. | Jun 2012 | B2 |
8262721 | Welborn et al. | Sep 2012 | B2 |
8267987 | Johnson et al. | Sep 2012 | B2 |
8298277 | Mangiardi et al. | Oct 2012 | B2 |
8323350 | Nissl | Dec 2012 | B2 |
8353946 | Mangiardi et al. | Jan 2013 | B2 |
8535366 | Mangiardi et al. | Sep 2013 | B2 |
8652196 | Nissl | Feb 2014 | B2 |
8834558 | Nissl | Sep 2014 | B2 |
8926683 | Gill et al. | Jan 2015 | B2 |
9539126 | Walsh et al. | Jan 2017 | B2 |
10219921 | Harris et al. | Mar 2019 | B2 |
20020179166 | Houston et al. | Dec 2002 | A1 |
20050131515 | Cully et al. | Jun 2005 | A1 |
20050163954 | Shaw | Jul 2005 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060281966 | Peacock, III et al. | Dec 2006 | A1 |
20070005127 | Boekstegers et al. | Jan 2007 | A1 |
20070061005 | Kim et al. | Mar 2007 | A1 |
20070123969 | Gianotti | May 2007 | A1 |
20070213810 | Newhauser et al. | Sep 2007 | A1 |
20080319540 | Jordan et al. | Dec 2008 | A1 |
20090187240 | Clerc et al. | Jul 2009 | A1 |
20090248132 | Bloom et al. | Oct 2009 | A1 |
20100030321 | Mach | Feb 2010 | A1 |
20100100170 | Tan et al. | Apr 2010 | A1 |
20100256731 | Mangiardi | Oct 2010 | A1 |
20100286760 | Beach et al. | Nov 2010 | A1 |
20110230957 | Bonsignore et al. | Sep 2011 | A1 |
20120150277 | Wood et al. | Jun 2012 | A1 |
20120310363 | Gill et al. | Dec 2012 | A1 |
20130018215 | Snider et al. | Jan 2013 | A1 |
20130018452 | Weitzner et al. | Jan 2013 | A1 |
20130085565 | Eller et al. | Apr 2013 | A1 |
20130103162 | Costello | Apr 2013 | A1 |
20130103163 | Krimsky et al. | Apr 2013 | A1 |
20130110253 | Gill et al. | May 2013 | A1 |
20130116770 | Robinson | May 2013 | A1 |
20130116771 | Robinson | May 2013 | A1 |
20130116772 | Robinson | May 2013 | A1 |
20130123897 | Robinson | May 2013 | A1 |
20130172983 | Clerc et al. | Jul 2013 | A1 |
20130184808 | Hall et al. | Jul 2013 | A1 |
20130184810 | Hall et al. | Jul 2013 | A1 |
20130325141 | Gill et al. | Dec 2013 | A1 |
20140067047 | Eller et al. | Mar 2014 | A1 |
20140079758 | Hall et al. | Mar 2014 | A1 |
20140081414 | Hall et al. | Mar 2014 | A1 |
20140086971 | Hall et al. | Mar 2014 | A1 |
20140248418 | Eller et al. | Sep 2014 | A1 |
20140249619 | Eller et al. | Sep 2014 | A1 |
20140257461 | Robinson et al. | Sep 2014 | A1 |
20140277562 | Seddon et al. | Sep 2014 | A1 |
20140277573 | Gill et al. | Sep 2014 | A1 |
20150045908 | McMahon | Feb 2015 | A1 |
20150051693 | Bertolino | Feb 2015 | A1 |
20150073529 | Fleury et al. | Mar 2015 | A1 |
20150148887 | Beach et al. | May 2015 | A1 |
20160256296 | Rubesch et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
0732088 | Sep 1996 | EP |
0732089 | Sep 1996 | EP |
1776066 | Feb 2012 | EP |
2702964 | Mar 2014 | EP |
2011509758 | Mar 2011 | JP |
2019516504 | Jun 2019 | JP |
2005112821 | Dec 2005 | WO |
2010124286 | Oct 2010 | WO |
2012047308 | Apr 2012 | WO |
2014010679 | Jan 2014 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jun. 4, 2021 for International Application No. PCT/US2020/065583. |
Number | Date | Country | |
---|---|---|---|
20210212848 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62960470 | Jan 2020 | US |